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Abstract. One way of generalizing the definition of an action of the dual
group of a locally compact abelian group on a von Neumann algebra to non-
abelian groups is to consider #(G)-comodules, where #(G) is the Hopf-
von Neumann algebra generated by the left regular representation of G. To a
Z(G)-comodule we shall associate a dual covariance algebra 2 and a natural
covariant system (2, ¢, G), and in Theorem 1 the covariant systems coming
from #(G)-comodules are characterized. In [2] it was shown that the co-
variance algebra of a covariant system in a natural way is a #(G)-comodule.
Therefore one can form the dual covariance algebra of a covariance algebra and
the covariance algebra of a dual covariance algebra. Theorems 2 and 3 deal with
these algebras — generalizing a result by Takesaki. As an application we give a
new proof of a theorem by Digernes stating that the commutant of a co-
variance algebra itself is a covariance algebra and prove the similar result
for dual covariance algebras.

§ 1. Introduction

If G is a locally compact group and @¢:G—Aut(4) is a continuous homo-
morphism of G into the group of *-automorphisms of a von Neumann algebra A,
(4, 0, G) is called a covariant system and one can form the covariance algebra
A=WH*(A, g, G). Takesaki showed in [8] that if G is abelian there is a natural
covariant system (U, 7, G") over the dual group G~ and that W*(, 1, G")=
A® B(L*(G)), i.e. the tensorproduct of A with the algebra of all bounded operators
on L*(G).

For a non-abelian G there is no dual group to act on the covariance algebra
A =WH*(4, g, G), but this author showed in [2] that the natural structure on %
corresponding to the action of a dual group is that of a #(G)-comodule. There
one used that #(G), the von Neumann algebra generated by the left regular re-
presentation of G is a Hopf-von Neumann algebra, cf. [7].

So if 4 is a von Neumann algebra, what seems to correspond to a covariant
system on A over G"if G is abelian is that of a #(G)-comodule structure on A.



192 M. B. Landstad

Given such a comodule we shall define a corresponding dual covariance algebra 21,
and it turns out that there is a natural covariant system (2, g, G) over 2. In
Theorem 1 we characterize those covariant systems (2[, 9, G) which come from
ZL(G)-comodules, this is a dual version of Theorem 1 in [2].

Since the covariance algebra U of a covariant system is a #(G)-comodule
it is natural to ask what the dual covariance algebra of 2 is, furthermore if U is
the dual covariance algebra of a .#(G)-comodule and (2L, g, G) the corresponding
covariant system one wants to know what the covariance algebra of (2, g, G) is.
The answers to these two questions are given in Theorems 2 and 3 and are natural
generalizations of Takesaki’s result ([8, Theorem 4.5]) mentioned above.

Finally as an application of Theorem 1 in [2] and Theorem 1 in this article
we prove that

(a) the commutant of a covariance algebra over G is itself a covariance algebra
over G, and

(b) the commutant of a dual covariance algebra over G is itself a dual covariance
algebra over G.

Digernes has proved (a) by other methods in [1].

Roberts has given a different, but related definition of an action of the dual
ofa group on a von Neumann algebra in [5]. His dual objects are sets of representa-
tions of G, while we in this article exploit the duality between the Hopf-von Neu-
mann algebras .#(G) and L*(G) developed in [7].

A similar notion of dual action has been given by Nakagami, [3 and 4]. His
main tool is a very interesting sort of Fourier analysis on the Hopf-von Neumann
algebra Z(G) [or rather £(G)'].

The author wants to thank Professor M. Takesaki for making him aware of Nakagami’s work.
In the final stage of this work the author also received a preprint [6] by S. Stritild, D. Voiculescu
and L. ZsidS announcing the same results.

§ 2. Duality for Dual Crossed Products

If G is a locally compact group we shall always equip G with a left invariant Haar-
measure, usually denoted dx. 4 is the modular function on G. The spaces L¥(G)
with norm || ||, (1< p< o) are always with respect to this measure. Cyo(G) is the
space of all continuous complex valued functions on G with compact support.
Z(G) is the von Neumann algebra generated by the left regular representation
of G, and for xeG we shall denote with x also the corresponding element of
ZL(G), ie.

xN)=f(""y) for x yeG,feL*G). )
R(G)=2(G) is generated by {v(x)|xe G} where

() N))=4(x)""2f(yx) for x,yeG, feL*G). @
If pe L*(G), we shall also denote with ¢ the corresponding operator on L*(G), i.e.

