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Abstract. In the set of Cauchy data corresponding to the solutions of non-
linear classical relativistic field equations having locally finite kinetic energy
a structure of Hubert space sectors is introduced. Each sector is invariant
under time evolution and a total energy and linear momentum functionals
can be defined as global quantities. Within this framework the existence
of conserved dynamical charges is proved and the mechanism by which a
symmetry can be spontaneously broken is explained.

0. Introduction

Recently there has been a revived interest in solutions of classical non-linear
field equations as a means of understanding basic properties of elementary
particles [1]. The main idea is to classify some simple stable solutions of field
equations and to analyze small perturbations around them. Examples of such
solutions are the constants which minimize the energy [2] and the solitons [3].
One hopes that essential features coming from the non-linear character of the
theory are taken care of by the structure of those special solutions. This approach
to non-linear field theory is also crucial for understanding spontaneous symmetry
breaking [2], stability problems and for explaining the occurrence of charges
which are of dynamical rather than of group-theoretical origin [4]. Moreover
the properties of classical solutions of non-linear field equations are relevant
for the quantum field theory version since they correspond to the expectation
values of quantum fields on suitable coherent states [5]. These ideas look interest-
ing and promising and deserve a systematic investigation, which seems to be
lacking in the literature.

The purpose of this paper is to provide a rigorous treatment of some non-linear
systems of partial differential equations for classical fields along the above lines.
We shall be able to answer a certain number of questions like the construction
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of Hubert space sectors, their stability under time evolution, the existence of
dynamical charges and the occurrence of spontaneous symmetry breaking.

More specifically we will study the solutions of the following Cauchy problem

dU
D φk(x, t) + — (x, φx(x, t), ..., φn(x91)) = 0 ,

Ψk (0.1)
IR, k=ί, ...,n

which can more conventiently be rewritten as the integral equation

(0.2)M + ]w(ts)(
W o \-FΊ/(x,<p(s))

where =
\Ψ,

and W(t) is the one parameter group generated by
\zl 0

In a preceding paper [6] we have proved existence, uniqueness and regularity
theorems for Equation (0.2), under suitable conditions on the potential U (see
Section 1), in the space X of real functions having locally finite kinetic energy.

We have shown that if ° e l , the integral Equation (0.2) has a unique X-valued
\Ψo/

continuous solution I , \ e C(0)(IR, X\ where
\ψ(t)J

X = X1@X0 , Xo= 0 A2

OC(IRS), Xx = 0 H L W (0.3)

Here we propose to continue the analysis started in [6] by investigating

some finer structure properties of the family $F of all solutions I e C(0)(IR, X)

\ψ(ty
of Equation (0.2). In order to have a simple physical interpretation of the theory
it is convenient to partition the set $F into classes in such a way that solutions
belonging to the same class have relatively finite energy. It is clear, in fact, that
initial data, for which the energy difference of the corresponding solutions is
infinite, cannot be realized in the same "physical world". It is therefore reasonable
to introduce an equivalence relation between the elements of 3F in the following
way
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where

= i^ ξ£) i 0 ? * o = = vx/ -^ v"*- j •> M ~ vTy -" v ^ / VJ J)

n n

As a further physical requirement we consider those classes for which each of

its elements ( , J has the property that

r (o.6)

This amounts to restricting ourselves to the classes which are left invariant by
the time translations. Relation (0.4) together with condition (0.6) allows us to
introduce Hilbert space sectors in the set X of initial data. Two elements of X
belong to the same Hilbert sector iff the corresponding solutions are equivalent
in the sense of relation (0.4) and satisfy condition (0.6). Obviously, each Hilbert

sector is uniquely determined by any of its elements , and will be denoted

W
The above structure finds a natural justification in the following theorems

(which will be proved in Section 2 under suitable conditions on the potential U).

Theorem A. // a solution o / Equation (0.2) satisfies condition (0.6) and

φΌkeLco(JRs), k=l, . . . , n , then

Theorem B. // ( e l satisfies the following conditions
XΨI

i) Aφk-—(x,φί,...,φJeH-1(R*),

iii) - " ' - ^ ' •' '

then I determines a Hilbert space sector, whose elements are all the , )eX

such that Ψ~φ,)eY
χψ-ψ,

Condition i) of Theorem B is obviously fulfilled by the static solutions of

Equation (0.1). In particular, the elements of X of the form determine

dU ^ ψ '
Hilbert sectors iff—-(x, const) = 0, fc=l,..., n, i.e. if they extremize the potential

dφk

(Goldstone's theorem [2]).
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Furthermore, for each Hubert sector J^iφtψ) such that φkeL°°(IRs)? VφkeL2$L%
k= 1,..., n, one may define a total energy functional

, >E( )(φ', t//) = limΛ_> + O0 $ ίK(φ\ ψ') - K(φ, ψj] ω — — ^ Jx

(0.7)

;(α, ̂  = V l F α / + # + t/(x > α ) ? (0.8)

where

ω is a test function, belonging to C^(1RS), equal to 1 in a neighbourhood of the
origin, and xoeIRΛ The functional (0.7) is independent of ω and of x0, invariant
under time translations and satisfies the identity

(φ'9 xp') + E{ψt > , β) (0.9)Eiφ, ψ)(φ, Ψ) = E(β, p)(

( \
n)eJ^(φ,Ψ) a n d αkGL°°(IRs), k= 1,..., n (see Section 3).
Identity (0.9) shows that within such sectors the energy scale does not have

a physical meaning. In the same Hubert sectors one may define a linear momentum
functional

*W<?>'H ί Σ Wφ)-ψjVφϊ\dχ (o.io)
R s 7 = 1

which is obviously finite.
Within this framework we can prove the existence of dynamical charges which

are constant in time. The key observation is that if φeYu then φ~(r,ω) =
φ(x = rω)-+0 as r-> +oo for almost all ω e S 5 " 1 . This shows that all the elements
of a Hubert sector have the same asymptotic behaviour as r->+oo (almost
everywhere in § s~ x) and that this behaviour is preserved in time. Furthermore,
for sectors ^(φ>ψ) with VφkeL2(W\ fe=l,..., n and for s ^ 3 , we may prove that
φ~(r, ω) has a finite limit a{ω\ as r-» + oo, for almost all ωe § s~1. Analogous results
hold for 5=1 under suitable conditions on the potentials U (see Appendix C).
Each function a(ω) identifies a charge whose origin is strictly related to the structure
of the Hubert sectors, i.e. to the dynamics of the theory (dynamical charges).

In the space X one may introduce the concept of local internal symmetry
and the existence of Hubert sectors explains the mechanism by which a local
internal symmetry can be spontaneously broken in a given sector. Local internal
symmetries g are proved to be affine transformations (see Section 5) g(φ) = Agφ + a,
with A^Ag = λgt]Rn, and can be described by unitary operators in a given sector
if they are not spontaneously broken in that sector.

The plan of the paper is as follows:
0. Introduction
1. General framework
2. Hubert space sectors—Stability and time evolution
3. Total energy and momentum
4. Dynamical charges
5. Internal symmetries and spontaneous symmetry breaking
Appendix A, B, C
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Finally we list the non-standard symbols used to denote some functional spaces.

u IK; ro | | = Σ 110;-
\ l / 2

n

/ n \ l / 2

Xo = © L2

OC{W), \\xp X0{Ω)\\=[ Σ | |φ j ;L
2(Ω)||2

 :

ί n U/2

n V / = l
χ=χι@χQ.

(Ω is any open bounded set).

1. General Framework

We state existence and uniqueness theorems, for the integral Equation (0.2),
which will be needed in the following.

