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ZiF, Universitit Bielefeld, D-4800 Bielefeld, Federal Republic of Germany

Abstract. We study mixing or spatial cluster properties and some of their
consequences in classical lattice systems, in particular complete regularity and
the weaker notion of strong mixing. Introducing the notion of reflection
positivity as a generalization of T-positivity of [1], we construct a generalized
transfer matrix P and relate complete regularity to a spectral gap in P. It is
shown that all reflection invariant Ising systems with n.n. and ferromagnetic
n.n.n. interaction satisfy reflection positivity. For Ising ferromagnets with
reflection positivity, exponential decay of the truncated 2-point function implies
complete regularity. In particular, the 2-dimensional spin-1/2 Ising model is
completely regular, except at the critical point. This complements a result of [2]
that strong mixing fails at the critical point of this model and in this case verifies
the suggestion of Jona-Lasinio [ 3] that critical behaviour should be linked with
failure of strong mixing. We then show that strong mixing imposes severe
restrictions on the possible form of limits of block spins. Strong mixing in each
direction allows only independent Gaussians as non-zero limit if the 2-point
function exists; strong mixing in a single direction only will allow infinitely
divisible distributions.

1. Introduction

A classical square lattice system is a set of random variables X,, ke Z¢ (“spin at
site k). It can be described by a probability measure u on a measure space with
g-algebra X. We always assume translation invariance. We put $=L>(x) and
denote by Q the function identically 1. The smallest sub-c-algebra of X generated by
{X,;m=k,<n} is denoted by X, by §” the corresponding subspace of § and by
E;, the projector onto it. We take =27 .
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We define the “mixing coefficient” a(n) by
an)= sup |u(AnB)—pu(A)u(B). (L.1)

AeX9 o, BeX®

The system is strongly mixing (in the 1-direction) if «(n)—0 for n— co. Alternatively,
one can consider

G(n)= Séupl<€f’l>—<é> IIENG Inlls? (1.2)

where &, 5 are bounded and in $° , 9 respectively. Then [4, Th. 17.2.1] a(n) < é(n)
<16a(n).

Replacing || ||, by || - ||, in Equation (1.2) one obtains the “maximal correlation
coefficient” g(n). The system is completely regular (in the 1-direction) if o(n)—0 for
n— 0. The latter implies strong mixing.

This extends the well-known 1-dimensional concepts [4, 5]. Dobrushin [6] has
given a slightly different extension using sets different from half spaces.

Definition. Let a system be invariant under the reflection (k,, k)—(—k,, k) and let ¢
denote the corresponding operator in §. If, for some r =0,

E®9Er =0 (L.3)
the system is said to satisfy reflection positivity (r.p.) (strong r.p. if r=0).

This notion generalizes the concept of T-positivity introduced in [1] as a
sharpening of the positivity condition of [7]. It is easy to see that Markov property
plus reflection invariance implies strong r.p. In Section 2 we prove our main result
on mixing properties.

Theorem 1. Let a lattice system on Z° satisfy the FKG inequalities and reflection
positivity. If the truncated 2-point-function decreases exponentially (in the
I-direction), then the system is completely regular (in the 1-direction) with ex-
ponentially decreasing o(n).

For Ising ferromagnets with reflection invariant next nearest neighbour (n.n.n.)
interaction the assumptions are fulfilled, and for n.n. interaction also the converse
holds.

In Section 3 we derive a criterion for strong r.p. in Ising models in terms of the
interaction matrix, and Section 4 deals with consequences of strong mixing for the
possible form of the limit distributions of block spins.

2. Generalized Transfer Matrix and Complete Regularity

Let r.p. hold, and let $g, be the null space of EX¢E in $,°. By the spectral theorem
one can write H,° =9H,D Hy, such that
00 =EXQEX1$,>0. 2.1)

Thus g, ! exists as a (possibly unbounded) operator in §,. Denote by E, the

projector onto $,. Similarly as in Section 2 of [1] one finds

Proposition 1. Let T, 1€ Z, be the translation operator in the 1-direction and define, on
20”90,
P.=0}?E,To; . 2)
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Then {P_}¥ can be extended by continuity to a self-adjoint contraction semi-group. We
call P=P, the generalized transfer matrix'.

In principle the spectrum of P can lie in [ — 1, 1]. Q belongs to the eigenvalue 1,
and if ordinary clustering (mixing) holds,— 1 cannot be an eigenvalue. E, denotes
the projector onto {1Q}.