@ ) )=9x)f(x) for ¢eL®G),feL*G). ©)

If H is a Hilbert space, 4(H) is the von Neumann algebra of all bounded operators
on H.
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If W, is the unitary operator over L*(G x G) defined by

Wef(s,t)=f(s,st) for s,teG,feLl*(GxG), 4
we can define a normal isomorphism 4 : #(G)—Z(G)® L(G) by
ogla)=WEa@ W, for ae¥(G). (5)

A(G)=Z(G),,=the predual of £(G) is an algebra under the multiplication
defined by

af(a)=(a® P)os(a) for aeL(G),a fecAG). (6)

In fact A(G) will be a commutative semi-simple Banach *-algebra and is usually
called the Fourier-algebra of G, cf. [7,§2]. For any unexplained definitions and
notations concerning von Neumann algebras and covariant systems we refer
to [2].

Suppose now 4 is a von Neumann algebra realized over some Hilbert space
H,. If we have a normal isomorphism 6:4— A ® Z(G) satisfying

BR)O=>1® )0 (7

we shall call the pair (4, 0) a £(G)-comodule, and we say that 0 is a dual action
of G on A. (Note that if G is abelian (7) will in fact define a covariant system for 4
and G, cf. [4, Theorem 2.1].) As noted in [2] a comodule (4, ) will make the
predual A, of 4 into an A(G)-module if we define

pofa)=(p®o)d(a)) for ¢@ed,, acA(G),acA. (8)

Definition. Let U =WH*(4,0,G) be the von Neumann algebra generated by
HA)VI® L®(G) over H=L*(G, Hy)~H,® L*G). W is called the dual covariance
algebra of (A, d) and does not depend on the Hilbert space H, on which A4 is
represented.

Let u: L*(G)—U be the normal isomorphism defined by w(f)=I®f. We can
define a g-continuous automorphic representation ¢ of G on U by the formula

@)= v(x)aIl®v(x~ 1) for xeG,acU. )
Then ¢,(6(a))=d(a) for ae A and o (u(f))=wu(f,) for fe L*(G) where
F)=f(yx). (10)

So we have that ¢ (W)=2, and (2, g, G) is in fact a covariant system.

Therefore if W= W*(4, 3, G) is the dual covariance algebra of a #(G)-comodule
(4, 8) we can define a o-continuous automorphic representation g:G— Aut()
and a normal isomorphism u: L*(G)— 2 such that

e f)=u(f,) for feL™(G),xeG. (11)

Our main result is that this property in fact characterizes such dual covariance
algebras:

Theorem 1. Given a von Neumann algebra W and a locally compact group G, then
AU is the dual covariance algebra of some L(G)-comodule (A, d) if and only if there
is a a-continuous automorphic representation g of G over W and a normal isomorphism
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1 of L®(G) into W such that

e N=ufy) for feL*(G),xeG. (11)
(4, 0) are uniquely determined up to isomorphisms by

Ax{acW|g(@)=a forall xeG} (12)
and

CHa)E® 1) n®gy= [Lau(f)E, mgndt (13)

forac A, & neH, f,geCyo(G), if Wis considered as a von Neumann algebra over a
Hilbert space H.

The first step is to prove the uniqueness above, in fact we shall prove:
Lemma 1. If W=WH*(4, J, G) and g is defined by (9), then
o(A)={acWUlo(a)=a forall xeG}. (14)

Proof. Let B be the right hand side of (14), so B=UNIRZ(G)). Obviously
8(A)C B. Since 6(4)C AR L(G) we have

A @R(G)CH(A) . (15)

Let W=I® W, so W is a unitary operator over H® L*(G)=H,® L*G x G).
Then

WHAA)@DW =(i®)8(4) = (0 ®)5(A4)
C(O®NA®Z(G).

