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Abstract. In this paper we examine the influence of a general initial state of stress
upon the propagation of infinitesimal (or weak) discontinuities in nonlinear
relativistic elasticity. This influence, which materializes in alterations in the
wave speeds, the general nonseparability in longitudinal and transverse waves,
and the growth of the amplitude of infinitesimal discontinuities so as to form
shock fronts, is first studied on the basis of a model of relativistic elasticity called
hypoelasticity of zeroth order. The analytical treatment, however, is manage-
able only for the case of principal wave fronts for which the spatial direction of
propagation coincides with a principal direction of the initial state of stress and,
consequently, the wave fronts separate into longitudinal and transverse ones.
Such notions as those of apparent elasticity moduli appear naturally in the
analysis. Then a model of thermodynamical relativistic elasticity, referred to as
neo-Hookean elasticity, is shown to be representable, insofar as wave-front
propagation is concerned, by a special model of hypoelasticity of first order. The
qualitative results obtained before concerning the influence of initial stresses are
shown to apply equally to this description.

1. Introduction

The interest of relativistic elasticity for the study of the deformation of massive
stellar objects on the one hand [1—4], and for a coherent approach to the
vibrations of elastic detectors of gravitational waves on the other hand [5, 6], has
been emphasized in recent years. The recent history of relativistic elasticity offers
two avenues of development, one initiated by Synge [7], and the other that makes
use of thermodynamical arguments and is illustrated, for instance, by the already
quoted papers. In formulating his pioneering theory of relativistic elasticity, Synge
sought to avoid the definition of an initially stress-free state which, because of the
ever operating gravitational field, cannot exist. However, recent developments in
relativistic continuum mechanics have placed in evidence some shortcomings of his
formulation (no relation to thermodynamics, noninvariance of the constitutive
equations with respect to the observers, i.e., "nonobjectivity"). Furthermore, it
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appears that in Synge's work and in those of the authors who took over his
formulation (cf. [8,9]) no influence whatsoever of an initial state of stress shows up
in the properties of wave-front propagation (e.g., propagation speeds independent
of initial stresses). Therefore, the purpose of the present study is threefold: First, to
recall what should be a "correct" formulation of relativistic elasticity in the tradition
of Synge, thus a formulation of so-called relativistic hypoelastίdty (cf. [10]) next, to
reconciliate such a formulation with thermodynamical arguments; finally, to
exhibit the alterations brought by a general initial state of stress in the propagation
process of so-called infinitesimal discontinuities (alteration in the wave speeds,
existence of three different speeds in general and the separation of wave fronts in
one longitudinal and two transverse wave fronts with different propagation speeds
in the case where the direction of propagation coincides with a proper direction of
the initial state of stress, the growth of infinitesimal discontinuities so as to form a
shock). The study of infinitesimal discontinuities makes a systematic use (i) of the
elegant formalism due to Lichnerowicz [11] and (ii) of canonical space-time
decompositions and of spatial decompositions along the propagation direction of
the wave front, and onto the two-dimensional hyperplane orthogonal to it, which
allows us to keep the covariant formalism as long as possible. The present
relativistic study has many points in common with the now classical study of
infinitesimal perturbations superimposed on a finite state of stress in classical
continuum mechanics (see, e.g., [12]).

The notation used, the statement of the general field equations and of general
classes of constitutive equations, and the definition of weak discontinuity fronts in
the relativistic framework are given in Section 2. Section 3 is devoted to the study of
the simplest case, namely, that of the propagation of infinitesimal discontinuities in
relativistic hypoelastic bodies of zeroth order. The wave-front speeds are de-
termined exactly in the case of so-called principal wave fronts, for which the spatial
direction of propagation coincides with a proper direction of the initial state of
stress. There follows a short discussion for the general case where this simplifying
assumption does not hold good. Then the distorsion of signals for principal
longitudinal wave fronts is exhibited by using Lichnerowicz's qualitative method
[11]. In Sections 4 and 5 it is shown that relativistic neo-Hookean elasticity can be
reduced to the scheme of relativistic hypoelasticity of the first order insofar as wave
propagation superimposed on an initial state of stress is concerned. Indeed, both a
direct treatment in terms of strains and a treatment using an appropriate stress-
strain relation of the hypoelastic type as intermediary yield the same conclusions as
to the wave-front speeds. By way of conclusion, in Section 6, we remark upon the
limitations inherent in the present approach which, therefore, should be sup-
plemented with an exact thermodynamical treatment.

