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Abstract. One way of generalizing the definition of an action of the dual
group of a locally compact abelian group on a von Neumann algebra to non-
abelian groups is to consider if(G)-comodules, where J£(G) is the Hopf-
von Neumann algebra generated by the left regular representation of G. To a
if(G)-comodule we shall associate a dual covariance algebra 2ί and a natural
covariant system (21, ρ, G), and in Theorem 1 the covariant systems coming
from if(G)-comodules are characterized. In [2] it was shown that the co-
variance algebra of a covariant system in a natural way is a $£ (G)-comodule.
Therefore one can form the dual covariance algebra of a covariance algebra and
the covariance algebra of a dual covariance algebra. Theorems 2 and 3 deal with
these algebras - generalizing a result by Takesaki. As an application we give a
new proof of a theorem by Digernes stating that the commutant of a co-
variance algebra itself is a covariance algebra and prove the similar result
for dual covariance algebras.

§1. Introduction

If G is a locally compact group and ρ:G-»Aut(^4) is a continuous homo-
morphism of G into the group of ^-automorphisms of a von Neumann algebra A,
(A, ρ, G) is called a covariant system and one can form the covariance algebra
21 = W*(A, ρ, G). Takesaki showed in [8] that if G is abelian there is a natural
covariant system (21, τ, G") over the dual group G" and that W*(% τ, G*) =
A®&(L2(G)\ i.e. the tensorproduct of A with the algebra of all bounded operators
on L\G).

For a non-abelian G there is no dual group to act on the covariance algebra
21 = w*(A, ρ, G), but this author showed in [2] that the natural structure on 21
corresponding to the action of a dual group is that of a if (G)-comodule. There
one used that JSf (G), the von Neumann algebra generated by the left regular re-
presentation of G is a Hopf-von Neumann algebra, cf. [7].

So if A is a von Neumann algebra, what seems to correspond to a covariant
system on A over GΛ if G is abelian is that of a if(G)-comodule structure on A.
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Given such a comodule we shall define a corresponding dual covariance algebra 31,
and it turns out that there is a natural covariant system (3ί, ρ, G) over 31. In
Theorem 1 we characterize those covariant systems (31, ρ, G) which come from
j£?(G)-comodules, this is a dual version of Theorem 1 in [2].

Since the covariance algebra 31 of a covariant system is a <^?(G)-comodule
it is natural to ask what the dual covariance algebra of 3ϊ is, furthermore if 31 is
the dual covariance algebra of a JS?(G)-comodule and (31, ρ, G) the corresponding
covariant system one wants to know what the covariance algebra of (31, ρ, G) is.
The answers to these two questions are given in Theorems 2 and 3 and are natural
generalizations of Takesaki's result ([8, Theorem 4.5]) mentioned above.

Finally as an application of Theorem 1 in [2] and Theorem 1 in this article
we prove that

(a) the commutant of a covariance algebra over G is itself a covariance algebra
over G, and

(b) the commutant of a dual covariance algebra over G is itself a dual covariance
algebra over G.

Digernes has proved (a) by other methods in [1].
Roberts has given a different, but related definition of an action of the dual

of a group on a von Neumann algebra in [5]. His dual objects are sets of representa-
tions of G, while we in this article exploit the duality between the Hopf-von Neu-
mann algebras J^(G) and L™(G) developed in [7].

A similar notion of dual action has been given by Nakagami, [3 and 4]. His
main tool is a very interesting sort of Fourier analysis on the Hopf-von Neumann
algebra &(G) [or rather i?(G)'].

The author wants to thank Professor M. Takesaki for making him aware of Nakagami's work.
In the final stage of this work the author also received a preprint [6] by S. Stratila, D. Voiculescu
and L. Zsidό announcing the same results.

§ 2. Duality for Dual Crossed Products

If G is a locally compact group we shall always equip G with a left invariant Haar-
measure, usually denoted dx. Δ is the modular function on G. The spaces LP(G)
with norm || \\p ( l ^ p ^ o o ) are always with respect to this measure. C00(G) is the
space of all continuous complex valued functions on G with compact support.
££(G) is the von Neumann algebra generated by the left regular representation
of G, and for xeG we shall denote with x also the corresponding element of
if (G), i.e.