So §(A) @ R(G)C WH(5(A)Y @ B(LAG)W. Since We(IQIRR(G)Y, this implies
that W(o(4)Y @ DW* C 5(A) ® Z(G). Therefore we can define a normal isomorphism
0" :6(A) - 8(A) @ Z(G) by

d@=W(@@DHw* for aed(A4) . (16)
By (15) I® v(x)e 6(A) for xe G, and
FIR®vX)=IR®v(x)®x for xeG. (17

We next want to prove that (6’ ®i)6'=(i®Js)0". If we extend the definition
of ¢’ to all elements in %(H) using the same formula (16), it will suffice to prove that

@' @D (a®f - v(x)=([®c)5'(a®f - v(x)) (18)

for all ac B(H,), f € L*(G), xe G, since elements of this form is a total set in %4(H).
Now if we use (17) and that We(I ® L*(G)® I) we have

S a@f v(x)=Wa®f vx)@DW*=a@ f - v(x)®@x.
So the left hand side of (18) equals

WRNa®f V() ®x)=aR f V(X)RXxR®x=a® f - V(x)® dg(x)
=(I®s)a® f - v(x)® x)=right hand side of (18).
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This means that (5(A4), §') is a Z(G)-comodule and that the map IQv:G—5(A)
is such that the triple (6(A4), I®v, ¢') satisfies the assumptions of [2, Theorem 1]
so we have in particular that

oAy =[CUIRR(G)]" (19)
where
C={ced(A)|W(c@ DW*=c®1I}. (20)

Now in order to prove that 6(4)= B it suffices to show that §(4) C B, i.e. that
CUI®Z(G)CB'. Obviously I® Z(G)C B/, so we must show that CCB'. Since
AN C B, it suffices to show that

CCUA =5A) "I®L*(G)y, ie that CCUIRLXG)) .
This follows from observing that if ce C, then
cRI=W( R DW*eWIRIQ LG W*N(I® IR L (G)Y
=(I®L*(G)®L™(G)) . (21)

So ce(I® L*(G)), in fact C=06(4) ~(I® L*(G)). This proves the lemma.

We have now proved that if we start with a #(G)-comodule (4, ) and A=
W*(A, 6, G) we recover (A4, §) or rather the isomorphic comodule (5(4), ®i) as
follows: o(4)= {ae W|g.(a)=a for all xe G}. That 0 ®i then in fact is given by the
formula (13) follows from:

Lemma 2. If ac B(Hy)® L(G), f,ge Coo(G), &, ne LG, H,) we have that

WHa@DWER [), n®g> = [ Lau(f)E, g n)dt .

Proof. 1t suffices to prove this for a=b® x with be 4(H ), xe G, since both sides
define bounded normal linear functionals on %(H).

WHDb@x@DWER),n®gy=<{(bRxRXNER ), n®g)
=(xf, gy Lb@x)E ny= [ [ f(x™"0)gt)<b&(x"s), n(s)) deds
=[{/(x"st)g(st) (bE(x1s), n(s)> dsdt

= [ J<Bu(f)Ex ™ s), (ulgIn)(s)) dsdt

= [b@X)u(f)E, wgnydr .

Let us now turn to the second part of Theorem 1, so suppose we have a von
Neumann algebra A over a Hilbert space H, 9:G—Aut() and u:L*(G)—A as
in Theorem 1. We want to prove that W=W*(4, J, G) where (4, J) is defined
by (12) and (13). Let

Ay ={acA|IK 20, [poo(a*a)dx<K| | forall @eA}}.

Then AW,C A, and A, =the *-algebra generated by FA, is a *-subalgebra
of .

Lemma 3. A, and N, are both o-dense in A.

Proof. Since there is a net f;e Cy(G) such that u(f))—1I in the s-topology and
since U, is a left ideal in A, it suffices to prove that u(f)eU, for all feCyo(G).
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If pe A, @ oue L™(G); =~ L*G)", so there is a function he L'(G)* such that
@ ou(f)=[f(x)h(x)dx forall feL™(G).
If fe Cyo(G) we therefore have:
§@ oo u(f* fdx= [ pl(f*f))dx
=[5 (f*NLh(y)dxdy = [ §| f(yx)|*h(y)dxdy
=[1fC)Pdxh(y)dy=|f I3 =1f 12l

since there are no problems in changing the order of integration. So u(f)e,.
Now let A={aecW|g(a)=a for all xeG} and define a positive linear map
p: U, —A by requiring

o(p(a)=[¢ o (@)dx forall @e¥,. (22)
Note that we in Lemma 3 in fact proved that for f'e Cyo(G)
pu(f*MH=IFI3T. (23)

Lemma 4. A and p(L*(G)) generates .