2. Notation, General Equations

2.1. Space-Time, Differentiation

Let M = (V4,gaβ) be a space-time of general relativity equipped with a normal
hyperbolic metric gΛβ (α, β = 1, 2, 3,4 index 4 time-like Lorentzian signature +, -f,
+ , —). The field of world velocity ua, such that gyβu*uβ = — 1 (c=l for notational
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convenience) defines the invariant derivative D = u*V^ It also defines the field of
spatial projectors Paβ = gxβ + uauβ, such that Paβu

β = 0 and Pα

α = 3. The latter in turn
serves to write down the local canonical space-time decomposition of any tensor
field defined on M. In particular, the spatial projection of such a tensor field
obtained by applying the spatial projector is noted (...)ι Geometrical objects A
which satisfy A=(A)λ are said to be spatial (or PU: orthogonal to u [13]). In
particular, the transverse or spatial covariant derivative is defined by

if 3 (2.1)
The spatial rate of strain is defined by

and a simple computation allows us to check that

= 2d,β (2-3)

on account of Ricci's lemma and of the definition of the Lie derivative along the

field uα, noted £, for a covariant spatial tensor field. E.g., if Aaβ is spatial,
u
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Setting daβ = Q defines a so-called Herglotz-Born rigid-body motion (in differential
form Killing's theorem).

2.2. Field Equations

In supplement to Einstein's field equations that relate linearly the Einstein tensor
and the total energy-momentum tensor, we have

(a) the equation of continuity:

i7α(ρlί

α) = 0 (2.5)

or

£>ρ + ρd*y = 0 ; (2.6)

(b) the "conservation" of energy-momentum (consequence of Bianchi's iden-
tity):

p fxβ — o (27)

(c) the "conservation" of moment of energy-momentum in absence of spin:
rτ~'[oc/?] — _!_ (T""Όcβ Ttβ<y-\ Γ\ /O QNι
J :rz ^ \ i — JL I — w . I ̂ . O I

The scalar field ρ represents the mass per unit of proper volume. Then, in absence of
heat conduction, electromagnetic fields and spin, Tα/? admits the following
simplified canonical space-time decomposition:

β-t«β, (2.9)
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where the spatial tensor taβ is the relativistic stress tensor and ω has the expression

ω = l+ε, (2.10)

where the first contribution represents the rest energy and ε is the internal energy
per unit of proper mass.

Taking account of (2.5), using the fact that taβ is symmetrical as a consequence of
(2.8), we contract (2.7) with UΛ to obtain the energy equation

ρDs-fd^O. (2.11)

Applying the spatial projector to (2.8), noting that Du* = (Dua)L, and using the
definition (2.1), we obtain the Euler-Cauchy equations of motion in the form

ρf*βDu'ί-P*yrpt*
ί = 0. (2.12)

These represent only three independent scalar equations in virtue of the spatial
character. The spatial symmetrical tensor of mixed components

ρ-*fβ (2.13)

will be referred to as the tensorίal index of the material continuum1.

2.3. Constitutive Equations

We shall consider the following general class of constitutive equations for
relativistic (so-called) hypoelastic solids : The relativistic stress tensor taβ and the rate
of strain tensor daβ are related by an equation of the general type ([10], cf. pp. 140-
145):

(βt\ = Se\Λ\t\. (2.14)

Here ̂  is a time-like differential operator and S£ is a spatial symmetric covariant
operator which acts linearly on d, which is continuously differentiate in the
neighborhood of d = 0, and is jointly isotropic in d and t2. The condition of
isotropy and the fact that ^ must define a so-called objective time-like derivative
follow necessarily if it is posited that constitutive equations of the rate-type form
(2.14) be form-invariant under change of observer, or, in other words, be either
objective in agreement with the axiom set forth in Ref. [15], or Theologically
invariant according to the terminology of Oldroyd [16].

1 This generalizes the notion of index, a thermodynamical function introduced by Lichnerowicz [14],
to general continua (i.e., continua whose stress tensor is not necessarily spherical). For perfect fluids we
have f p = — pP*β, where p is the thermodynamical pressure, and the definition (2.13) reduces to fa

