
Communications in
Commun. math. Phys. 54, 69—79 (1977) MθthΘΓΠStίCθl

Physics
© by Springer-Verlag 1977

The Dynamical Instability of Nonrelativistic
Many-Body Systems*

Charles Radin
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19174,
and Department of Mathematics, University of Texas, Austin, TX 78712**, USA

Abstract. From computations in an exactly solvable many-body dynamical
model we argue that, quite generally, a nonrelativistic quantum mechanics of
infinitely many interacting particles must admit states without a global time
evolution; equivalently, that the (quasi-local) observables of any such theory
are not preserved in time by the Heisenberg dynamics. Our analysis, is based
on a dynamical instability common to interacting finite-particle systems.

1. Introduction

The dynamics of many-body systems is known to be less singular in (nonrel-
ativistic) quantum mechanics than in (nonrelativistic) classical mechanics. For
example it remains a famous unsolved problem in classical mechanics [1] whether
or not there is a global time evolution for each initial state in the ΛΓ-body coulomb
problem (N^.4 point particles in three dimensions with attractive coulomb
interaction) excluding the set, of measure zero [2], of those initial states which
lead to collisions. Yet such difficulties are smoothed out in quantum mechanics by
the wavefunction formalism. For any interaction given by a Kato potential, a
class that includes the coulomb interaction [3], it has been proven [4] that every
physical initial state has a global time evolution which remains physical in time.
(By a "physical" state we understood one in which the usual particle observables,
such as position, momentum and energy, are well defined.) Thus there can be no
"catastrophe", or breakdown in the time evolution, of any initial state in a quantum
mechanics of the most important dynamical models.

However the above argument does not preclude the phenomenon of "dy-
namical instability" for ΛΓ-body quantum models, that is, a potential breakdown
in the dynamics which gets more severe as larger N are considered, which is
manifested by an actual breakdown in the dynamics of the associated infinite-
particle models (and is thus qualitatively as significant as a breakdown for large
enough N).
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For an example of such a dynamical instability in classical mechanics consider
the model of Λ/> 1 equal mass, point particles in one space dimension, with the
7th particle at position Xj(Q)=j and with velocity kj(ΰ) = —j2 at time ί = 0. Assume
that the particles only interact through a hard core so that when two particles
collide they exchange velocities but retain their order on the line. Then at any
time t>ί/N the first particle has velocity k1(t)=—N2. Applying this analysis
to the appropriate system of infinitely many particles, it is clear that the analogous
initial state (represented by the ordered set {(x/0), kj(Q))\j=l,2, ...} of infinitely
many pairs of coordinates) cannot have a well defined time evolution {(x/(ί),
kj(t))\j=l,2, ...} for (any) future time ί>0.

This phenomenon (viewed equivalently as a dynamical instability of the
N-particle model or as a catastrophe in the infinite-particle model — see [5] for
details on this matter) can be controlled to some extent in classical mechanics
(though obviously not yet for the coulomb interaction !) by isolating the trouble-
some initial states, showing them to be a set of measure zero for relevant measures
[6-8]. Since quantum mechanics smooths out the dynamics of Λf-body models
as described above, the question arises whether or not this phenomenon of
dynamical instability of AΓ-body models is also removed by the quantum for-
malism.

In Section 2 we will mimic the above classical mechanical instability for the
analogous quantum mechanical model, and then argue in Section 3 that in any
nonrelativistic quantum model with sufficiently strong repulsive core in the
interaction (and at least two species of particles if identical particles are used)
the instability will remain. We then reformulate this result to show that in any
(quasi-) local observable theory of infinite-particle nonrelativistic dynamics, the
set of observables cannot be preserved in time if the interaction is sufficiently
repulsive. Finally we discuss briefly in what manner this requires a re-evaluation
of the C*-algebraic nonrelativistic dynamical theories in [9] and its progeny.

2. An Exactly Solvable Dynamical Model

We consider in this section the dynamical model governed by the Schrodinger
equation for a finite number, JV^2, of distinguishable, equal mass, point particles
in one space dimension, whose only interaction is a hard core; that is, the particles
are assumed impenetrable to one another but otherwise free. A wavefunction for
our system is thus a normalized, Lebesgue-square-integrable function on JRN,

1 N

and our Hamiltonian is — - ]Γ (d2/dx2) with Dirichlet boundary conditions
2 j=ι

(see [11], esp. VI-§1.3 and VI-§4.4) on the set T={x = (xl9...9xN)eJΆN\xί = xj

for some zφj},
Let SN be the set of permutations P on the first N natural numbers, with

action denoted P:j-+P(j), let D = {xe]RN\Xι<x2<...<xN} and let χ be the
characteristic function for D. We define the time dependent wavefunction Ψt by