Proof. Let #=[Auu(L*(G))]", we shall prove that A=44. It will by Lemma 3
suffice to show that each element of the form b=au(x) is in £ for all ae W and
o€ Coo(G). So suppose such an element b=au(x) is given together with a e,
and ¢>0. Choose a compact neighbourhood U of e in G such that

lp(o(b)—b)l<e forall yeU.

Take another neighbourhood V of e with V'V C U and functions f, ge Cyo(G)*
with supports in ¥ and such that

Jfdy=fg(xdx=1. (24)

Take h(y)=]f(x"'y)g(x~')dx, then h has support in U and [h(y)dy=1. Let
f()=/f(x""y) and define an element ¢ by

c={plbu(.f)]u(xg)dx
= jl 5 Qy(a)#(ay . xfy ) xg)dydx . (25)

If K=support (x) we have that (o, .f, g)z)=zy) f(x " zy)g(x " 'z)=%0 only if
xeKV ~'and ye V™ !V. So c is well-defined as a weak Bochner integral and ce 4.

Jfe™ zy)g(x ™ 2)dx=[ f(x ™ y)g(x ™ H)dx=h(y)

for all zeG, so [ul, fy-x9)dx=h(y)I. By changing the order of integration in (25)
we see that

c=[h(y)e,(b)dy . (26)
Therefore

lp(c—b)| =1 h(y)p(e,(b) —b)dy|

< (j; h(y)lp(e,(b)—b)ldy <& [h(y)dy=c¢.
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So Wu(Cyo(G))C %, thus £ is o-dense in A, and A=4A.
We now want to make A into a #(G)-comodule and for ae A we shall define
an element &(a) of #(L*(G, H)) by

{(aNE® 1), n®gy = [ Ledayu( fIE, ulgn)dt (27)

for &, neH, f, ge Cyo(G).

Note that for ae A the definitions (27) and (13) agree. First let us check that
(27) really defines a bounded operator. If ae, {f'}1.,CCoo(G) and {&'}i. CH
we have by (23) that

S edau(rie e all & Guries urdee
= lal* TS IH<E D =lal S e

So (27) really defines d(a) as a bounded operator over L¥G, H).
Obviously d(a)e AR B(L*(G)) for ae . Furthermore, if ae A

IRV I@Vx™NER ) n®g)

=@ ER@VxN ), n®@v(x"Ng>

=A(x ™) [ ed @ f1x- )& G-I dt

=) ® ), n®g) . (28)

So H(A4)C AR Z(G).
If peW,, f,geCoo(G) and he A(G) is defined by h(x)={x-f, g) for xe £(G)
we have from (27) that

(@®h) 0. ®1)((a))=(¢ 0. ® h)(5(a))

= [ ¢ o (ulg)*au(f))dt

= [ p(ug.)*ap( f))dt = (@ @ h)(d(a))
for all ae 4, xe G. Thus §(4)CA® Z(G).

Now note that from (23) it follows that we can define a unitary operator U
over L*G, H) such that

UERf)s)=u(f)E for LeH,[eCoo(G). (29)
If ¢, is the normal isomorphism of U defined by

0@ f(s)=04a)f(s) for aeAd,feL*G, H),seG, (30)
we see from (27) that we have

oa)=U*g,(a)U for ae?, (31)

so d is obviously a normal isomorphism.
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In order to show that (4, d) is a #(G)-comodule it now remains to show that
O®i)=(1®0dg)0. If ac 4, &, neH, f, g, h, ke Cyo(G) we have:
(6@ ®f®g)n®h® k)
=[{a)(u f) @ N g), (uh)® D@ k)> dt
=[o@UfIE®9), ulhn @ kydt
=[[<aulg,-£)& wlks-hn)dtds
=[{Laplgy f)E k- hoyn> dsdt
=[<{3(aN¢®@g.f) n®kh)dt
=[N ®g)ERSf), URk)n@h))dt
(Lemma 2)
=W (@ NW(ERf®g)n®h®k)
={((®@3)0a)(Rf ® 9. N@h®k) .

We have now shown that (4, d) is a £(G)-comodule, and in order to complete
the proof of Theorem 1 we shall show that é defined in (27) is an isomorphism
between the covariant systems (2, ¢, G) and (W*(4, §, G), 0", G) where ¢~ is the
natural automorphic representation of G on W*(4, J, G) defined by (9).