β =fPa

β

where

is the scalar index used by Lichnerowicz in relativistic hydrodynamics
2 This notion of isotropy is not to be mistaken for that of isotropy as applied to four- vectors of zero
magnitude in space-time. Here isotropy is understood in the classical sense, meaning isotropy in E3, i.e.,
invariance under SO (3). The necessary and sufficient condition for isotropy is established by writing
(2.14) in nonholonomic components on a spatial triad (completed by u to form a space-time tetrad) — a
special case is the use of Fermi coordinates. This invariance can be formulated in the language of spinors
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Several remarks are in order concerning constitutive equations of the type (2.14).
Firstly, equations such as (2.14) have an incremental character (suited for
computations on computers) and need initial conditions, in particular, the
knowledge of initial stresses, to be integrated. Without such initial conditions,
Equation (2.14) define only a class of continua. Secondly, having the nature of rate-
type equations, they do not involve strains per se. The definition of such strains in a
general relativistic framework is thus avoided. These are two arguments that
favored the introduction of an equation of a simple type related to (2.14) by Synge in
1959 [7], although Synge's proposal appears too simple in the light of recent
developments in the relativistic mechanics of continua. Next, thermodynamical
considerations apparently do not enter the establishment of equations of this kind.
However, in special circumstances, i.e., for a very special expression of ε, it can be
shown that Equations (2.14) are none other than the differentiated form of
thermodynamical constitutive equations which relate the relativistic stress tensor
and a finite-strain tensor (see below, Section 4). In spite of the shortcoming just
mentioned concerning the (general) lack of thermodynamical justification for
equations of the type (2.14), we note that, from a pragmatic viewpoint, such
equations will yield, conveniently and at once, compatibility conditions between the
infinitesimal discontinuities in the stresses and the four-velocity. Such conditions
will involve the initial stresses if ί is continuous (see herebelow). A hypoelastic body
with constitutive equations (2.14) is necessarily not viscous3. Finally, the definition
(2.14) must be given a more precise form. For instance, on account of the properties
of objectivity, linearity and isotropy, a possible expression, of which the right-hand
side does not depend on ί, is

\β = &tfvdμv, (2.15)

where a superimposed asterisk denotes the connective time derivative defined by

+V^' (2 16)
and the components ^'aβ

μv of the linear operator S£ have the expression

.μp.v
α *β •>

where λ and μ are two scalars characteristic of the material, which are linear in ρ.
That is, we can introduce λ and μ such that

λ = ρλ, μ = ρμ (£λ = £μ = θ). (2.18)

Hypoelastic continua with constitutive equations (2.15)-(2.18) are called hy-
poelastic bodies of zeroth order. If, however, the right-hand side of (2. 14) is affine in ί,
then it can be shown that the expression of g aβ

μv reads

μv + 2(μ + μ'tyPfP

)] , (2. 19)

3 This follows from the invariance of (2.14) under scaling of the proper time, ftence there cannot be
relaxation times in (2.14)
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where, λ, Γ, μ, μ', α, /?, and y are seven scalars characteristic of the material.
Hypoelastic continua with constitutive equations (2.15), (2.16), and (2.19) are called
hypoelastίc bodies of first order4.

2.4. Discontinuity Fronts [11, 19]

Let W(xa) = Q be the equation of a discontinuity front — a time-like hypersurface —
which propagates in F4 and which separates the region 88 of F4 swept out by the
matter in motion in two subregions ^+ and £$~ at each time. We set

la = daW, L = (P«βlJβY'2, (2.20)

and

λ^L^P'/lβ, (P*λΛλβ = l ) , (2.21)

so that

la = L(λa-Wua) (2.22)

if

Λ,α is a unit spatial covariant vector field. °U is the (nondimensional) speed of the
discontinuity front measured relatively to the moving matter. la being oriented from
the "minus" side to the "plus" side of W, we note \_A\=A + — A~, where A + and A ~
are the uniform limits of A in approaching Won its two faces. Let A be continuous
across W δ being the Dirac distribution with support W, the infinitesimal discon-
tinuity of A, noted δA, is given by [11]

\ = lΛδA <2.24)

Then

(2.25)

if wα is continuous across W.
The canonical decomposition, along λΛ and onto the two-dimensional space

tangent to the spatial part of W and orthogonal to λ, of any spatial tensor field is
obtained by using the two-dimensional (spatial) projector

S«β = P«β ~ Wβ = Sβ« , SΛβV = Sαχ = 0 , Sα

α = 2 . (2.26)

For instance, let δua and ί)£α/? be the infinitesimal discontinuities in the four-velocity
and the relativistic stress tensor. Then we have the decompositions

δu* = δul + λΛδu9 (2.27)

and

± = δτ«β + δτaλβ + δτβλ" + δτλ*λβ , (2.28)

4 Comments on the physical validity of models of classical continua having constitutive equations
which are the nonrelativistic versions of Equation (2.15) are to be found in Eringen [17], p. 331, and
Truesdell and Noll [18], p. 405



Discontinuities in Relativistic Elastic Solids 239

where

= λΛδu",

(2.29)

Remark that δua is purely spatial and bu\ is essentially a two-dimensional
geometrical object, but expressed in a fully covariant form on M. Similarly to
Equation (2.28), if taβ is a second order symmetric spatial tensor field which is
continuous across W, we have the following canonical decomposition at any event
point xeW:

fβ = f*β + 2f(«λβ] + fλ*λβ . (2.30)

If ε, ρ, and fβ are continuous across W, then an analogous decomposition holds true
for the tensorial index :

β. (2.31)

It is a simple matter to check that

Fα/, = ωSβ/,-ρ-%, F β =-ρ- l Γ β , F = ω-ρ-1T, (2.32)

the metric used to raise and lower indices being assumed continuous across W. In
fact, we shall consider the following hypotheses :