Σ (-
CN PeS* j=ί

CO

J exp [ i k j ( x p ( j ) - dj - kjt/2) - (kj -
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where |P| = ± 1 is the parity of P, where aj and bj are fixed throughout this paper
to have the values

bj=—a2', cij= exp[100(/+1)!] ,

and CN is the positive normalization constant (independent of x and t and with
uniform lower bound determined below) such that the L2-norm 11^(0 II = 1 f°r

all t. It is easily seen that for all ί, Ψt is a continuous function of x, which vanishes
for x in T, and is such that

d 1 N d2

— ψt(x) = £ ψt(x) 9 for all (x, ί) in Tc x R,

where T is the complement of T in IRN. (We note that the form of our Ψt was
inspired by calculations in [10].) Using this it is easy to show that

CN PeSN

where for all x in IRN and t in IR we define

ψp,tW = Π (2π)ι/4(1+.t/2)ι/2

 exP [ίί̂ Pϋ) - ̂  fc, - ̂  t/2)

-(xp(j}-aj-bjt)
2/(4 i-2it)'].

We note that \\ΨPίt(-)\\ = 1 for all t and P.
The immediate goal of this section is to show that the speed of the particle

labeled by j= 1 undergoes a large increase as time passes ί = 0, an increase which
in fact diverges as a function of the total particle number N, in agreement with the
classical analog of Section 1. As a necessary step in the argument it is shown that
at times ί = 0 and ί = %: the sum of all contributions to Ψt of the various tpPί

in (1) are negligable except for one (different for the two times) and that therefore
the system can be treated as a sequence of well localized and isolated particles
at these times.

We begin with some notation. We will need two decompositions of SN; using
the notation / for the identity permutation and M for the permutation defined by:

we define

*=ί { / } ' k=1

k \{P(ΞSN\k is the largest value of j such that P(/)Φj} , k^2

and

ί{M}, if k=\
k \{Pe SN\k is the largest value of; such that P(j)*M(j)}, if
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Note that the cardinality of Rk and of Tk is (fc-l)(/c-l)! for k^2. Finally we
define α; = α/l-α/%) and α / = 2α2/(l+4α2).

We will also need the following two simple estimates. If K^O and d>0, then

j exp ( - x2/d)dx = J exp [ - (y + K)2/d^dy
K 0

K2/d). (2)

Next assume α^O, d>0, and define

J1= J x2exp[-(x-α)2Λfμx
x>3α/2

= J (y + 3α/2)2 exp [ - (y + a/2)2/d]dy
0

J (y + 3α/2)2 exp(- y2/d)dy
o

^ exp[-α2/4d] J y2 exp(-y2/d)dy

+ 3α
o

Then define

J2= J x2exp[_-(x-a)2/d]dy

= J (y + a/2)2

Qχpί-(y-a/2)2/dldy

= J (z - a/2)2 exp [ - (z + α/2)2

0

^ exp[-α2/4d] J (z-α/2)2 exp(-z2/d)ciz

^ exp [ — α2/4rf] J z2 exp (—
L o
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Finally we define

J = J1+J2= J χ2 exp[ — (x — a)2/d~]dx

^ exp[ — a2/4d][(πd)1/2(d/2 + 5a2/4) + ad] . (3)

We now begin our specific estimates of the various ||χιpP?ί|| and related quan-

tities.
Assume Pe Tk, feΦl. Setting y = xP(k-1}9 z = xk, and h = P~1(k),

N

j=ι

^ (aN/π)(π/aNy>2(π/άN)1/2 exp [ - (αN/4)(α2_ , + α2)]

), and so

Next we note that (treating j=N specially)

N

f,e,rill
2 = i(%/^yv/2 Π exp[-%(^

D 7=1

" Qxp( — aNx2)dx

J exp( — aNx2)dx
«ι/4

Π [1 -exp(-α2/40)] (1 -exp [-α2/80])
j=ι /

In[l-exp(-α2/40)](l-exp[-α2/80])

N-l

[l-exp(-α?/80)],

(4)

exp X -(3/2)exp(-α2/40)

where we have used the inequality ln(l +37)^337/2, valid for — ̂ <y^ΰ. Therefore
we have

N-l

exp— X exp( —α2/40)
7=1

Cl-exp(-α2/80)]. (5)



74 C. Radin

Next we need an estimate for the inner product

QeSN

Σ ll*lXV>P, e w JI - (6)
QeSN

Assume βeTfc, fcΦl and also that ζr^^φfc-l. Then if we let h = Q~1(k),
/=Q"1(1)J we have

N

f^ Πj=ι

2- .[
z>y

00

J x2

1QXp[_-άN(x1-άf)
2dx1

oo

00

/π)1/2 J xl

If however QeTk, fcΦl and also Q~1(l) = fe— 1, then in a similar vein but now
using (3), we have

