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Abstract. We discuss the question of when the closure of the Schrédinger
operator,— 4 + ¥, acting in LP(R, d'x), generates a strongly continuous contrac-
tion semigroup. We prove a series of theorems proving the stability for
— A LP—L? of the property of having a m-accretive closure under perturba-
tions by functions in L{ (1 <p=g). The connection with form sums and the
Trotter product formula are considered. These results generalize earlier results
of Kato, Kalf-Walter, Semenov and Beliy-Semenov in that we allow more
general local singularities, including arbitrary singularities at one point, and
arbitrary growth at infinity. We exploit bilinear form methods, Kato’s
inequality and certain properties of infinitesimal generators of contractions.

1. Introduction and Results

Kato [1] showed that the L2-operator sum,— 4+ V] is essentially self-adjoint on
CP(RHIf0<VelLl (R',d'x), g=2. In particular, the Trotter product formula holds
in this case. However, if g <2, it can happen that Z(— A)nZ(V)= {0}, so that the
operator sum—A+ V is not densely defined. Nevertheless, in Semenov [3] and
Beliy-Semenov [7,12], an operator H is constructed so that the Trotter product

formula
e~ tH — S-lim (e—- tHO/ne— tV/n)n

holds so longas0< Ve LYR, d'x)g=10or 0= Ve LL (R, d'x), g = 1. (Here and below
the symbol s-lim stands for an L? strong limit.) H was constructed as a form sum,
and, in the second case, Kato’s inequality was essentially employed. In addition we
developed a criterion for a sum to have an m-accretive closure.

We recall that an operator A is called m accretive if and only if — A generates a
contraction semigroup e~ ‘4. We call D an m-accretive core for A4 if and only if the
closure of A[D is m-accretive. If more than one Banach space is possible, e.g. D
= C¥(R") we will sometimes modify the phase m-accretive with a Banach space, e.g.
L? — m-accretive.
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In the present paper, we wish to generalize the aforementioned results for
Schrédinger operators— A4+ V: LP(RY)— LP(RY), 1 <p < 0.
Theorem 1.1. Let [ be an integer 21, and let g> 1. Suppose that :

O v=v,-V_;V,=0.

(2) VieLi(R).
(3) For suitable fixed b=0 and 0<a<2% and all ue C3(R"):
IV_ull,Zal dull,+blul,.

Then the closure of (—A+V)ICP(RY):LI—>L% is a generator of bounded
holomorphic semigroup.

Theorem 1.2. Let [ =3, g>1. Assume that

(1) v=v,_=0.

(2) V, € L (R\{0}).

Let p<r=min(q,1/2). Then CZ(R™\{0}) is an L? —m-accretive core for— A+ V.
Theorem 1.3. Let [=3 and q> 1. Assume that

(1) V=V, =0.

(2) Vi eLL(RIN(0}).

Let H=HO—:FVbe the form sum of Hy=(—A{CZ)~ and V. Then on L*:

e H=g-lim (e~ Holng=tV/mn
for each t>0.

Theorem 1.4. Let [>2. Assume that
(1) VeL2 (R™\{0}).
(2) V=[1-(1-1/2]x72.
Then—A+V:L*—L? is essentially self-adjoint on CZ(R"™\{0}).
In particular, for each— oo <t< o0,
s-lim [e—itHolne~itV/n]n —e” itH .
Remark 1. Theorem 1.1 in case ¢ =2 (but with a <3 replaced by the weaker a< 1) is
due to Kato [1]. Theorems 1.2 and 1.3 are generalizations of results of Beily and
Semenov [7,12]. Theorems 1.3 and 1.4 are generalizations of a theorem of Kalf-
Walter [14] (see also [2]). Simon [11] has also proven Theorem 1.4.
Remark 2. If condition (2) of Theorem 1.4, we require that
VZalx|"%;a>1—(1-1/2)?
then, we obtain supplementary information about H, namely 2(H)C 2(|x|?).
Remark 3. Our method of proof of Theorem 1.4 may be extended to the case of N-
particle Hamiltonians with two particle potentials ¥;;e L*(R"\{0}) that
Viz[—(1=122+ellxl 7%, ¢>0
for the “physical” dimension [=1,2,3 [15].
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Remark 4. Since LY, C L} _ for p<gq, under the hypothesis of Theorem 1.1, we have
that CJ is an L? —m-accretive core for — A+ V, (note the +) forany pwith 1 <p=gq.
In the proofs of the above theorems, we use Kato’s inequality, and contraction

and holomorphic properties of the semigroup generated by 4.