Theorem 1. Let be given a function U(x, z):lRs x IR"—>IR of class C*2) in the z variable
satisfying the conditions

2) For any sphere Ω^1 of radius R and for any ρ > 0 there exists a positive
constant C(ΩR, ρ), for which s u p o ^ ^ ^ C(ΩR_t, ρ)< oo, and such that

|| FzE/(x, φM)-VzU(x, Ψ{2))>' XO(ΩR)\\ ^ WR> Q)\\φ{1)~φ{2) Xi(ΩR)\\, (1.1)

Then, for any initial data )eX the integral equation

) + ]w(ts)( ^ (\ds (1.2)

where W (̂ί) is the one parameter group in X generated by J®i<c"> has at
ίω(t)\ \Δ Ό'

m o s t o n e s o l u t i o n [ , Ί e O ° \ R , X).
\ψ(t))

Theorem 2. Under the same conditions on U stated in Theorem 1 and the additional
assumption

3) There exist two non negative continuous functions α, β:IRs—>IR such that

U(x9 z ) ^ - α(x)-β(x)\z\2 , (x, z)eIRs x R", (1.3)

the integral Equation (1.2) /ιαs α solution / 1 e C<0)(IR, X)/or αnv miίfα/ dαία in X

1 In this paper sphere will be synonymous of open sphere; ΩR_t will denote the sphere of radius
R — t concentric to ΩR
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Theorems 1 and 2 are essentially contained in Theorem 3.2 of [6], with some
minor modifications we are going to explain. In contrast to what was done in [6],
where VzU(x, z) was split into three terms called j , g{1) and g{2) and suitable con-
ditions were imposed separately on each term, here the conditions are directly
given on U and VZU. To perform a kind of identification we could take g{2)(x, z) =
2β(x)z, /a , z) + g{1)(x, z) = -VzU(x> z)-2β(x)z, and G(x, z)= U(x,z) + β(x)\z\2. The
only difference with respect to Definitions 3.1 and 3.4 of [6] is that now G(x, z)
and VzG(x,z) do not necessarily vanish for z = 0. Furthermore, assumption iii)
of Definition 3.1 is replaced here by the slightly weaker assumption 2) of Theorem 1.
The proof of Theorems 1 and 2 will not be given here since it involves only trivial
changes in the proof of Theorem 3.2 of [6].

In the next sections we will analyze finer structure properties of the family 3F
of solutions of Equation (1.2) belonging to the space &0)QR,X). In particular
we will state necessary and sufficient conditions for the existence of Hubert space
sectors. For this purpose one is naturally lead to study the integral equation

satisfied by the vector valued function , χ{t) = φf(t) — φ9 ζ(t) = ψ'(t) — ψ, where

belongs to 3F and φ'(0)-φe Yl9 ψf(0)-ψε Yo. Such integral equation has

the following form (for a derivation see Section 2):

+iw{t-si-vzu(x,φ^
ds+lw{t-s)(-™^^ds (i 4)

where

Fφ(x, z)= U(x, φ(χ) + z)-U{x9 ^
j = ί OZj

The crucial step is to prove that Equation (1.4) has a unique solution

(x(t)\

This will be done by a slight modification of Segal's approach [7], which involves
Lipschitz and "positivity" conditions on Fφ. In this section we will establish some
preliminary results connecting Lipschitz and positivity conditions of Fφ to
corresponding properties of U.

Definition 1. We will say that a map

is locally Lipschitz continuous if for any sphere ΩR of radius R and for any ρ > 0
there exists a positive constant C(ΩR, ρ), for which s u p o ^ Λ / 2 C(ΩΛ_ t,ρ)<oo,
such that

\\f(x, φ ( 1 ) )-/(x , φ ( 2 )); X0(ΩR)\\ S QΩR9 ρ) \\φ{1)-φ(2); X^Ω^W (1.1)'
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for all

WφM X^WSQ, k=l,2.

We will say that a map

is globally Lipschitz continuous if for any ρ > 0 there exists a positive constant C(ρ)
such that

for all

Definition 2. By ^r(X) we denote the class of all maps U(x, z):IRs x R"->IR of class
C ( 2 ) in the z-variables with the properties

ii) The map 1RS x X^ix, φ)±->VzU(x, φ) is locally Lipschitz continuous,
iii) There exist two non-negative constants α, β such that

U(x, z)^ -a-β\z\2 , (x, z)eW xR". (1.3)'

By W(Y) we denote the class of all maps F{x, z)Ms xIR"->IR of class C ( 2 ) in
the z-variables with the properties

i)' VzF(x,χ)eY09VχeY1.
ii)' The map IRsx Yγ3(x, χ)\~>VzF(x, χ) is globally Lipschitz continuous,

iii)' There exists a non negative constant γ such that

Clearly each Όeύl/(X) satisfies the hypotheses of Theorems 1 and 2. A reason
for defining the class °U(Y) is that \ί¥φ [see Eq. (1.5)] belongs to ^(Y) then, under
suitable assumptions on φ and ψ, Equation (1.4) has a unique solution in Y (see
Section 2). We remark that ^ί(Y)Cύlί(X) as a consequence of the following

Lemma 1. Let be given a function g(x, z):W x 1RM->IRΠ.
Then

1) // g(x9 χ)e Yo Vχe Yl9 it follows that g(x9 φ)eX0 MφeX^
2) If the map 1R5 x Y^ix, χ)t-+g{x, χ) is globally Lipschitz continuous it is also

locally Lipschitz continuous.

Proof For a given sphere ΩR let πR:@ H1(ΩR)^Y1 denote a linear continuous
n

extension operator with the following property (see e.g. Appendix B of [6]):
There is a function d(R) which is O(JR) if R^ί and O ^ " 1 ) if R < 1 , such that
\\πR\\£d(R).

Suppose now that g(x, χ)eY0 if χe Yv The locality of g yields

\\g(x, φ); X0(ΩR)\\ = \\g(χ9 πR(φ\ΩR)); X0(ΩR)\\
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This proves part 1). By the same argument we have

for all

This establishes part 2).
It is important to find conditions on the potential Uetfί(X) and on the function

φeXu which guarantee that Fφe%(Y) [see Eq. (1.5)].

Definition 3. Given Ueύlί{X\ we say that φeX1 is admissible with respect to
UifFφ belongs to %(Y).

The following two lemmas give sufficient conditions for admissibility.

Lemma 2. Let Ue<%(X) and φeXί with the properties

2) The map IRS x Yί3(x, χ)\->VzU(x, φ + χ) is globally Lipschitz continuous.
3) For any compact subset XClR" there exist non negative contants ai9 i= 1,2,3,

such that

VzVzΌ(x, z)^ -a3ίRn, V(x, z)eW xK .

Then φ is admissible with respect to U.

Proof. Conditions i)' and ii); of Definition 2 are immediate consequences of hypo-

thesis 2) and the identity

VzFφ(x, z) = VzU(x, φ{x) + z) - VzU(x, φ{x))

To prove that Inequation (1.3)" is satisfied we first apply the mean value theorem

Fφ(x,y)= ](l-σ)(VzVzU(x,φ(x) + σy)y,y)dσ (1.6)
o

which yields, by hypotheses 1 and 3,

On the other hand, Equation (1.5) and Inequation (1.3)' imply

Fφ(x, y)^-*-β\y + φ(x)\2- U(x, φ(x))- <VzU(x, φ(x)), y)

which, for |j;| ̂  1, yields

Fφ(x, y)^ - [α + β + β supxeRS{\φ(x)\2 + 2\φ(x)\ +1VzU{x, φ(x))\}

+ max (0, SUPERS U(x, φ(x)))] \y\2 .
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Lemma 3. Let Uetf/{X) and φeXί with the following properties

1) Condition 2) of Lemma 2 holds
2) There exists a non negative constant b such that

VzVzU(x, z)^ - b i R n , V(x, z)εW x R".