) f
\y-ak-ι\>

J exp

So in general if Qe Tk, /cφ 1 then

ll*ijrv>c, e Jl ̂ 2^.! exp(-αt ι/80) . (7)

Finally, taking Q = M, we have

00

Il*ιmί,fl^ll2^(%/π)1/2 J x2exp(-%x2)rfx
— oo

^(2άw)-1^2. (8)

Therefore we have from (6), using (7) and (8),

Σ /c!2α,_1exp(-aL1/80). (9)
ίc=2
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Inequality (9) is the basic overestimate that we need, pertaining to t = %1;
we now need an underestimate corresponding to t = O.We will use

P Φ /

.o)-- Σ l l * ι X V > p , o l l
P Φ /

- Σ l l * ι x v > p , o l l ] . (10)

We begin with an underestimate for

where H^H1uH2 and //! = {xfa <0}, //2 - {jc||xy-a7.| <α/2, V/} .
Now

H! 7=1

0

= (2πΓ1/2 f xexp[-(x-α!)2/2]dx

(11)

α?/2). (12)

And using (2) we find that

(2πΓNI2 j Xi Π
H2 J= 1

x - α ι | < o ι / 2

-N/2

•[α1(2π)1/2(l-exp[-α2/8])]
N

^αt Yl (1— exp[ — α2/8]). (13)
j=ι

Therefore from (11), using (12) and (13), we have

.0)^1 Π (l-exp[-α2/8])-exp(-α2/2)

-(3/2)exp[-α2/8]-exp(-α2/2). (14)
j=ι
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Next, assuming QεRk, fcφl, we need an overestimate for \\XιχψQ

•Viϊ iJc and let A = β~1(fc), j> = xβ(fc), z = xfc, and /-β-^l). Then '
N

||2 - j x2(2πΓN/2 [] exp [ - (xβω - α//2] dx

C. Radin

I I . Assume

\y-ak\>ak/2

|z-α h |>α h/2

If however QeRk,kφl and β-1(l) = /c, then

,oll2^(2π)-1 J y2 exp [ - (y - αt)
2/2 - (z - αΛ)

\z-ah\>ah/2

^(2π)-1[(2π)1/22α,2exp(-α,2/8)](2π)1/2

So in general if QeRk, feφl, then

Finally we need to estimate CN. By definition

r \* ( λ
LN= L (~]

(15)

so using (4) and (5) we have

[l-exp(-α2/80)] exp- £ exp(-α2/40)| - £ fcί
7=1 J fc=2

^Cw^l+ Σ fc ! exp (-α2_ ι/80).
k = 2

Now using αfc = exp [100(/c + 1) !], we note that k ! exp( - α2_ ̂ 80) < exp ( - 100/c), so

N N

X fc!exp(-fl?_!/80)< X exp(-100fc)<exp(-50).
k=2 k=l

Also, α2/80>50, so

[l-exp(-50)]exp[-exp(-50)]<Q<l+exp(-50), so

|CJ V-l|<exp(-20). (16)
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Also, 2fc!αk_1exp(-α^_1/80)<exp(-100fc), so

Σ 2fc!«k_1exp(-αtι/80)<exp(-50). (17)
k = 2

Therefore using (16) and (17) in (9) we have

<3 for all A T . (18)
On the other hand

(3/2) exp ( - α?/8) < exp ( - lOOj), so
N

(3/2) Σ exp (-α?/8)< exp (-50), and thus from (14) we have
j=ι

<OT/,o> *ιXV>p,o> ̂  100 UsinS (15) >

Σ H * ι X V > p , o l l ^ Σ 2/c!α2exp(-α2/8)^exp(-50),
P Φ I f c = 2

and so from (16) and (10),

^50 for all A T . (19)

The main point of this section is not only the estimates (18) and (19) but also the
demonstration that the quantum system behaves very much like the classical one,
at times t = 0 and ί = % *. With the above technique it is also straightforward but
tedious to show that (Wt9x^ty is Cauchy as ΛΓ-^oo, for t = Q and £ = %*; we
leave the details to the reader. This given, inequalities (18) and (19) show that,
as 7V-»oo, particle 1 acquires infinite velocity at time ί = 0.