2. The Semigroup Extension of —4 + V on L? Defined via a Form Sum

Let # =L*R',d'x), [=1 and let Hy=[—ACZ?(R)]~ where~ denotes operator
closure. It is well-known that H, is a self-adjoint operator and that the generated
semigroup exp(—tH,) is a contraction on all L?, ISp=<oo; ie. for all =0,
ue A NL?:

lexp(—tHo)ull, = [lull,-

Let S,(1) be the unique bounded extension of exp(—tH ) N L? to all of L?. Then,
for 1 Sp<oco, §,(t)is a Cy-contraction semigroup, so that there is an operator H,, ,
with S (t)=exp(—tH, ,). In particular, H, ,=H,.

Let V be a non-negative function in L} (R™\{0}) and use V to also denote the
associated self-adjoint operator on L. As above define a C,-contraction semigroup
Q,(t): LP—LP(1=<p<oco) and V, so that Q (t)=exp(+1V,); V,=V.

Define H=H,+V as the self-adjoint operator obtained as the form
sum [8, Chapt. VI]. It is easy to see (e.g. [3, 4, 7]) that the semigroup
exp(—tH) is a contraction on each LP(1<p=o0). Moreover the extension R ()
of exp(—tH)[L?ns# to L? defines a C,-contraction semigroup if 1<p<oo
(see [7] or Proposition 2.2 below). As above, R (t)=exp(—tH,); H,=H.

We systematically use the following notation in the results below: A=H,, ,, B
=V, C=H, B,=B on the space where B=n, B, =0 otherwise, C,= A4+ B,. We use
RY, to denote R"\{0} and Z(L*, L9) denotes the space of bounded operators from L?
to L% L(L)y=2L(L, LP).

Proposition 2.1. For each t>0 and all 1 <p< oo,
lim exp(—tC,)=exp(—tC)

n—rawo

in the strong ¥ (L*) topology.

Proof. The case p=2 follows from theorems of Kato [8, Chapt. VII, Theorem 3.13]
and Trotter-Kato [9]. The general case follows from the following Proposition.

Proposition 2.2. Let S, : L'nL*—>L'nL* k=0,1, ..., so that 1Swll,=lgll,, allk, 1
Sp=oo. If S,g—Sog for all ge A, then S,g-+£% S.g for all ge L?, 1 <p< co.
Proof. Let fe L*nL*. By Holder’s inequality, for 1<p<2
ISef = Sof I = USeS = Sof 1T 2ISef —So 11372
S22TPISITTRISS =S5
and for 2<p< oo
ISef =SofI15=27 21 flIE 218,/ =SS5

Thus, for such f; S, f =S, f in LP-norm. Since such f’s are dense, S,g—S,g for any ¢
in LP.
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Proposition 2.3. The semigroups exp(—tC),exp(—tC,n=1,2, ... are holomorphic on
r,={t|largs|<(1—1-2p~ )n/2}

and uniformly bounded on I',. The convergence of exp(—tC,) to exp(—tC) in the

strong L” topology is uniform on compact subsets K of I', for 1<p<co.

Proof. The semigroups exp(—tB,) are holomorphic on Ret>0 and
lexp(—tB)gl,=llgl,=llgll, 1=p=oo; Rer>0. (1)

The semigroup S ,(t)=exp(—tA4) is a contraction on L” for I <p < co. Thus, by the
Stein interpolation theorem (e.g. [13, Proposition I1.57):

IS,(2)gll, =llgll, zel, 2

and S (z)is analyticon I',. By the Trotter formula, foreach t>0and any ge L?, 1 <p
<o
exp(—tC,)g= LP-lim [S(t/x)exp(—B,t/x)]"g. 3)
Now, by (1) and (2), the functions .7, , =[S (z/%)exp(— B,z/x)]*g are analytic and
uniformly bounded on I',. By (3), they converge pointwise on the positive real axis.
Thus, by the Vitali convergence theorem, exp(—zC,)g is analytic in I', and:

exp(—zC)g= L*-lim %, .g; zel', geL”, 4)
lexp(—=zCgll,<lgll, zel, gel”. (5)

Using (5) and Proposition 2.1, we can repeat the above argument for the
convergence of exp(—tC,) to exp(—tC).

Proposition 2.4. Let V be a positive functionin LL (R",) for some fixed g > 1. Then, for
any pe C(R,), t>0and 1<p=q

exp(—tC)(A+B)p=Cexp(—tC)p.