Then φ is admissible with respect to U.

Proof. By Lemma 2 only Inequation (1.3)" remains to be checked. This follows
immediately by the mean value theorem, Equation (1.6), and the property 2).

Remark ί. Condition 2) of Lemma 2 is implied by the following condition on U:
For any ρ > 0 there exists a positive constant C(ρ) such that

suPfc=i,...,n Σ g g fex(1) + φ)Zj 2); γo ^cte)l lx ( 2 ) ; ϊΊII (1.7)

for all ^ e ^ , A; = 1,2, with ||χ (1); r j ^ ρ .

This is a trivial consequence of the mean value theorem.

Remark 2. If Uetf/(X) does not depend on the x variables conditions 3) of Lemma 2
are automatically satisfied whereas condition 2) of Lemma 3 does not hold in
general.

We now list some concrete interesting examples of interactions to which the
above lemmas can be applied.

Proposition 1. Let C/(x, z):R s xIRn->R be a function satisfying condition iii) of
Definition 2 and of the type listed below

U(x,z)= X φ)z«
αeINπ

such that

I) c.eLvfR1), Vα.

Σ 1 l Vσ>0.

U(x, z) = X cj^xjz* satisfying condition 1) as in the previous case and
αeNn

2)' X ||Cα;L°°(lR2)|| |α|lβ" / 2σ | β |<oo , Vσ>0.
α

3

U(x, z) is a real function of class U2) in the z variables with

1) [/(x,0)eLco(IR3), P z t/(x,0)eφ L°°(R3).
n

2) There is a positive constant C such that

, z)\\ £ C(ί + \z\2),
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Then Ue°ll{X) and any φeXίn(@ L°°(IRS)W admissible with respect to U.

Proof. To prove both assertions it will be enough to establish that U satisfies
the estimate (1.7) for all φeXtn(@ L°°(IRS)). In fact, by Remark 1, estimate (1.7)

\ n I

implies that the mapIRS x Y^s(x, χ)h>VzU(x, φ + χ) is globally Lipschitzcontinuous.
Then, by Lemma 1 (part 2), the map R s x Xx3ix9 θ)\-*VzU(x, θ) is locally Lip-
schitz continuous. Moreover, since by hypothesis VzU(x, 0 ) e © L°°(IRs)cXo the

identity VzU(x,θ) = lVzU(x9θ)-VzU(x9θy] + VzU{x9O) implies that condition i)
of Definition 2 is also satisfied. This shows that Ue<%(X). The admissibility
of φ follows from Lemma 2. The proof of estimate (1.7) is reduced to estimating
in Yo terms of the type (φ + χ (1))αχ (2), with χ ( k )e Yl9 k= 1,2, aeW for s=ί, 2, | α | ^ 2
for s = 3. Now

(1.8)

The first term on the r.h.s. of Inequality (1.8) is immediately estimated by

^ ) . γj _ ( L 9 )

We estimate the second term by applying the usual Sobolev inequalities2

L 2 ( I R S ) | |

W + iXW)\\W || | χ ( 2 ) | ;L 2 ( | α |

For s = 3 the proof is completed. For s= 1, 2, the convergence of the sum over
the α's is taken care by conditions 2) and 2)' respectively.

Proposition 2. Let U(x9 z):W xIR"^IR be a function satisfying the hypotheses
of Proposition 1 and such that there is a non negative constant b for which

VzVzU{x, z) ^ - bίm , V(x, Z)GIR S x lRn .

Let φeX1be such that for some cube Q of size R

supmeZ.| |φ;-X r

1(β + Λw)||<cx), (1.7)

then Ue%(X) and φ is admissible with respect to U.

For the convenience of the reader we recall the Sobolev inequalities [8]:

5 = 2 | | / L"(R2)|| ^ C 2(p)| |/

s = 3 | | / Z/(]R3)|| ̂ C3(p)||/ H^IR 3) | | , 2 ^ p ^ 6 , C3(p) = 0(1)

The same kind of estimates hold locally. In particular, for any cube ZcClR5 of size R, they take the form

\\f',L*(k)\\SCs,R(p)\\f;H\k)\\,

with pe [2, + oo] for s= 1, pe [2, + oo[ for s = 2 and pe [2, 6] for 5 = 3. The constants Cs R(p) depend

only on the size R and exhibit the same dependence on p as in the global case
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Proof. As remarked at the beginning of the proof of Proposition 1, to establish
that Ue%(X) it is enough to prove that U satisfies the estimate (1.7) [for φ satis-
fying (1.7)']. The admissibility of φ then follows from Lemma 3. Actually by
Inequation (1.8) we need to estimate only the term || |φ| | α | |χ ( 2 ) | ;L 2(IR s)| | . By suc-
cessive applications of Holder and local Sobolev inequalities2 one obtains

^ Σ ( ί M 2 ( M + 1)^Vα|/( |α | +

meZs\Q + Rm

Q + Rm

2. Hubert Space Sectors—Stability and Time Evolution

We already know (Section 1, Theorems 1 and 2) that for any Ue^iX) the integral
Equation (1.2) has a unique C(0)(IR, X)-solution with initial data in X. It is con-
venient to denote by J ^ , UeW(X), the set of all such solutions. There is a canonical

map from X onto <Fυ, namely the map which to every e l associates the

solution , AetFτΊ with j = I I. As already motivated in the introduction
\ψ(t)j \ψ(oy \ψ)

, AetFτΊ with j I
\ψ(t)j \ψ(oy \ψ

we partition ^ v by the following equivalence relation.

Definition 4. On <Fυ we define the relation

"

The quotient set will be denoted by tF~υ.

Relation (2.1) can be interpreted by saying that is, for all ίeIR, a "small"

perturbation of . The partition of 3Fυ into classes of equivalence induces
\Ψκt)J

in an obvious way a partition of X. However, we are mainly interested in those
classes of X which are left invariant under time evolution. This leads naturally
to the following

Definition 5. By Z we will denote the set of all I )eX such that

(φ(t)-φ

\ψ(t)-ψ)
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In Z we introduce the equivalence relation

φ)*(φ')o(φ-φ%Y. (2.2)
' \ψ) \ψ-ψ)

The quotient set will be denoted by Z~. Each element of Z~ will be called a
Hubert space sector vci.X. By ̂ φ>v) we denote the Hubert space sector containing

It is clear that Z does not depend on the choice of the initial time ί = 0 and
that the canonical map from Z into ̂ υ induces an injective map from Z~into J ^ .

In the next theorem we will find, under suitable assumptions, a necessary

condition for an element ° )eX to belong to Z. For this purpose it is con-
\Ψo)

venient to establish the following technical

Lemma 4. For all h, ψe^f(W\ the map
((Ay\lcos((Ayh))hHAΓsm((A)h)ψ\ = /A(t)\

^ 3 t \ (AΓ^smdAy^ήhHcosdA^ήVψ ) " \B(t)) l j

belongs to C(O)(1R,//^IR^ΘL^IR5)) if and only if heH'^W) and ψeL2(W).