(xf)(y)=f(x-1y) for x,yeGJeL2(G). (1)

is generated by {v(x)\xeG} where

= Λ(x)1/2f(yx) for x,yeGJeL2(G). (2)

If φeL°°(G), we shall also denote with φ the corresponding operator on L2(G), i.e.

(φf)(x) = φ(x)f(x) for φeL«>(G)JeL2(G). (3)

If H is a Hubert space, 0&{H) is the von Neumann algebra of all bounded operators
on H.
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If WG is the unitary operator over L\G x G) defined by

WGf{s,t)=f{s,st) for s,teGJeL2(GxG), (4)

we can define a normal isomorphism δG:J£(G)-+J£{G)®J£(G) by

δG{a)=W%{a®I)WG for αeJ^(G). (5)

A(G) = ̂ (G)^ = the predual of ^(G) is an algebra under the multiplication
defined by

aβ(a) = (a®β){δG(a)) for ae&(G)9a,βeA(G). (6)

In fact A(G) will be a commutative semi-simple Banach *-algebra and is usually
called the Fourier-algebra of G, cf. [7, § 2]. For any unexplained definitions and
notations concerning von Neumann algebras and covariant systems we refer
to [2].

Suppose now A is a von Neumann algebra realized over some Hubert space
Ho. If we have a normal isomorphism δ:A-*A®Jίf(G) satisfying

(δ®ΐ)δ = (i®δG)δ (7)

we shall call the pair (A, δ) a J£(G)-comodule, and we say that δ is a dual action
of G on A. (Note that if G is abelian (7) will in fact define a covariant system for A
and GΛ, cf. [4, Theorem 2.1].) As noted in [2] a comodule (̂ 4, δ) will make the
predual A^ of A into an ^4(G)-module if we define

φa(a) = (φ®a)(δ(a)) for φeA^., aeA(G\ aeA . (8)

Definition. Let 2ί=W*(;4, <5, G) be the von Neumann algebra generated by
ό(/ί)u/®LGO(G) over H = L2(G, H0)^H0®L2(G). 21 is called the dwα/ covariance
algebra of (A, δ) and does not depend on the Hubert space Ho on which A is
represented.

Let μ:Z,°°(G)->2I be the normal isomorphism defined by μ{f) = I®f. We can
define a σ-continuous automorphic representation ρ of G on 21 by the formula

x" 1)) for xeG,αe2ϊ . (9)

Then ρx(δ(a)) = δ(a) for aeA and ρ x(μ(/))-μ(/ x) for feL">(G) where

(10)

So we have that ρ*(2I) = 21, and (21, ρ, G) is in fact a covariant system.
Therefore if 31= W*(A9 δ, G) is the dual covariance algebra of a i?(G)-comodule

{A,δ) we can define a σ-continuous automorphic representation ρ:G-»Aut(2I)
and a normal isomorphism μ:LGO(G)-^2ί such that

for feL™{G\xeG. (11)

Our main result is that this property in fact characterizes such dual covariance
algebras:

Theorem 1. Given a von Neumann algebra 21 and a locally compact group G, then
21 is the dual covariance algebra of some ^(G)-comodule (A, δ) if and only if there
is a σ-continuous automorphic representation ρofG over 21 and a normal isomorphism
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μ of L™{G) into 91 such that

QMf)) = μ(fx) for feL™{G\xeG. (11)

(A, δ) are uniquely determined up to isomorphisms by

A^{ae<Ά\ρx(a) = a for all xeG} (12)

and

®gy=$(aμ(ft)ξ, μ(gt)η>dt (13)

for aeA, ξ9 ηeH, f ge C00(G\ if 91 is considered as a von Neumann algebra over a
Hilbert space H.