If we put an element u(h) with he L*(G) into (27) we have from (23) that

CHuhE®.S), n® gy = p(ulgy* (/) ny
=L&m<hf, g =URNERS),1®g> .

Thus é(u(h))=1®h and from Lemma 4 it follows that 6(U)=W*(4, 6, G). From
(28) it follows that

0 L) =T @Vx)d(a)I®V(x™1)=d(oa) for xeG, ae,
proving that the covariant systems (21, ¢, G) and (W*(4, 9, G), ¢~, G) are equivalent.

§ 3. The Bidual of a Covariant System and of a (G )-Comodule

We have now seen that a #(G)-comodule (4, d) gives rise to a covariant system
(2, g, G) with U=W*(4, 3, G). In [2] it was shown that a covariant system (4, ¢, G)
gives rise to a Z(G)-comodule (2, 8) with W= W*(4, g, G). It is therefore natural
to ask what W*(W*(4, g, G), 6, G) and W*(W*(4, J, G), ¢, G) are. It should come
as no surprise that both are isomorphic to A ® #(L*(G)), a fact which was proved
for an abelian G in [8].

Theorem 2. Given a covariant system (A, o, G) let (U, d) be the L(G)-comodule
defined in [2, Chapter 2], ie. U=W%*A,0,G) and da)=W*a@I)W. Then
W*, 5, G) =~ AR B(L*(G)).

Proof. Suppose A acts on a Hilbert space H, and let ¢ ~be the faithful representation
of A on H=L*G, H,) given by

0 (a)f(s)=0s-1(a)f(s) for aeA, feH,seG. (32)
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Then U=[p(A)UI®ZL(G)]" and §(A) is generated by p (A) R IV{I R xR x|xe G}.
So W*(Q, §, G) is generated over L*(G x G, H,) by

0 A)RIVIRIHL(GYUIR IR L*(G).

Let 0°:G—AutpY(A4) be given by

A)=I@x)a(l®x"1) for xeG,aco(4). (33)

The covariant systems (o7(A4), 0% G) and (4, ¢, G) are then equivalent. From
[2, Proposition 2.2] it follows that

TR AB(LAHG)=[W*(A), 0% GUIRI®L(G)]". (34)
Let U be the unitary operator over L*(G x G, H,) defined by

Uf(s,)=1(t"s,1). (35)
Then

W*(@4), ¢°, G)=[U*e @ NUVIRI® Z(G)]".
So

0 (A®AB(LXG)=[U*e (MR NUUIRIR L (G)VIRIR® L (G)]".
Now UIQRI®@x)U*=IR®@x® x for xe G, and Ue(IR® I ® L*(G)) so
AQB(LHG) =0 (AR AB(L*(G)=U*W*, 6, GU,
which proves the theorem.
Theorem 3. Given a Z(G)-comodule (A, ) let (N, g, G) be the covariant system
defined by W=W*(4,6,G) and g as in (9). Then W*(, g, G)= A® B(L*(G)).

Proof. W=W*(A,5,G) is generated by §(A)u(I® L*(G)) over L*G, H,) if we
consider A as a von Neumann algebra over H,. B=W*(, g, G) is then generated
by VHUAR NV UIRI® Z(G) where V is the unitary operator over LG x G, H,)
defined by

V f(s,)=A)"7f(st, 1). (36)
Define another unitary operator S by
Sfs.t)=40)""2f(s,t7") 37

then S*1*(I®eXDNVS=W(IRI® @)W* for peL®(G), and S*IRIRQx)S=
I®I®v(x) for xeG. Since VS and d(4)®I commute we therefore have that

B=[V*HA)QDHVUV*(IRQL®(G)RNVUIRI® ZL(G)]"
=S[H(A)RIVWIRIQ LY(G)W*LIRIRR(G)]"'S*
=SWIW*(A)QDWUIRI® LP(G)UIR IR RA(G)]"W*S*.