Proof. Expression (2.3) must be understood in the following sense

A(t) and B(t) are well defined elements of ̂ r(IR s) since the coefficients
and of (^ψ)(ξ) are analytic functions of \ξ\2 bounded in the complex space (C5

by const exp(const |Imz|), as can be seen by application of a Phragmen-Lindelof
Theorem [9]. If heH-^W) and φeL2(W\ to see that the map (2.3) belongs
to C(0)(IR, /ί^IR^ΘL^IR5)) it is enough to prove that the maps

| (2.4)

cos γ^At -1

belong to C(0)(IR, ̂ {L\W\ L2{W))\ with the strong topology of i f (L2(RS), L2(IRS))
The proof is trivial and will be omitted. Conversely, by the continuity of the map
(2.3) we can integrate B(t) and obtain

^ί-ΛΓ^l-cosl/^
0 (2.5)

By comparison with the expression for Λ(t) it follows that ψeL2(W). Consequently,

( - A)-1/2 sin(( - A)ί/2)ψe C(0)(IR, H\W))

and therefore
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Finally, heH~ \W) if we prove that

J \(^h)(ξ)\2dξ + J |ξΓ

The integral ^ is taken care by the estimate

|ξΓ2(cos|ξ|t-1) \(&h) (ξ)\ ^ l- \(&h) (ξ)|

which is valid for |£ |^2 and ί sufficiently small. On the other hand, integration
of the L2-valued continuous function ( — zl)~1/2(cos( — A)1/2t— ί)h yields
((-Ay1 ύn{-Δ)ll2-{-Δyll2)heL2{W). Now the fmiteness of the integral I2

is a consequence of the estimate

which is valid for \ξ\^2.

Theorem 3. Let M(x, z):IR sxR"^IR" fce a function such that XX3λ\->M{x, λ{x))

is a continuous X0-valued map. Let \e C(0)(IR, X) be a solution of the integral

\w)/
equation

JΆ = W ( t ) M + ] w ( t s ) ( J ( \ d s (2.6)

with HeX.
\ΨoJ

If
a) yχ 3 χκ>M(x, (/)0 + χ) — M(x, φ0) is a continuous Y0-valued map

h)(f
\V(0-VΌ

ί/ieπ

), „ „

( ]

Proo/. It is convenient to recall that

(-Δ)-1'2 sin((-Ayi2t)\
1'2 s i n ( ( A ψ h ) c s ί ί J ) 1 ' ^ ) /-(-zl) 1 / 2sin((-zJ) 1 / 2ί)

)lc« (2.8)

Then, it can be checked by direct computation that the quantities

χ{t) = φ(t)-φ0

ζ{t) = ψ{t)-ψ0



78 C. Parenti et al.

satisfy the following integral equation

= \ ( Δ ) ^ 2 ή ) (-AΓ1'2 s m ( ( - A ) 1 ' 2 1 ) \ λ l h

ζ(t)j [\ (-ΔΓ^smd-Δy'H) cos((-z1)1/2ί)-l Γ Ί W

The assertion is now an immediate consequence of conditions a), b) and of Lemma 4.

Remark 3. If Ue%(X) and φ0 is admissible with respect to U then Theorem 3
holds once M(x, z) is identified with VZU.

The next fundamental theorem, together with Lemmas 2, 3 and Propositions
1, 2, guarantees the existence of non trivial Hubert space sectors.

Theorem 4. Let Ue%(X) and let(φ°)eX such that

W
a) hEEAφo-VzU(x,Ψo)ε® H-\W), ψoeYo.

n

b) φ0 is admissible with respect to U.

Then {ψo)eZ (see Definition 5) and
W

(2.11)

Ψ-ΨOJ

f. In the same way as in the proof of Theorem 3 we consider the following
integral equation

where

f-ΛY\\-co^-Aψ2t)) (-Δ)-^2

Sin((-Δ)^t)\ |/A\

By condition a) and Lemma 4, t\->L(t) is a continuous ^valued map with L(0) = 0.
Furthermore, PK(ί) is a one-parameter strongly continuous group of linear
bounded operators in Y. Therefore, it makes sense to consider Equation (2.12)

in Y. It is important to remark that if I I is any continuous ^valued solution

of Equation (2.12), with I X o ] e X then (^ ψo) is a continuous X-valued solution
\Co/ vC + ^ /

of Equation (1.2) with initial data ° as can be seen by direct inspection.
1^ +Co/

The theorem now follows easily if we admit for the moment that Equation (2.12)

has a unique solution (f^\ e C(0)(IR, Y) for any (X

r°)eY. Let (ψ^] e C(0)(IR, X)
\ίW/ \Co/
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be the solution of Equation (1.2) with initial data ί^ 0) and let (\, j e C(0)(IR, Y)

be the solution of Equation (2.12) with zero initial data. Theorem 1 implies that

φ(t) = χ(t) + φ0, ψ(t) = ζ(t) + ψθ9 and therefore that Γ 0 eZ. Let now L e C ( 0 )

(IR, X) be the solution of Equation (1.2) with initial data ( a°) such that y° a° ] e Y
ίo(t)\ ^°' \Ψo-PoJ

If we denote by Γ eC(0)(IR, Y) the solution of Equation (2.12) with data
ψ(t))

ρo = Gco-φo, σo = βo-ψo, then, by Theorem 1, ρ(t) + φ0 = ot(t\ σ(t) + ψo = β(t),

and therefore ° eJP{q>Ot Vo).
\Pθ/ /yίt\\

To prove that Equation (2.12) has a unique solution [ \ e C(0)(IR, Y) for

ίx \
any initial data e Y we apply Theorem A of Appendix A. The only non trivial
hypothesis to be verified is Inequality (A.3) that we are going to establish from
energy conservation and from the lower bounds of the potential. To express the
energy conservation it is convenient to work with the differential equation as-
sociated to the integral Equation (2.12). For this purpose, to avoid domain
problems, let us define the linear operators

9 r > 0 ,

l
10, \ξ\>r.

It is trivial to verify that

(2 15)
Hm(W)\, V / € U ( 0 Hm(W)\

Now, application of the operators *" to Equation (2.12) allows to differentiate

in the time variable, obtaining

ft(Prχ) = Pr(ζ + Ψo),
(2.16)

- (Prζ) = APrχ + Prh - PrVzFφo(x, χ ) .

By a well known argument Equations (2.16) imply

\ KPrVχ(t), PrVχ(φ + (Pr(ζ + ψ0) (ί), Pr(ζ + Ψo) (Φ - <PrM PrK)

o) (O), PM+Ψ0) m i + <Prχ(0), Prhy

= - ] <Pr(ζ + ψ0) (s), PrVzFφo(x, χ(s))}ds. (2.17)
0
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By letting r->+oo we obtain a relation exactly equal to (2.17) in which Pr is
substituted by the identity.

Now, it can be verified (see Appendix B) that χ(ή is ZΛdifferentiable with
dχ/dt = ζ + ψ0, that Fφo(x, χfcxfietfQR*) for all t and that

) + ψo,VzFφo(x,χ{s))yds= f Fφo(x,χ(t,x))dx

- $ Fφo(x,χ(0,x))dx.

Equations (2.17) and (2.18) yield — E(t) = 0, where
dt

(2.18)

-<X(t),h>+ J Fφo(x, χ(t, x))dx.

If we define

)=E(t)+(y+i

where γ is the constant in Inequality (1.3)", it follows that

(2.19)

(2.20)

and that

dH(t)/dt = 2(y+ i) [<χ(t), jrfφ + <χ(ί),

Finally, application of Gronwall's lemma yields

<χ(t), χ(Φ+< Vi(t), Vχ(Φ + <ζ(t), ζ(Φ g Q ^ I Ί

which is the required a priori estimate to apply Theorem A of Appendix A.