Theorem 2. Let a lattice system on Z° satisfy r.p. If the spectrum of P— E,, lies in
[—a,a] for some O<a<1 (“spectral gap”), then the system is completely regular
(in the 1-direction) with exponentially decreasing o(n). If, conversely, the system is
completely regular and if ¢4 * is bounded then P has a spectral gap.

Proof. Let e 9, neHr,n>2r. With Lemma 2.1 of [1] one shows

&y =<y
=<0 ?EooT & (P~ Eg)" >0y *EgT,_ 1) - (2.3)

The r.h.s. is bounded by [|€], [|17], | P— E,|"~*", and this implies the first part of the
theorem. The second part also follows from Equation (2.3) by using [og'%ull,
=b|lu|, for some b>0. QED.

Theorem 1 now follows from Theorem 2 and the next lemma.

Lemma 1. Let r.p., FKG inequalities and exponential decay of the truncated 2-point
function in the I-direction hold. Then P has a spectral gap.

Proof. Asin [8, Th. VIIL 357 one shows that, for a dense set in $, {ou, T.u) —|[{u)|?
is bounded by truncated 2-point functions. From this and Equations (2.1/2) one
concludes that <v, (P — E,,)"v) is exponentially decreasing in 7 for a dense setin §,. A
similar argument as in [9, p. 158] then yields the spectral gap. QED.

A partial converse of Theorem 1 follows from the second part of Theorem 2. If
0o ' 1s bounded then exponential decay of the truncated 2-point function is also
necessary, in particular for n.n. interactions since there 9,=1 by the Markov

property.

1

3. Reflection Positivity in General Ising Models
We consider Hamiltonians of the form H =sJs+ hs, where
sIs= Y s()Jysk),  hs=) h(k)s(k),
Jj,kezd k

and any single spin distribution. We put 0j=(—j,,j) and (3h) (k)= h(0k).

! Incase of strong r.p. P has the usual properties of a transfer matrix. Indeed, if YV, ..., Y® and their

products are in $§ and if Y¥=T, Y¥, i <...<i, then
<Y}(1)...Y;f")>=(Y(I)P'Z_"Y(z)...P’""‘""Y(")>.
1 n

The proof is similar to that of Corollary 3.3 in [1]
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Theorem 3. A general Ising model with reflection invariant {J }, external field and
boundary conditions satisfies strong t.p. if the matrix {J o ;j,, k, 2 1} is negative semi-
definite®.

Proof. Absorbing +boundary conditions in h we consider the free case ; the periodic
case is similar. We first treat equally distributed finite discrete spins. It suffices to
show that {exp {i(f, — 3f,)o}) is a positive semi-definite matrix in o, o’ whenever f,
has compact support in {k;k, =20}, a=1,...,n. We use finite volume approxi-
mations (reflection invariant) and decompose

s=s_+s"+s, =95, +s%+s,
where supps, C{keZ’nV; +k, =1} and s°(k)=0 for k, %0. Then one gets
Zy' Y Y AT e P00

s aa’

:Z; 1 Zoe—ﬁ(so.ls0+hso) Z
s

sy s+

|2 A exp{=if s +.)
—B(s' Is + 25 Js® +hs',)}
exp{ —2(9s",)Js ., }

[S 2, explifs+s.)

—Bls, T, +25,J5° +hs+)}] .

The last square bracket is of the form g(s_, s°), the first then is g(s’, , s°). Hence the
r.h.s. is non-negative if {exp[ —28(3s", )J s, 1} is a positive semi-definite matrix in s’ ,
s,, and this holds if {(9s,)Js_} is negative semi-definite [10]. The latter follows
from the assumption.

For V— oo the result follows. In the general spin case matrices in s/, s, are
replaced simply by integral kernels. Q.E.D.

Examples. 1) N. n. Interaction: J,;, =0 for j, k; = 1.

2) Ferromagnetic n.n.n. Interaction: J;, =0 for |j—k|=2, J; =0 for |[j—k|>2.
Then

T 2
Z ’Ijlkjejkzzl)'(l,k)’ J(—l,k)(l,k)éo'
Jukiz1 k

3) General Solution for d=1. By translation invariance, J; =J,_; Then the
conditon resembles a moment problem, yielding

Jo=—opy — [xrdv(x), k=2, (3.1)
R

2 A similar result was found independently by J. Fréhlich (private communication)
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where ¢=0 and where v is a positive measure (possibly infinite at 0). A simple
example for Equation (3.1) is given by

Jp=—Joli—kI"*, a>0, j*k, J,;>0. (3.2)

Dyson [11] has proved existence of phase transitions for such models in the case of
l<a<2 and spin 1/2.