So if we can prove that

[(WH(A@NWUIRI®B(LHG))] = d(A) @ B(L*(G)) (39)
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the theorem is proved. (38) is equivalent to

WH(3(A) @BLHG)WNIRIR LG n(IRIRR(G)) =AY ®I, (39)
i.e. that

W*(A) @ L(GYWN(IRI® L*(G)) =(4) ®1 . (40)

Let D=WIRIQL®(G)W* and E=(6(4) ® Z(G))nD'. Now define a map
0":E~E® Z(G) by

§'"@)=IRIQWHa®NIRI® W) =(i®5s)a) for ackE, (41)

where i is the identity automorphism of %(L*(G, H,)). Obviously §"(5(4) ®
L(G)CHA) ® Z(G)® Z(G) and §"(D)=D®]1, so (41) will in fact define a normal
isomorphism of E into E® ¥(G) which obviously satisfies (6" ®1)0" =(i® d5)0".
IRVXx)@x=W({IRv(x)Q@W*ecE and §"(I ® V(x)® x)=I® v(x) ® x® x for xeG,
so again we can use Theorem 1 in [2] to conclude that E is generated by

F={acE|0"(@)=a®I} and {I@v(x)®x|xcG}.
Using the same argument as in (21) we have that
F=En(I®IQL*(G)) =(6(4) @ Z(G)nD'nIQI® L*(G)Y
=(6(4Y @ Z(G)NI ® L*(G)® L*(G)Y
=(0(4) NI L(G))®I=CRI
where C is as in (20). So the left hand side of (40) equals:
WHEW =W*[FU{I®v(x)®x|xeG}]'W
=[CRIVIRAG)®I]"=6(A) ®1
according to (19). So the formula (40) holds and the theorem is proved.

§4. The Commutant of a Covariance Algebra and of a Dual Covariance Algebra
Digernes proved in [1, Theorem 3.14] the following:

Theorem 4. Suppose A is a von Neumann algebra over a Hilbert space H and that
U is a continuous unitary representation on H of the locally compact group G such
that

ofa)=U,aU,-.eA forall xeG,acA.

Let the covariance algebra W= W*(A, o, G) act on L*(G, H) as usual. Then A’ is
generated by A'®I and {U,®v(x)|xeG}, and in fact W=W*A', o, G) where
0 :G—Aut(A') is defined by

o(@)=U,aU,-, for acA . 42)

We shall first give an alternate proof of this theorem using [2, Theorem 1]
and then state and prove a similar result for the dual covariance algebra of a
Z(G)-comodule.
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Proof of Theorem 4. Let W= WH*(A4, g, G) as defined in [2], then
W' QDHW*CA' ®ZL(G),

cf. the first part of the proof of Lemma 1, and it is straight forward to check that
U, ®@v(x)eW for xeG.

Defining the map ¢’ as in (16), i.e.
da)=W(@@I)w* - for aeW

we have that 0 (U, ®v(x))=U,®v(x)®x and that (6'®i)d' =(i®Js)d’, so as in

Lemma 1 we can use [2, Theorem 1] to conclude that A’ is generated by
Cu{U,®v(x)|xeG}

where
C={ceW|d'(c)=c®I}.

For C we can use the same argument as in (21) to conclude that C=%' n(IQ L*(G)),
so C=A'®1I according to [2, Proposition 2.2].

So W =[A'®TV{U,®v(x)|xeG}]" as stated, furthermore, Theorem 1 of [2]
also gives us that W~ W*(4', ¢/, G).

The dual version of Theorem 4 is the following:

Theorem 5. Suppose (4, d) is a L(G)-comodule and let W= W*(6(A), 0®1i, G) be
the covariance algebra of the equivalent comodule (6(A), 0 ®1). Then

=[AY @IVWHIRI®L(G)W]" 43)

and W is isomorphic to the covariance algebra of the ZL(G)-comodule (6(A), ")
where ¢ is defined by

d(@=W@@IW* for aed(A). (44)

Proof. A=[W*(AQDHWUIRIRL*(G)]". IRIQvx)WURIRQv(x )=
and if we define u: L*(G)—-W by

w)=Ww*IRIRQf)W for feL™(G)

we see that with ¢ as in (9), Theorem 1 is satisfied so 2 is generated by u(L*(G))
and W NI ® I®v(G)). From (40) we have that

WNIRIWG) =[WH*H(A)NWUIRIQL*(G)VIRIR®VG)]
=(4) ®1I .
This proves (43). Furthermore
WA W*=[W((A) @ DHW*UIRQ IR L*(G)]"
=W*(A), 8, G)

where ¢’ is defined by (44). It was proved in Lemma 1 that (6(4), &) really is a
Z(G)-comodule.