(2.21)

(2.22)

3. Total Energy and Momentum

In the theory described by Equation (1.2) we take as expression for the energy
density the following quantity

K(φ,ψ)= \ (3.1)

which integrated over the whole space 1RS is expected to yield the total energy.

Unfortunately, if e l and Ue^(X), the function K(φ,ψ) is locally but, in

general, not globally integrable. However, keeping in mind that what one usually
measures are energy differences, we would hope that for some pairs of elements
of X the difference of the corresponding energy densities is globally integrable.
Natural candidates for the families of elements of X having relatively finite total
energy are the Hubert space sectors defined in Section 2.
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Theorem 5. Let \Ψ)eX, Ue<%(X) such that

a) h = Aφ-VzU(x,φ)ε® H^fRη
n

ψeY0.
b) φ is admissible with respect to U.

Then, for all 1 eJ4f{φψ) with supp(φ' — φ) compact, the function K(φ\ ψ') —

H(φ, ψ)eL1(W) and the functional

= J l(K(φ\ ψf) - K(φ, ψ)2 dx , supp(φ' - φ) compact (3.2)

has a unique extension to the whole ^{φiψ) (which we will continue to denote
by the same symbol).

Proof. A trivial computation yields

K(φ',xp')-K(φ,ψ)

0X CXf
j=ί 0Zj

where

χ = φ'-φ9 ζ = ψf-ψ,

Viφ,ψ){χ>Q=τ Σ {\rXj\2+{ζj + Ψj)2-Ψ*) + Fφ{x,χ).

Since Fφ(x,χ)eL1(Ks) [see Eq. (B.3) of Appendix B] it follows that Viφtψ)(χ,ζ)e
Lι(JRs). Moreover the other two terms on the r.h.s. of Equation (3.3) belong to
LX(IRS) if χ is compactly supported. Therefore

E{φ, ψ)(φ\ Ψ') = j V{φt ψ)(χ, ζ)dx + Lφ(χ) (3.5)

where

Lφ(χ)=(vzu(χ, φ), x>Hdo,HLmP+<r<p, ^ z ^ . ^ p (3-6)

for χ with compact support.
The distribution Lφ can obviously be rewritten as

Lφ{χ) = - <K X>HU}C, Hi o m p (3 7)

which, by hypothesis a), can be uniquely extended to all χe Yv To complete the
argument it will be enough to show that the map

W) (3.8)
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is continuous, i.e. that the map Yί3χ\->Fφ(x,χ)eL1(W) is continuous. This is
a consequence of the following estimate based on the mean value theorem

\\Fφ{x9Xi)-Fφ(x,χ2);L1m\\

^s*Po*σ*iWzFφ(x,χi+σ{X2-Xi)Y, >o II \\X2~Xil YQ\\ (3-9)

and of the fact that FφeW(Y) by the admissibility of φ.

Remark 4. By Theorem 4 the Hubert space sector J"f(φ>φ) is the affme variety

+ y (and thus isomorphic to Y). It is clear from the proof of Theorem 5 that

the functional E{φtψ) is continuous on ^{φtψ) equipped with the ^topology.

Corollary 1. Let the hypotheses of Theorem 5 be satisfied and let

If ίφ\e00\Ί^;X) is the solution of Equation (1.2) with initial data φ'(0) = φ\

ψ'(0) = ψ\ then

Eiφ,ψ)(φ\ ψ') = Eiφ,φ)(φ'(t)9 ψ\t)), VίeIR. (3.10)

Proof Obvious by Theorem 4 [see expression (2.19)].

Since the energy measurements we are able to perform are always local in
space, it should be possible to consider the energy functional Ei<Pftp) [see Eq. (3.2)]
as the limit of the corresponding differences of the energy densities integrated
over a finite volume as the volume invades the whole space. To prove this property
we need some extra assumptions on the admissible φ. In this way (Corollary 2)
we will be able to satisfy the important physical requirement that the energy
scale does not have a physical meaning.

Theorem 6. Let the hypotheses of Theorem 5 be satisfied with the additional as-
sumption

c) \VΨj\eL2(W), j=l9...9n.

Then for all xoeIR s and for all ωe CQ(W) equal to 1 in a neighbourhood of the
origin, one has

E(φtΨ)(φ'>ψ')= l i m κ - + oo ί LK{φ\ ψ') - K(φ, φ)] ω I ° 1 dx . (3.11)

Proof As in the proof of Theorem 5 it is immediate to check that

f [K{φ'9 ψ') - K(φ9 v>)] ω h ^ ^ l dx = f V{ψt Jχ9 ζ) ω h-^j dx

^h-12-h' (3.12)
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N o w / ^ j Viφtψ)(χ,ζ)dx, as R-*+co, by the dominated convergence theorem,

Ii-+(K7ί>H-w s i n c e ω ——-^ χ ^ χ, as R^+GO, in Yί9 J3->0, as #-> + oo, by
V κ /

assumption c).

Corollary 2. Let the hypotheses of Theorem 6 be satisfied. Let eJf((pt/;) and α
be admissible with respect to U. Then ^'

Eiφ, ψ)(φ\ Ψl = Eiat β){ψ', xp') + Eiψt v ) (α, β), V ̂ j e ^ , v ) . (3.13)

/ We remark that α satisfies assumption c) of Theorem 6. Equality (3.13)
is then an immediate consequence of Equation (3.11).

Corollary 2 has the obvious implication that the difference E{φxp)(φ\\p') —

E(φίψ)(φ", ψ") does not depend on the choice of the element

Besides the energy it is worth defining also the linear momentum.

Theorem 7. Let the hypotheses of Theorem 6 be satisfied, then the functional (linear
momentum)

ί) W < P / ' V'ϊ= ί Σ WjVφ'j-ψjVφj)dx (3.14)

is well defined and continuous on ^{φ,ψ) (see Remark4).

Proof Obvious.

It is clear that, contrarily to the case of the total energy, now the quantity
n

Σ ψ'jVψ'j belongs to LX(IRS) without subtracting the momentum of the "back-

ground".
We will now give a brief description of the space-time translations.

Theorem 8. For all (τ, α)eIR x R s let us consider the map

(a (Λ = ^ / \ . (3.15)
'a\ψ') \xpf(t + τx + a)J

\ ^ a (
\ψ'(t,x)) τ'a\ψ

Then

1) Tτ a is continuous with values in C(O)(1R; X).
2) // Ue°tt(X) and does not depend on the space variables, Tτ a is a bίjection

of £Fυ (see the beginning of Section 2).

3) // \eX satisfies the hypotheses of Theorem 6 with U independent of the

space variables, the map
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is a bίjection of J^f{φψ^ mere is the solution of Equation (1.2) with φ'(O) = φ\
L \Ψ w/

Proo/. Assertion 1) is trivial. Assertion 2) follows, by the uniqueness Theorem 1,
from the equation

&';;—i-™ ψ'(0,

which is a consequence of Equation (1.2) and of the fact that W(t) is a convolution
operator. Assertion 3) follows easily from the identities

y/(τ, x + a)- ψ'{x) = (ψf(τ, x + a)- y/(x + a)) + (ψ'(x + a) - ψ'(x)) (3.17)

φ'(τ, x + α) - <p'(x) = (φ'(τ, x + α) - φ'(x + α)) + (φ'(x + α) - φ'(x)). (3.18)

In fact, ψ\x + ά) — ψ'(x) and Vx(φ'(x + α) — φ'(x)) obviously belong to Yo. Moreover,
ψ/(τ, x + a) — \p\x + a) and φ'(τ, x + a) — φ\x + α) belongs to Yo and to Yl9 respectively,
by the definition of Jtif(φ>φ). Finally (φ'(x + α) — φ'(x))e 1̂  as a byproduct of the
mean value theorem and oϊ\Vφj\eL2(JR.s),j= 1,..., n.