HI : ua, ρ, ε, taβ are continuous across W;
H2: space-time derivatives of these fields suffer discontinuities across W;
jFjΓ3 : the wave front W is not a gravitational wave front. The wave equation of

such a wave front would be gaβlalβ = Q or, using (2.22), %2 = 1
H4 : the wave front W is not material i.e., is not generated by the trajectories of

the matter. Hence ^φO from here on5.
The last two conditions and relativistic causality limit the range of % to the open

interval ]0, 1[.
Wave fronts W for which (<5wΦθ, <5w" =0) are called longitudinal wave fronts

whereas wave fronts for which (<5w = 0, δu^ φO) will be referred to as transverse wave
fronts. Wave fronts for which δu and δu*L differ from zero simultaneously are called
general or mixed wave fronts.

3. Infinitesimal Discontinuities in Relativistic Hypoelastic Bodies
of Zeroth Order

3.1. Equations Governing the Discontinuities

Consider the system of field equations formed by Equations (2.6), (2.11), (2.12), and
(115)-(2.18). That is,

(3.1)

(3.2)

(3.3)

5 Using a thermodynamical background shows that ^ = 0 corresponds to entropy wave fronts (cf.
Section 4)
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and

φί«A + tyβW + t«P^ + fβ,Fχ = W,PΛβ + 2μdΛβ . (3.4)

Under the hypotheses set forth in the foregoing paragraph, with ^U φ 0, we deduce
from these equations the following discontinuity-governing equations :

δρ=-ρ<%-ίδu, (3.5)

uβ + λβδua), (3.6)

± = 0 , (3.7)

= λPaβδu + μ(λaδuβ + λβδua) - λatβμδu»

-taμλβδu»-taβδu. (3.8)

Equation (3.8) is the compatibility condition which relates (δtΛβ)L and δu*.
Applying the decomposition procedure along λ and orthogonally to λ to

Equations (3.7) on account of (2.27), (2.28), (2.30), and (2.32), we obtain

(3.9)

and

δτ« = ρ<%(F*βδu{ + Faδu) . (3.10)

Similarly, Equation (3.8) yields

Q, (3.11)

Q, (3.12)

and

(%δτaβ + (Taβ-λS«β)δu = Q. (3.13)

The latter can be rewritten as

δτ«β = W~ i(λS*β-TΛβ)δu. (3.14)

By the same token Equation (3.6) takes on the form

δε = (ρ^Γ1(TΛδua + fδu). (3.15)

Let 0$ and

(3.16)

be a solution of the system of field equations. Then Equations (3.5), (3.15), (3.9),
(3.10) and (3.14) provide, at each event point xe W, the values of the infinitesimal
discontinuities δρ, δε, δτ, δτa, and δτ*β as functions of 9Jί0 and of the wave speed ,̂
and as linear expressions in the strength of the wave front. This strength is
represented by both the scalar δu and the essentially two-dimensional vector field
bu\, and is given by initial conditions concerning the wave front. We can write
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formally

<5β = /(β)[(«5«,0);«,aR0]) (3.17)

(δe, δτ, δτ«) = /(ε, t, ̂  [_(δu, <5«1) Φ, SR0] , (3.18)

δτ ^^Kδu.O Φ.SDlo]. (3.19)

Obviously, the infinitesimal discontinuities £ρ and δτaβ are zero only for pure
transverse waves while nonzero δε, δτ, and δτ* exist for all types of wave front under
general conditions of initial stresses.

On account of the remark just made it remains to exploit Equations (3.11) and
(3.12) on account of Equations (3.9) and (3.10). Eliminating δτ and δτ* between these
equations, we arrive at the following system of coupled equations (linear in the
wave- front strength)

+ 2 f *}δu = 0 , (3.20)

(). (3.21)

We postpone the study of this general system until § 3.3, to study first a special case
of propagation for which the polarization vector λα is along a preferred spatial
direction.

3.2. Principal Wave Fronts

In general taβ admits three distinct eigenvectors dfk), fe= 1, 2, 3, with corresponding
eigenvalues ί(/c) in such a way that (no summation on fc)

t<xβd(k) = t(k)d(k)aι d(k}a = Paβd(k}, (3.22)

and

P*βd(k}«d(k]β = 1, P«βd(k)ad(l}β = δkl. (3.23)

We call principal wave fronts those wave fronts for which λ coincides with one of
the eigenvectors d(k}, for instance, d(1). Let ί(i) = ί|| be the corresponding stress
eigenvalue. It then follows from (2.30)—(2.32) that

fα-FαΞθ, (3,24)

and

f = ί,,, F = ω-ρ~1ί,,. (3.25)

In this case Equations (3.20) and (3.21) uncouple and read

(ρ^2F% + f"β - μS%)K = 0, (3.26)

and

- (λ + 2μ - 3 Tf]δu = 0. (3.27)