Proof. By Proposition 2.3, C, exp(—tC,) converge strongly to C exp(—tC)in L? for
each t>0and 1 <p<co. Also exp(—1tC,)4¢ and exp(—tC,)Bo converge respecti-
vely to exp(—tC)A¢ and exp(—tC)B¢. Thus we need only show that

lexp(—tC,)(B,—B)pl,~0  @eCF(R,).

But since |exp(—tC,)||£1, and Vis in L& (R"), this is evident.

loc
Proposition 2.5. Let V be a positive function in LL (R',) for some fixed g > 1. Then, for
each 1<p<q C¥(R,)C2(C) and
CICP(RL)=A+BIC2(RY).

Proof. Let ¢,=exp(—C/x)p, peCZF(R). Then, as x—w, ¢,->¢ and, by
Proposition 2.4, Co, L% (A + B)e. Since C is closed, the result is proven.

Remark. Using the same argument, it can be shown that CICF(R™\S)=—4
+VICP(RAN\S) on LP?, 1<p=gq if V is positive and in L (R'\S) where S is an
arbitrary closed set of measure zero.
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3. Kato’s Inequality and the Generation of an [P-Semigroup
by the Closure of —A+ V

Proposition 3.1. Let V, e LY (R) for some g+ 0. Then (A+ B+ 1)CZ(R") is dense in
1A,

Proof. Suppose that (4+B+1)C is not dense in L.
Let M be its closure. Since M # L4, there exists fe LY (q'=(1—¢~ 1)~ 1) so that
f+0 and

=44V, +Dp>=0;  @eCF(RY).
Rewriting— A4 as a map from L} into (C{(R")) we have that Af =V, f+ f. Since
fel? and V,eLi_, V, [+ feL},. Thus Kato’s inequality holds:

Alf1z Re((sgnNAS) =V, |fI+1/1=If]

so that (—4+1)]f]=0 and f=0.
This contradiction shows that M = L4

Remarks. 1. The proof of Proposition 3.1 is, in fact, a slight modification of Kato’s
proof [1,10] that (— 4+ V, + 1)C¥ is dense in L? when V, 20, V. e L2 (R).
2. Since L2 CLL if p<q, (A+B+1)CF(RY is dense in any L?, 1<p=<gq.

loc loc

Proposition 3.2. Let V,elL! (R") for some g>1. Then, A+B with domain

loc

D(A)ND(B) is closable. It closure, C, generates a contraction semigroup on all LP(1
<p< o) and CF(R") is a core for C.

Proof. Apply Propositions 2.5 and 3.1.

Proposition 3.3. Let V=V, —V_; 0=V, eL% (R") for some q>1. Suppose that for
some b=0, ae[0,1/2) and all ue C(R"):

IV_ull,<al dull,+bllull, .
Then

IV_ull,<al(4 =V )ull,+blul,
for all ue C3(RY).

Proof. This proposition is a direct consequence of a lemma of Davies and Faris [6,
Lemma 2].

Proof of Theorem 1.1. Apply Propositions 3.2 and 3.3.
Proposition 3.4. Let [23. Let V. e L (R',) for some q> 1. Let q,=min(q,1/2). Then

loc

the range of (A+ B+ 1)ICZ(R',) is dense LP(R") for any 1<p=q,.

Proof. The argument used in the proof of Proposition 3.1 may be generalized in the
following way: Let M be the closure of (4 + B+ 1)CZ(R",). By the Hahn-Banach
theorem, for any v=0 in L°\M, there exists an fe L? (p'=(1—p~ )~ ) with {f,v)
=1,{f,uy=0 for all ue M. Since V, =0, by using Kato’s inequality as in the proof
of Proposition 3.1, we have

AfL(=4+1Dp> =0:9eCF(RY), ¢ 20.
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Suppose that for any pe #(R") with ¢ =0, we can construct a sequence ¢, =0 with
©,e CF(R,) so that

lim (If,(= 4+ 1D, =S (= 4+ D>

Then noting that (— 4 + 1) 7! takes {@pe.%|¢ =0} into itself we have that {|f],¢g> <0
for any ge & with g =0, for take ¢ =(—A+1)"1g=0in the above. Thus f =0 and
the proof is complete.