It may have some interest to compare the energy of pairs of elements belonging
to different Hubert sectors because their relative energy may be finite, as e.g. in
the case of degeneracy

Definition 6. Let JfL 1lΛ and JfL m be two different Hubert sectors with (

satisfying the hypotheses of Theorem 6. We say that these sectors have relatively
finite energy if for all x o e R s and for all ωe C^(IRS) equal to 1 in a neighbourhood
of the origin, the limit

lim^ + 00 f [K(φ\xp')-K{a\pTf\ωfc^)dx (3.19)

exists, finite, independent of x 0 and ω, for all

iT / \Γ

To establish that the sectors 2tf(φtψ) and J^iatβ) have relatively finite energy
it will be enough, as a consequence of Theorem 6 and relation (3.13), to check
the existence and the properties of the limit (3.19) only for one pair of elements.
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In particular it will be sufficient to verify that the limit

, φ(x)) - U(x, α(x))]ω ( ^ ή dx (3.20)

exists, finite, independent of x0 and ω.
The results of this Section allow a rigorous treatment of the Hilbert sectors

based on constant fields. Precisely we have the following

Theorem 9. Let Ueΰlί{X), independent of the space variables and such that all
constant functions φ = c are admissible with respect to U. Then

ί A
1) belongs to some Hilbert sector iff VzU(c)=0 (Goldstone's theorem) and,

in this case, the energy functional takes the form

Σ Ί (I Vψf + Ψ?) + U(φ') - t/(c)j dx (3.21)

2) The Hilbert sectors Jf(c>o)> ^(c,o) n a v e relatively finite energy iff U(c)= U(c).

Proof. The first part of assertion 1) is a consequence of Theorems 3, 4, while
Equation (3.21) follows from Theorem 6. Assertion 2) is a consequence of Definition
6 and of Equation (3.20).

A generalization of the above situation (φ = c) is provided by the case in
which φ satisfies the equations Λφ — VzU(x, φ) = 0 (soliton-like solutions). Some
results in this direction, for s = l , are collected in Appendix C.

4 Dynamical Charges

The structure of Hilbert space sectors allows us to introduce as an invariant
of each sector the "behaviour at oo" of its elements. In this Section we will show

that for all \eJ^(φ)ψ) the difference φ' — φ tends to zero at oo in almost all

directions, and therefore if φ has a limit at oo in almost all directions, φ' has the
same limit. This will enable us to define a dynamical charge associated to ^iφ,ψ)
which is preserved in time. The idea of associating a charge to the asymptotic
behaviour of solutions of non-linear evolution equations has been first discussed
by Finkelstein and Misner [4]. The framework constructed in the previous
permits a rigorous treatment of this concept.

Lemma 5. Let φeH^-QR*) and let us define

x = rω, r > 0 , ω e S 8 " 1 . (4.1)

Then for almost all ω e S 5 " 1 (the unit sphere in W) the function r^>φ~(r, ω) is
continuous and satisfies the estimate

r->+oo. (4.2)
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Proof. By Fubini-Tonelli's Theorem there is a subset X^cS 5 " 1 of zero measure
i n S 8 " 1 such that

J \φXr,ω)\2ϊ*-1dr+ J |F>(r, co)-x/r|V"1rfr< +oo , Vω£7i. (4.3)

We can always find a sequence ΨJECQ(W) such that ψj-+φ in /^(IR5) and for
which

00

l i m ^ J \φ'p'9ω)-φ'(r9ω)\2τίS-1dr
1

+ J \(Vφjr,ω)-Vφ{r,ω)) xlr\2r>-ίdr = 0 (4.4)
1

for all ωe§s~ 1\T2, where T2 is a suitable set of zero measure independent of 7 [10].
From now on we fix ωφT1uT2. There is a sub-sequence of {φ7} (depending
on ω), still denoted by {ψj}9 such that

qΓj(r9 ω)->φ~(r, ώ) a.e. in [1, 00 [ as y->oo .

Therefore

r

φ~(r,ω) = φ~(r0,ω) + f Vφ-x/σdσ a.e. (4.5)
ro

as a consequence of the corresponding equations for the φ^ 's. This establishes
the continuity of φ~(r, ω) conveniently redefined on a set of zero measure in r.

On the other hand, the estimate

ί

l/2 ir \l/2

(4.6)

yields, in the limit 7-> 00

l i m ^ ^ I\φ\r9ω)\2r s~' - \φ[rθ9ω)\2rs

0~
 1 | = 0 (4.7)

which implies Equation (4.2), by Equation (4.3).

Definition 7. Let Jf((p v ) be a Hubert space sector (see Definition 5). If there is a
map α i S 5 " 1 - ^ " such that φ~(r, ω) = φ(rω)-^a(ω) as r-> +00, almost everywhere
in 8 s " 1 , we will say that a is the charge of J"f(φ>ψ).

The above Definition makes sense by Lemma 5 since 3^{φ>ψ)cl \ + Y

Moreover, by definition of sector, for all I eJ^iφtψ)9 φ~'(t; r, ω) = φf(t, rω)->a(ω)

a.e. in § s - 1 as r^oo, VίelR [where φ'(tf x) is the solution of Equation (1.2) with
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φ'(0,x) = φ\ ψf(0, x) = ψ'~\. This fact may be interpreted as the conservation of
charge. It is worthwhile to remark that the existence of non-trivial charges relies
crucially on the existence of non-trivial Hubert sectors (see Section 2, especially
Theorem 4).

For 5^3 the existence of the charge is guaranteed for those sectors ^(φ!ψ)
for which VψjEL2{W\ j=\, ...n, as a consequence of the following

Lemma 6. Let s^3, φeH\0C{W) with dφ/dxjeL2(Wl ; = 1 , ...s, and define

x = rω, r > 0 , ω e S 5 " 1 .

Then for almost all ω e ^ " 1 (the unit sphere of IR^ the function r\->φ~(r, ω) is
continuous, has a finite limit φ~(oo,ω) as r->+oo and

r ( s - 2 ) / 2 | φ > , ω ) - φ l o o , ω ) | = o ( l ) , as r ^ + o o . (4.8)

Proof It is possible, by using a mollifier technique, to find a sequence
{ψjl ψjE C^IR5), with dψj/dxkeL2(W\ Vj, k, such that <pj->φ in L2

OC(IRS) and
dcpj/dxk-> dφ/dxk in L2(IRS), Vfc. Now, by the same kind of arguments used in the
proof of Lemma 5, one can establish the continuity of φ~(r, ω) for almost all
ωe^s~ι. On the other hand, the estimate ( r > r o ^ l )

r

\φ~j{r9 ω)- φ'J{r0, ω)\ ̂  J \dψj(σ, ω)/dσ\dσ

ro

S J \dφjίσ, ω)/dσ\2σs-ιdσ\ J σ^'dσ) (4.9)

yields, in the limit j->co,
It \l/2

\φ~(r, ω ) - φ > 0 , ω ) | ^ c o n s t J \Vφ(σ, ω)-x/σ\2σs-1dσ\ | r 2~ s — r§~ s | 1 / 2 (4.10)
Vi o /

from which Equation (4.8) follows.

The results presented in Appendix C provide sufficient conditions for the
existence of the charge a in the case s = 1.