The first step is to prove the uniqueness above, in fact we shall prove:

Lemma 1. // 91 = W*(A, δ, G) and ρ is defined by (9), then

δ(A)={ae<Ά\ρx(a) = a for all xeG}. (14)

Proof Let B be the right hand side of (14), so B = %n{l®@{G))'. Obviously
δ(A)CB. Since δ{A)CA®&{G) we have

A'®m{G)Cδ(A)'. (15)

Let W = I®WG, so W is a unitary operator over H®L2(G)^H0®L2(GxG).
Then

W*(δ(A) ®I)W = (i® δG)δ(A) =

So δ(A)'®0t(G)cW*(δ(Ay®@{L2(G))W. Since We(I®I®@(G))\ this implies
that W(δ(A)'®I)W* C δ(A)f ® if(G). Therefore we can define a normal isomorphism
δf\δ{A)f-+δ{A)'®£>{G) by

δ'{ά)=W(a®I)W* for aeδ(A)f. (16)

By (15) I®v{x)Gδ{A)f for xeG, and

δf(I®v(x)) = I®v{x)®x for xeG. (17)

We next want to prove that (δf ® i)δ' = (i ® δG)δ'. If we extend the definition
of δ' to all elements in 08(H) using the same formula (16), it will suffice to prove that

(δ'®i)δ'(a®f v(x)) = (i®δG)δ'(a®f.v(x)) (18)

for all ae@(H0% /eL°°(G), xe G, since elements of this form is a total set in
Now if we use (17) and that Wei^L^G)®!)' we have

δ'{a®f -v{x)) = W{a®f -v(x)®I)W* = a®f v(x)®x .

So the left hand side of (18) equals

(δf ® i)(a ®f v(x) ®χ) = a ®f v(x) ®x®x = a®f v(x) ® δG(x)

= (i®δG)(a®f v(x)®x) = ήght hand side of (18).
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This means that (δ{Λ)\ δ') is a ^(G)-comodule and that the map 7® v: G-*δ(A)'
is such that the triple (δ(A)\ 7® v, δ') satisfies the assumptions of [2, Theorem 1]
so we have in particular that

(19)

where

C={ceδ(A)'\W(c®I)W* = c®I}. (20)

Now in order to prove that δ(A) = B it suffices to show that δ(A)f C B\ i.e. that
. Obviously I®@t(G)CBr, so we must show that CcB'. Since

, it suffices to show that

Γ = (5μ)/n(7®L00(G))/, i.e. that Cc(7®LG 0(G))/.

This follows from observing that if ceC, then

= (/®L00(G)®LQ0(G))/. (21)

So ce(/®L°°(G))', in fact C = δ(A)'n(I®Lco(G))'. This proves the lemma.
We have now proved that if we start with a if(G)-comodule (A, δ) and 21 =

W*(A, £, G) we recover (A, δ) or rather the isomorphic comodule (δ(A)9δ®ί) as
follows: δ(A)={aG(Sί\ρx(a) = a for all xeG}. That (5®i then in fact is given by the
formula (13) follows from:

Lemma 2. If ae J*(77O)® jSf(G), /, #eC 0 0(G), & ηeL2(G, 77O) w^ ftαi e ί/zαί

Proof. It suffices to prove this for a = b®x with be£${H0), xeG, since both sides
define bounded normal linear functional on

= ί ί <b(μ(fMx ~ % (μ(gt)η)(s)>dsdt

Let us now turn to the second part of Theorem 1, so suppose we have a von
Neumann algebra 21 over a Hubert space 77, ρ:G^Aut(2I) and μ\Lco(G)^ςΆ as
in Theorem 1. We want to prove that 2ϊ^py*(v4, δ, G) where (y4, <5) is defined
by (12) and (13). Let

9I0= {ae^llK^O, \φooχ(a*a)dx^K\\φ\\ for all φe9ί+}.

Then 2I2Ioc2Io and S l ^ t h e ^-algebra generated by 2ίg$ί0 is a *-subalgebra
ofSΪ.

Lemma 3. 9I0 and SΆί are both σ-dense in 9Ϊ.