4. Strong Mixing and Limit Distributions of Block Spins

For given ke Z* and Ne Nlet V¥ be the cube of side length N and corner point Nk,
V¥={je?"; Nk,<j,<N(k,+1), a=1,...,d}. Let {By} be a sequence of positive
numbers, By— o0, and define “block spins” by

G'=By' ) (X;—<Xp). (4.1)

jevl

In statistical mechanics one takes By=N%2 1<0<2.

It is known for d=1 that if {{} converges weakly for N— co the limits must be
independent stable distributions if strong mixing holds [4]. If one tries to carry over
the proof to d =2 one gets difficulties with the surface contributions in Equation
(4.1). For d=1 the latter arise from a single point and converge weakly to zero for
By— 0. An analysis of the proof in [4] shows that this fact, together with strong
mixing, i1s responsible for stability and independence. For d> 1, however, the
number of surface points increases with N and one cannot, a priori, conclude weak
convergence to zero. Another complication is that one may have strong mixing in
one direction only. With a variation of the methods used in [4] we can prove the
following results.

Lemma 2. Let strong mixing in the 1-direction hold, let By/B,, be bounded in N, for
each m, and assume that the block spins {{}} converge weakly to some {{,}. If the
contribution in Equation (4.1) from the surface j, = Nk, converges weakly to zero as
N—oo then each {, is infinitely divisible and different hyperplanes k, = const are
independent (i.e. X2, {, » and XA, ; are independent for k, k).

Lemma 3. Let strong mixing hold in each of the d directions and assume that {{}}
converges weakly to some {{, #0}. Then {, and {; are independent if |k—j| =2. If the
surface contributions in Equation (4.1) converge weakly to zero then the {(,} are
independent and there is an o, 0 <o =< 2 such that each (, is stable with exponent o and
By=N%"h(N) where h(N) is slowly varying.

Under additional assumptions the surface contributions can be controlled, as in
the following results.

Theorem 4. Let a lattice system {X,} on Z° be strongly mixing in each of the d
directions. Let By= N"?*h(N), where 9 =1 and where h(N) is slowly varying, and let
the block spins in Equation (4.1) converge weakly to some {{, = const}. If the second
moment of { exists then the {{,} are independent Gaussians and ¢=1.
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Proof. The system {(,} is seen to be strongly mixing and to be stable under forming
block spins if By is replaced by N?¢2. This and the first independence statement in
Lemma 3 yield ({,>=0, and one estimates the second moment of the surface
contribution (to the block spins of {{,}) by N~ %eN*~13?=1({(,>. This implies
weak convergence to zero, and thus Lemma 3 applies to {{,}. QED.

In contrast to the case d=1, Theorem 4 assumes a special form of B, and
existence of (&,{,>. If the latter is dropped one cannot apply Lemma 3.

If <X X' has at least a power-like fall-off in [k| with exponent —d 42—y for
some >0 then it is easy to see that the surface contributions tend to zero if By is as
in Theorem 4. So Lemmas 2 and 3 can be applied. The same holds if (X (X, >' =0 and
{Lolo>—<Loloy < 0o where no assumption on By is needed.

5. Discussion

A general Ising ferromagnet satisfies the FKG inequalities [8]. If in addition the
interaction is n.n. or n.n.n. also r.p. holds. For these models the truncated n-point
functions decay exponentially for all § when h=+0 and for f<f,=<p, when h=0
[12]. Hence in these cases one has complete regularity, by Theorem 1.

The 2-dimensional spin —1/2 n.n. Ising model is completely regular for <,
and for f>f, in the two pure phases. At f=f, complete regularity fails. This
follows from the decay properties of the truncated 2-point function [13, 14]. By the
results of [2], which complement ours, also strong mixing fails at f =f5, and hence
the proposal of [3] is verified for this model. It may be that for physically interesting
systems complete regularity and strong mixing are equivalent; it would be
interesting to prove this or to find a counter example. The last model in Section 3
might be a candidate.

For Ising ferromagnets with at most n.n.n. interaction Section 4 shows that the
block spins can only converge to independent stable laws for all § if A40 and for
B<PB,<pP.if h=0. Whenever the 2-point function of the limit exists one only gets
Gaussians. For a class of 2-dimensional spin — 1/2 Ising models convergence of the
block spins has actually been proved [15, 16]. We take the results of Section 4 as
additional support for the proposal of [3] to link critical behaviour with failure of
strong mixing since otherwise the idea of block spins and renormalization group
would not work in the expected way. Another approach to critical behaviour has
been taken by Klauder [17] who essentially suggested to link critical behaviour to a
metric introduced in [18].
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