5. Internal Symmetries and Spontaneous Symmetry Breaking

In this Section we will discuss the concept of internal symmetry and we will
show how, within our framework, the mechanism of symmetry breaking can be
understood in a rigorous way. It is convenient to start with the following natural
definition of internal symmetry

Definition 8. Let g lR/'-̂ IR/1 be a diffeomorphism of class O2) such that the map

fφ)\ I g(Ψ(x)) \
°\ψ(x)) \JJίφ(xMx)} l '
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where Jg is the Jacobian matrix of g9 is continuous from X to X. We will say

that 71 is a local internal symmetry of Equation (1.2) if, for every solution I e O0)

\ψ(ty

(]R; X) of Equation (1.2), Tgi is again a solution of Equation (1.2).

The. next two theorems give a simple characterization of internal symmetries
under mild assumptions on the interaction.

Theorem 10. Let Ue%(X) with the properties

i) u(x, 0) = 0 VxeIRs, U(x, z)φθ.

ii) For any C°°(IRs)-irafzα/ data the corresponding continuous solution

\ψ(x)J

of E q u a t i o n ( 1 . 2 ) l^9 * | J i s s u c h t h a t φ / ί , x ) e C < 2 ) ( I R x 1R S ) , j = 1 , . . .n.
\ψ(t x)J

Then, if Tg is a local internal symmetry, the map # is an affine transformation
with J'%Jg = λgίwtn for some constant λφ and for all spheres Ω

, φ) - U(x9 g(0))]dx = 0 (5.2)

for all e l [for the definition of K see Equation (3.1)].
\ψ)

Proof. lϊ(φ^9XA is the solution of Equation (1.2) with C°°-initial data

then condition ii) and Definition 8 imply

Dφft, x)+-fa- (x, <p(t9 x)) = 0
Zj (5.3)
r)TJ

D g(φ(t9 x)) + — (x, g(φ(t, x)) = 0 .

A combination of the two Equations (5.3) yields

Σ Pt
j,k=i ϋzjCzk

1=1,...n.
Now, by Definition 8, Equation (5.4) has to hold for all times and for all initial data.
A suitable choice of such data in Equation (5.4) shows that

^Γc) = θ, 1=1. ..n, ceR", (5.5)

dzjdzk

i.e. g is of the form

g{z) = Az + a (5.6)

with A an invertible matrix and αeR".



Sectors for Non-linear Field Equations 89

Then, from Equation (5.4) it follows

Fz[[/(x, Az + a)!^- U{x, z)AτΆ] =0 (5.7)

and therefore

U(x, Az + α)iRΠ = U(x, z)AτA + U(x, α) l R n . (5.8)

Since U is non-trivial we conclude that ATA is a multiple of the identity. At this
point the validity of Equation (5.2) can be immediately verified.

Remark 5. It is easy to see that the set of local internal symmetries {7 }̂ is a group
and that Tg^>λg is a one-dimensional representation of such a group.

Remark 6. It can be checked directly on Equation (1.2) that any map g of the
form (5.6) and satisfying Equation (5.8) defines a local internal symmetry.

Remark 7. Conditions on the potential U ensuring the validity of hypothesis ii)
of Theorem 10 have been discussed in [6]. Hypothesis i) can always be satisfied
by an inessential redefinition of U. Finally, in the case U = 0 the only internal
symmetries are the affme transformations.

Theorem 11. Let #:IRn-»IR" be a dίffeomorphίsm of class C ( 2 ) such that Equation (5.1)
defines a map from X to X. Then, if there exists a real constant λ and measurable
function f :RS-+1R such that

j lK(goφ, Jg(φ)ψ) - λK(φ, ψ) - f(x)]dx = 0 (5.2)
Ω

for all spheres Ω and for all I ε X, the mapping Tg is a local internal symmetry.

Proof From Equation (5.2)' it follows that /(x)= E/(x, 0(0)) and that

h Σ
k=ί

By varying φ and ψ independently, Equation (5.9) implies

Jτ

g(z)Jg(z) = λtKn, VZGIR" (5.10)

and

U(x, g(z)) = λU(x, z) + U(x, g(0)). (5.11)

The map gγ(z) = λ~1/2 g(z) has the property that J^(z)Jgι(z) = lRπ, Vz and therefore,
by the mean value theorem,

\g^)-g,{z")\ = V-z"\, Vz',z"eIR\ (5.12)

By a well known result Equation (5.14) implies that gγ is an affme transformation.
By Remark 5, g defines a local internal symmetry.
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Definition 9. A local internal symmetry Tg is called a global internal symmetry
of the Hubert space sector J^iφ>φ) if

A local internal symmetry is said to be spontaneously broken in the Hubert sector

je{φ>ψ) if there exists a r\e^{ψM such that J

The next Theorem shows that to have a global symmetry it is enough to
check condition (5.13) on a single element of the sector. Consequently, if Tg is

spontaneously broken, then Ί,I \φj^(Φ w) for all elements I ,) belonging to

Theorem 12. Let Tgbea local internal symmetry induced by an affine transformation

and jPi<Pttp) a Hubert sector. If for some ίφ)eJ^iφtψ) Tgr\eJe{(PfXp), then Tg is a

global internal symmetry (of ffl{ψίXp)).

Proof. The proof is an immediate consequence of the structure of g and of the
definition of Hubert sector.

Now any Hubert space sector of the form jήf(φψ)= + Ycarries an obvious

Hubert structure (see Remark 4), i.e. that induced by the identification i\2tf{φ>v)-> X

IIΨ \ ίψ ψ\ if T is a global internal symmetry for J^(ω 1/Λ, with
ψ'J \ψ'-ψ) 9 'φ'ψ)

and AτA = λgί^ then the map Ug:JP{φtψ)-+Jir{φtψ)9 g

unitary.

Appendix A

In this Appendix we state and prove an existence and uniqueness theorem for the
solution of an abstract integral equation of the type

u(t) = W(t)u0 + L(ή + J W(t - s)f(s9 u(s))ds (A.1)
0

under suitable assumptions on W(t), L{t\ and f(t, v). The proof, which is obtained
by a straightforward modification of Segal's approach [7], is reproduced here for
the convenience of the reader
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Theorem A. Let B be a Banach space with norm || ||. Suppose we are given
i) A strongly continuous one-parameter group (W(t))teR (with W(0) = I) of linear

bounded operators on B.
ii) A map feO°\lRxB;B) such that, for any T, ρ>0, there exists a positive

constant C(T,ρ) for which the inequality

supom^τ\\f(t,u)-f(t,v)\\SC(T,ρ)\\u-v\\ (A.2)

holds for all U,VEB with ||w||^ρ, | |u | |^ρ.
iii) A continuous map

such that L(0) = 0.

Furthermore we suppose that for any T > 0 if HEC?O )([0, T[; B) (resp.
ueO0)(] — T, 0];£) is a solution of the integral Equation (A.I) on the interval
[0, T[(resp.]-T, 0]) with uoeB, then there exists a sequence 0<trfT (resp.
tji - T) sμch that

sup,. \\u(tj)\\ <GO . (A.3)

Under these assumptions the integral Equation (A.I) has a unique solution
weC(0)(IR; B) for any initial data uoeB.