Proof. Since there is a net / ί eC 0 0 (G) such that μ(fi)-^I in the σ-topology and
since 9ί0 is a left ideal in 21, it suffices to prove that μ(/)e2ϊ 0 for all /eC 0 0 (G).
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If φe9I+, φoμeL0 0(G)+sL1(G)+, so there is a function heLι(G)+ such that

φψ(f) = jf(χ)h(x)dx for all /eL c o(G).

If/eC 0 0(G) we therefore have:

W °QMf*f))dx = \φ Ψ((f*f)x)dx

= \\f{x)\2dx\h(y)dy=\\f\\2

2φ{l)= \\f\\

since there are no problems in changing the order of integration. So μ(/)e2ί0.
Now let Λ={ae<Ά\ρx(a) = a for all xeG} and define a positive linear map

p:9l1->y4 by requiring

φ(p(a))=$φoρχ(a)dx for all φe5I*. (22)

Note that we in Lemma 3 in fact proved that for fe C00(G)

P(μ(/*/))=ll/lll/ (23)

Lemma 4. A and μ(L°°(G)) generates 21.

Proof. Let ̂ [ A u μ ί L ^ G ) ) ] ' ' , we shall prove that 21 = Jf. It will by Lemma 3
suffice to show that each element of the form b = aμ(<x) is in J* for all αe2ϊ and
αeC00(G). So suppose such an element b = aμ(a) is given together with a φe?!^
and ε>0. Choose a compact neighbourhood 1/ of e in G such that

\φ(Qy(b)-b)\<ε for all 3,617.

Take another neighbourhood V oί e with V~1VcU and functions /,#eC 0 0 (G) +

with supports in V and such that

\f{y)dy = \g{χ-')dx=\. (24)

Take /z(y) = j/(x~1y)^(x~1)ίix, then h has support in (7 and \h(y)dy=l. Let

x/(j;) = /(x"1y) a n d define an element c by

c = \p\bμ{J)]μ{xg)dx

= J J ρy{a)μ(oty x / y ^ ) ^ d x . (25)

If X = support (α) we have that (tty'xfy'xg)(z) = a(zy)f(x~~1zy)g(x~1z)^O only if
1 and ye V~1V. So c is well-defined as a weak Bochner integral and ce J*.

J/(x" ^ f o ί x - ^Jdx = J/(χ- V ) ^ " x)dx = h(y)

for all ZGG, SO \μ{xfy xg)dx = h(y)L By changing the order of integration in (25)
we see that

c = $h(y)Qy(b)dy. (26)

Therefore

\φ(c-b)\ = \$h(y)φ(ρy(b)-b)dy\

ύ \h{y)\φ{ρy{b)-b)\dy^\h{y)dy = E.
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So 2Iμ(C0 0(G))C^, thus Si is σ-dense in Sϊ, and 21 = Si.
We now want to make A into a j^(G)-comodule and for ae'ϋ we shall define

an element δ(a) of ̂ (L2(G, H)) by

,η ® g> = f <Qt(a)μ(ft)ξ, μfat)η>dt (27)

Note that for α e ^ the definitions (27) and (13) agree. First let us check that
(27) really defines a bounded operator. If ae% {/'}?= !CCOo(G) and {^}J=1

we have by (23) that

ί ||Σ β^M/ί)^' fdtύ \\a\\2 Σ <tif\)?> μ(fί)ξj>dt
II i II i,j

So (27) really defines δ(a) as a bounded operator over L2(G, H).
Obviously (5(α)e2I® J*(L2(G)) for αe9I. Furthermore, if αe9ί

= A(x~') J
(28)

So ί ( ^ ) c 81 ®JS?(G).
If φeSI^, f,geC00(G) and /ze,4(G) is defined by h(x) = (x f,g} for

we have from (27) that

= (φ °Qx®h)(δ(a))

= J φ(μ(g *)*<*

for all α e Λ xeG. Thus <5(,4)c4®Jϊ?(G).
Now note that from (23) it follows that we can define a unitary operator U

over L2(G, Jtf) such that

U(ξ®f)(s) = μ(fs)ξ for ξeHJeCUG). (29)