Such a sequence is not difficult to construct. In fact, let A and u be fixed C*
functions with 0 <y, A< 1so that A(x)=1if x| > 1, A(x)=0if |x| =1; u(x)=1if x| < 1,
w(x)=0 if |x|>2. Let

1

O, (x)=Anx)p(n” 'x).

Then w,e CF(R,), 050,21, o,(x)=1if1/n<|x| <nw,(x)=0,if|x| >2nor|x| < 1/2n
and moreover:

Vo, ()| SDIx|™ ;| dw,(x)| < DIx| 2.

Now let pe &, ¢ =20 and define ¢, =w,¢. Then
MNw,0)=w, 40 +2Vw, Vo +pAw,

SO
AfLA=Dep=1"+IP+15,

where I(n):<|f|s (Dn(A - 1)(p> Clearly converge to <|f’a (A - 1)(P>> I(ln):2<|f|: an
Vo) and I ={|f], (4w,)p). Now, by Holder’s inequality

1/q

|x| <1/n
or|x|>n

IPI=2D1 11, [ | IxI"Ivelid'x

which goes to zero as n— oo since pe.¥ and g <I/2<Il. Here ¢'=(1—¢q~ ')~ '. Again
by Hoélder’s inequality:

[15'1<D(4,+B,)

with 4, = ||f[|q,[ f |x|“2q|(plqd’xl”q which goes to zero as n— o0 since pe.% and:

[x|>n
Bo=| I el f o lpbaxT ]
|x[<1/n @2mlsix|s1/n
which goes to zero as n— oo since the first term goes to zero and the second is
bounded when g=<1/2.
Proof of Theorem 1.2. Apply Propositions 2.5 and 3.4.

Remark. 1t follows from Proposition 3.4 thatif =4, — A4+ V, : L*— L* is essentially
self-adjoint on CP(R"\S) whenever V, e L (R"\S) where S={a,, ...,a,}.

loc
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Theorem 3.1. Suppose that the hypotheses of Theorems 1.1 or 1.2 hold. Then for 1 <p
<0

exp(—tC)= lim [exp(—tA/n)exp(—tB/n)]" (6)

n—w
in the strong LP-topology.

Proof. If 1<p=<q, then (6) follows from Theorems 1.1 or 1.2 and the Trotter
theorem. To obtain (6) for p>gq, it suffices to use Proposition 2.2 modified by
replacing the assumption S,g—Sg in 5 by an assumption of convergence in L.

Proof of Theorem 1.4. Let B,=1—(1—1/2)* and let V,=V+¢[x| ™ for some ¢e (0, 1).
We begin by showing that— 4 + V, is essentially self-adjoint on CZ(R",).
As in the proof of Proposition 3.4, we obtain

AfL(=Aa+(Bo+elx]™ >+ E)p) <0

for all fe[—A4+V,+E[CP(RY)]]" E>0and 0<9eCZP(RY,).
We use the fact that — A4+ ff|x| = 2 is essentially self-adjoint on CZ(R%) for =,
and the inequality [2]:

I(=4+(Bo+elx|™?+Eull, ze| IxI” 2ul ,;ue CF(RY,). (7

Let Z= —A+(By+¢)lx|~ 2 with 2(Z)=CZ(R%.). By (7), the closure of Z, obeys
NZ™)CD(x|2).

Let {g,} be a sequence of functions obeying

0=0,eCP(RY; | o, (x)d'x=1
Rl

suppe, = {x|[x|€ [, B,1}; o, £, —0.

Given ¢ =0 in Z(Z7), let ¢,=w,0, ¢, ,=¢,*0, Where w, is the sequence
constructed in the proof of Proposition 3.4. Clearly 0= ¢, ,e C(R',) and

lim {|f1.(Z™ + E)p, .> =I/1.(Z" +E)p,) -

Since Z(Z~)C 2(x|~?)

lim {|f1.(Z~ + E)g,» ={|f1.(Z~ + E)p)
by using the argument from Proposition 3.4.

Noting that (Z~ + E)~ ! is positivity preserving [4, Theorem 5.1], we conclude
by the standard argument [ 1] already used that — 4 + V, is essentially self adjoint on
CZ(RY).

By a lemma of Davies and Faris [6, Lemma 2],

(= A+ Vull, zell IxI” 2ul,

so —A+V,—¢|x|"*=—A+V is essentially self-adjoint on CP(R%).
Theorem 1.4 is thus proven.

Added Note. The methods of this note have been extended by the author to deal with
many particle Schrodinger operators. These results will appear in Ann. Ins. H.
Poincareé.
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