Proofs For obvious reasons it is enough to prove that Equation (A.I) has a unique
solution ue C*o)([0, +oo [ B) for any initial data uoeB. It is useful to recall that
as a consequence of hypothesis i), [11], there exist constants A^l and ω > 0 such
that

WWiήuW^Ae^WulteJ^ueB. (A.4)

Uniqueness is now obvious because if u1? u2e O°\[0, T]; B), 0 < T < o o , are
solutions of Equation (A.I) with the same initial data, then

||M1(ί)-M2(ί)| |^4eω TαT,ρ)ίl|M1(s)-M2(s)| |ds,ί6[0,T], (A.5)
o

where ρ = sup o < f < Γ j f c = 1 > 2 l|wjk(OI|j a n d therefore GronwalΓs lemma implies
{ ) ) [ f t

To establish existence we first proceed to the construction of a perturbative
solution. Given T,ρ>0 we define the space

E(Zρ)={uG00\lO,n;B)\sup0^τ\\u(t)\\^\u\τSQ}. (A.6)

Equipped with the distance d(μ,v) = \u — v\τ, E(T,ρ) is a complete metric space.
We now show that for any uoeB, \\uo\\^ρ/2A9 there exists aJΓ>0 (depending
only on ρ) such that Equation (A.I) has a (unique) solution ueE(T, ρ). Consider the
operator

(Su)(ή= W(t)uo + L(t)+ J W(t-s)f(s, u(s))ds, ueE(T, ρ). (A.7)
o
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The estimates

(A.8)

l(S«1Xί)-(S«2Xί)|| ^Aeω'C(T, ρ) j \\Uι(s)-u2{s)\\ds

imply the existence of a 0< T ̂  T such that the operator S is a contraction on
E(T, ρ). By Banach's theorem on contractions S has a unique fixed point which is
a solution of Equation (A.I).

To complete the proof of the Theorem we are going to show that any solution
ue'C°\[0, T[; B\ 0< T<oo, of Equation (A.I) can be continued beyond T. For
this purpose let us consider the integral equation

t

υ(t) = W(t -l)u(t) + L(t) - W(t -l)L(t) +{W(t- s)f(s, u{s))ds> (A.9)
ϊ

where £e[ί, +oo[ and t can be any of the ί/s of Inequality (A.3). If we can show
that Equation (A.9) has a continuous solution v on an interval [ί, ί + τ] with τ
independent of t, then the function

u(t), 0<t<l

υ{t),

continues the solution beyond T. This follows from the equality

φ(t) - lw(ήu0 +)w(t- s)f(s, φ(s))ds)

= W(t -1) lu(t) - L(t) - } W(t - s)f(s9 u(s))ds - W(t)uo\ = 0 .

The existence of a perturbative solution of Equation (A.9) proceeds exactly as
above. The crucial fact, that we can choose τ independent of the ί/s, is a
consequence of the estimate

- W(t-Ί)L(t)\\

sup, 11̂ )11 + ||L(ί) + ^ ( ί

and of the uniform continuity of the function (θ, σ)++L(θ + σ)— W(θ)L(σ) on the
compact subsets of IR+ χ]R+.

Appendix B

To recognize that χ(i) is ZΛdifferentiable we first integrate Equation (2.17)

Prχ(t)\ = (Prχ0) \ (PX(s)+PrΨo \

prζ(t)J \PrCo) I Wrχίs)+Prh- Prv2Fjx, As))) ( • '
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and then apply the linear bounded operator (8)1^ to (B.I)

( B 2 )

It is now clear that, letting r-»oo, dχ(t)/dt = ζ(t) + ψ0.
We now show that for any ρe Yu Fφo(x, Q(X))GL1(JR.S). Successive applications

of the mean value theorem and Holder inequality yield

f \\VzFφo(x9σρ{x)); Y0\\'\\Q', Y0\\

which is obviously finite because Fφoe%(Y).
Finally we prove that the function

C{t)=ίFφo(x9χ{t9x))dx

is differentiable with

dC(t)/dt= <C(ί) +v>0, VzFφo(x9

It is convenient to start from the identity

At At

Σ ^
;x)-χft, x) d
Δt

dx

n

+ ί Σ

Application of the mean value theorem yields

h=Σ i f
7 = 1 R s l θ

dF,,
{x, χ(t, x) + σ(χ(t + At,x)- χ(t, x))

and therefore It^0, as Δt-+0, since Fφoe<%(Y)9

rft + Δt9x)-χ(t9x)t

At
-;Y0\\<co

(B.3)

(B.4)

(B.5)
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and \\χ(t + Δt9x) — χ(t9x); Yi\\At->o^® A similar argument takes care of the term/2.
In conclusion

dC(t)/dt= <dχ(t)/dt, VzFφ(x, χ(ή)

which implies Equation (B.5) as a consequence of the explicit expression for
dχ/dt.

Appendix C

Throughout the whole Appendix we will work in IR1 and suppose Ue°U(X)
independent of the x variable. It is convenient to separate the case n = 1 from the
case n>\.

Theorem C.I (n=l). //
i) V/leIR the equation U(z) — λ = 0 has at most a discrete set of solutions

ii) MλeWίonehas $ \U(z)-λ\1/2dz= j \U(z)-λ\1/2dz= +00
z 0 - 0 0

for some zoeIR then any φ with φ'eL2^1) and such that

U(φ(x))-λ(φ)€L1(R1) (C.I)

for some real constant λ(φ), has a finite limit as x-> ± co.

Proof. Let us define

A(z)=]\U(σ)-λ(φ)\ll2dσ. (C.2)
zo

Then, the fundamental theorem of calculus and the Schwarz inequality yield

\A(φ(x))-A(φ(y))\S $\U(φ(σ))-λ(φ)\dσ
1/2

\{φ\σ))2dσ
1/2

which implies that Λ(φ(x)) has finite limits a+, a_ as x^> + 00, —00. The function
A(z) is strictly increasing since Ά(z) = \U(z) — λ(φ)\112 vanishes only on a discrete
set by condition i). Moreover, by condition ii), range of A = IR.

Consequently

φ(x) = A ~ \A(φ(x)) —^A " \a+).
x—• ± 00

Theorem C.2 (n>l). If

i) VAGIR the equation min^ = ρ\U(zu ...,zn) — λ\=O has at most a discrete

set of solutions ρ.

ii) ] ^ ΰ
0

Then, for any φ = (φu ..., φn) with φ'jEL2^1), Vj and such that

U(φi(x),..., φn(x))-λ(φ)eL1(JR1) (CA)'
I n \ l / 2

for some real constant λ(φ\ \φ(x)\ = l ^ Φ M 2 has a finite limit as x-+± 00.
V
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Proof. With the definition

A(τ)=]F(ρ)dρ (C.2)
o

where

the argument proceeds as in Theorem C.I.

The conditions on φ in Theorems C.I and C.2 are satisfied if (/^eL^IR^V/ and

φ"M)=-fo (ψi(χ), . , φ»{χ)), j = l, , n. (C.4)

In fact Equation (C.4) implies the existence of a constant λ(φ) such that

7 = 1

Now, if U(φί9 ...,φn) has a finite limit as x-»±oo, then necessarily
limx_±o0JJ(φ1(x), ...,φn(x)) = λ(φ). This obviously happens if the φ'p have a
finite limit as x->+oo or if \φ(x)\ has a finite limit in the case U(z)=U(\z\). The
following example shows that additional assumptions on (7, such as conditions
i) and ii) are necessary in order to guarantee that φ has a finite limit. If we have
U(z) = 2e~z(l-e-Σ) for z^O, U = 2z-3z2 for z^O, φ(x) = \n(l + x2\ then φ"(x) =

( )((x)), ω ' G L ^ R 1 ) but

For n = 1 examples of potentials U(z) satisfying conditions i) and ii) of Theorem
C.I are the polynomials of degree ^ 1 , (7(z) = cosz, U(z) = ez2. For the cases
U(z) = (z2 — I) 2, U(z) = cos z, simple solutions φ of Equation (C.4) are the standard
soliton-solutions (see [1, 3]).
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