If ρx is the normal isomorphism of 91 defined by

ρi(a)f(s) = Qs(a)f(s) for aeAJeL2(G,H),seG, (30)

we see from (27) that we have

δ{a)=U*Q1(a)U for αe8T, (31)

so δ is obviously a normal isomorphism.
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In order to show that (A, δ) is a i?(G)-comodule it now remains to show that
(δ®i)δ = (i®δG)δ. If aeA, ξ,ηeH,f,g,h, keC00(G) we have:

i)δ(a)(ξ ® f® g\

= $<δ(a)(μ(ft)ξ®glμ(ht)η®kydt

ft)ξ> μ(K'ht)η}dtds

), (/ ® kt)(η ® ft)> ώ

(Lemma 2)

η®h® k} .

We have now shown that (A, δ) is a ̂ f(G)-comodule, and in order to complete
the proof of Theorem 1 we shall show that δ defined in (27) is an isomorphism
between the covariant systems (2Ϊ, ρ, G) and (W*(A, δ, G), ρ~ G) where ρ~ is the
natural automorphic representation of G on W*(A, <5, G) defined by (9).

If we put an element μ(h) with heL^iG) into (27) we have from (23) that

(δ(μ(h))(ξ®n n®9> = <p(μ(g)*tih)tif))ξ,

Thus δ{μ{h)) = I®h and from Lemma 4 it follows that <5(2I)= PΓ*(A, (5, G). From
(28) it follows that

χ- 1)) = (5(ρJC(α)) for , ,

proving that the covariant systems (91, ρ, G) and (W*(A, <5, G), ρ~, G) are equivalent.

§3. The Bidual of a Covariant System and of a i?(G)-Comodule

We have now seen that a if(G)-comodule (A, δ) gives rise to a covariant system
(91, ρ, G) with 91= W*{A, δ, G). In [2] it was shown that a covariant system (A,ρ, G)
gives rise to a j2?(G)-comodule (91, δ) with 91= W*{A9 ρ, G). It is therefore natural
to ask what W*(W*(A, ρ, G), (5, G) and W*(W*(A9 δ, G), ρ, G) are. It should come
as no surprise that both are isomorphic to A®g%(L2(G)\ & fact which was proved
for an abelian G in [8].

Theorem 2. Given a covariant system {A, ρ, G) let (91, δ) be the 5£(G)-comoάu\e
defined in [2, Chapter 2], i.e. 9t=W%4,ρ, G) and δ(a)= »F*(®J)W 77
P ^ * ( 9 I δ G ) ^ ® ^ ( L 2 ( G ) )

Proof. Suppose A acts on a Hubert space i70 and let ρ ~be the faithful representation
of A on H = L2(G, Ho) given by

for aeAJeH9seG. (32)
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Then 9 1 - [ρX4)u/® JSf(G)]" and <5(2I) is generated by ρ~(A)® 7u{7® x® x|xeG}.
So PF*(2I, <3, G) is generated over L2(G x G, 77O) by

u

Let ρ°: G->Autρ~(,4) be given by

ρ°x(a) = {I(g)x)a(I®χ-1) for xeG,aeρ\A). (33)

The covariant systems (ρ~(A),ρ°,G) and (A, ρ, G) are then equivalent. From
[2, Proposition 2.2] it follows that

ρ!4)®^(L2(G)) = [^*(ρ~μ), ρ°, G)u7®7®L°°(G)]" (34)

Let [/ be the unitary operator over L2(G x G, iί 0) defined by

Ufis9t)=f{Γ\t). (35)

Then

^*(ρ \A\ ρ°, G) = [C/*(ρ V ) ® 7) t/u/

So

Now ί/(7®7®x)L/* = 7®x®x for xeG, and L/G(7®7®L°°(G)y so

^®^(L 2 (G))^ρ~μ)® @{L\G))= U*W*(% δ,G)U,

which proves the theorem.

Theorem 3. Given a J£(G)-comodule {A, δ) let (2ί, ρ, G) be the covariant system
defined by 21= W*(,4, <5, G) and ρ as in (9). 77zen Pr*(2I? ρ, G)^A®@(L2(G)).