3. Consequences of the Model

We conclude by induction from the above calculations that in any nonrelativistic
quantum mechanics of infinitely many particles, with a sufficiently repulsive core
in the interaction, there exist initial states without a well defined tome evolution;
equivalently, the set of observables of such a model is not preserved by the Heisenberg
dynamics. This conclusion requires a number of supporting arguments and
qualifications, which follow.

i) First of all we consider here only what we will call "complete" local obser-
vable theories or models. In a classical mechanical theory, point particles can be
strictly localized in space, and a local observable model containing an infinite
number of such distinguishable interacting particles, labeled by j= 1, 2, ..., would
be "complete" only if every assignment {(xp /Cy) | j=l,2, ...} of positions Xj and
velocities kj which is meaningful locally (i.e. for which there are only finitely many
particles in each bounded region of space, each with finite momentum and energy)
is a state of the infinite-particle system. Such a restriction on a theory seems
necessary if it is to have the flexibility to approximate arbitrary physical states of
all the N-particle systems whose modeling is its raison d'etre. In a nonrelativistic
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quantum mechanics strict localizability is an inappropriate notion due to instant-
aneous wavefunction spreading. However one can easily produce wavefunctions
which represent particles which are well localized and separated in space and
well localized in momentum and energy. In order to retain the same flexibility
described above, it is therefore natural to require of any local observable theory
the analogous notion of completeness.

ii) Our basic conclusion (underlined at the beginning of this section) but
applied only to the one dimensional model of Section 2, follows from i) by the
next argument. From our calculations, any complete local observable model of
infinitely many distinguishable particles, with the given interaction, must admit
an initial state Ψ0 which in the region ( — aN+1/2,aN+ι/2) would have the same
properties as our Ψ0. Since to be relevant such a model must give results approxi-
mating closely that of the appropriate finite-particle systems, if the time evolved
state Ψt existed for all ί, it would have to describe a particle acquiring infinite
velocity at ί = 0, which is incompatible with the notion of velocity. Finally, if the
Heisenberg dynamics preserved the set of observables, which set defines the set
of states, the dynamics of every initial state, including Ψ0, would have to be
defined leading to the same contradiction.

iii) The induction from our model with point hard core repulsive interaction
to any "sufficiently repulsive" interaction for distinguishable particles seems
reasonable. For higher space dimensions one has to control the directions of
the various momenta, but since we are working in a finite time interval it would
seem that wavefunction spreading would again be innocuous.

iv) There is one physical phenomenon which can interfere with the generaliza-
tion of our arguments. If all the particles in the initial state are indistinguishable
it can no longer be argued that the description of the system must break down in
time. For example consider again the classical model of the introduction but with
a description which does not distinguish particles. A state of the distinguishable-
particle system was given by an ordered set of pairs (xj9 /Oy); a state for identical
particles would thus consist of an unordered set of such pairs. For such identical
particles, not only does the description of the system not break down in time, but
in fact it is identical to that of the corresponding noninteracting system (which
clearly has no difficulty of the type being described)! This is the case because the
new symmetry does not allow the concept of a transfer of momentum to a parti-
cular particle, which is our basic mechanism. However this difficulty only arises in
(impractically restrictive) models consisting of one species of identical particles.
For models containing at least two particle species, A and B, our argument can be
modified as follows. For such a model we use coordinate x± of Ψt to represent a
single particle of species A and (after symmetrization or antisymmetrization if
necessary) we use the remaining coordinates to represent particles of species B.
Therefore any local observable model which allows a complete description of at
least two particle species (i.e. which admits as an initial state anything which for
each bounded region is meaningful as a system of an arbitrary but finite number,
Np of particles of species j) cannot have a well defined dynamics for all initial
states if it uses a sufficiently repulsive interaction.

v) Finally, there is conspicuously absent any calculation using a specific
C*-algebra of quasi-local observables. This is purposeful, to emphasize our



Nonrelativistic Many-Body Systems 79

contention that our argument is more convincing than are any arguments known
to us for the physical appropriateness of any particular C*-algebra of observables.

At this point we note the relation of our results to certain previous work.
In [12] it is argued that the dynamics, of nonrelativistic quantum systems of
infinitely many particles, is not always given by automorphisms in local observable
theories. This is argued from calculations with a specific C*- algebra, describing
noninteracting bosons. However since no physical phenomenon (such as the
dynamical instability we demonstrate for interacting systems) is shown to be at the
basis of this result, it is tempting to ascribe the result to more superficial features
of the specific C*-algebra used and therefore to try to avoid the result by changing
the algebra (an attitude reinforced by the fact that the free evolution preserves the
analogous algebra for fermions). We feel that our argument should discourage
such temptation, at least for interacting systems.

In conclusion, we view our analysis as a refinement of the local observable
approach to the study of the dynamics of many-body systems, not as an, obstacle
to this approach. Indeed, we have already argued [5] that useful and general
dynamical models can be constructed with automorphic Heisenberg dynamics
if only one replaces the physical space IR3 by Ί? (thus putting a "natural" cutoff on
single particle velocities). Alternatively an effective velocity cutoff can be enforced
by using a Lorentz invariant formalism, although this is somewhat impractical in
that it only substitutes the more intractable singularities of particle production.
Perhaps the most satisfying solution would be a method of controlling the under-
lying phenomenon of instability, by generalizing the classical mechanical tools
(as used for example in [6-8]) to isolate those troublesome initial states by a
"measure zero" technology, as we have attempted in [13].
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