Proof. $l=W*(A9δ,G) is generated by δ(A)u(/®L°°(G)) over L2(G,77O) if we
consider y4 as a von Neumann algebra over 77O. 5 = W*(% ρ, G) is then generated
by F*(2l® 7)Fu7® 7® i?(G) where F is the unitary operator over L2{G x G, 77O)
defined by

. (36)

Define another unitary operator S by

2 - 1 ) (37)

then S*F*(7®φ®7)FS=PF(7®7®φ)PF* for φeL°°(G), and 5*(7®7®x)5 =
7®7®v(x) for xeG. Since FS and <5(.4)®7 commute we therefore have that

So if we can prove that

2 2 (38)
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the theorem is proved. (38) is equivalent to

I, (39)

i.e. that

W*(δ(A)'® £e{G))WcΛ{l®l®L™{G))' = δ(A)'® I. (40)

Let D=W(I®I®LCO(G))W* and E = (δ(Λ)f®^(G))nD/. Now define a map

G) = (ί®δG)(a) for aeE, (41)

where i is the identity automorphism of &{L2{G,H0)). Obviously δ"(δ(Ά)'®
and δ"{D) = D®U so (41) will in fact define a normal

isomorphism of E into E®^{G) which obviously satisfies (<5"(g)ί)<5" = (ί(g)<5G)<5".
I®v{x)®x=W{I®v{x)®I)W*eE and δ"{I®v(x)®x) = I®v{x)®x®xϊor xeG,
so again we can use Theorem 1 in [2] to conclude that E is generated by

F={aeE\δ"(a) = a®l} and {I®v(x)®x\xeG}.

Using the same argument as in (21) we have that

= (δ(A)'n(I®Lco{G))')®I=C®I

where C is as in (20). So the left hand side of (40) equals:

W*EW=W*iF\j{I®v{x)®x\xeG}JW

according to (19). So the formula (40) holds and the theorem is proved.

§4. The Commutant of a Covariance Algebra and of a Dual Covariance Algebra

Digernes proved in [1, Theorem 3.14] the following:

Theorem 4. Suppose A is a von Neumann algebra over a Hilbert space H and that
U is a continuous unitary representation on H of the locally compact group G such
that

ρx(a)=UxaUx-ieA for all xeG,aeA.

Let the covariance algebra (Ά= W*(A, ρ, G) act on L2(G, H) as usual Then 91' is
generated by Af®I and {UX®V(X)\XGG}, and in fact 31 '^ W*{A\ ρ', G) where
ρ': G-> A u t ( O is defined by

ρx(a)=UxaUx-ί for aeA'. (42)

We shall first give an alternate proof of this theorem using [2, Theorem 1]
and then state and prove a similar result for the dual covariance algebra of a
J*?(G)-comodule.
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Proof of Theorem 4. Let 9Ϊ= W*(A, ρ, G) as defined in [2], then

W(W ® Ϊ)W* C 2Γ ® JS?(G),

cf. the first part of the proof of Lemma 1, and it is straight forward to check that

UX®V(X)EW for xeG.

Defining the map δ' as in (16), i.e.

,δ\a) = W(a® I)W* for αe2Γ

we have that δf(Ux®v(x))=Ux®v(x)®x and that ((S'®0<S' = (J®<5G)<S', s o a s i n

Lemma 1 we can use [2, Theorem 1] to conclude that 2Γ is generated by

Cv{Ux®v(x)\xeG}

where

For C we can use the same argument as in (21) to conclude that C=3I'n(/®L00(G))/,
so C=A®I according to [2, Proposition 2.2].

So W = IA'®Iκj{Ux(g)v(x)\xeG}Y as stated, furthermore, Theorem 1 of [2]
also gives us that 91' ̂  W*(A\ ρ\ G).

The dual version of Theorem 4 is the following:

Theorem 5. Suppose (A,δ) is a ^(G)-comodule and let W=W*(δ(A)9δ®i9G) be
the covariance algebra of the equivalent comodule {δ(A), δ ® ΐ). Then

SO! - [δ(A)' ® /u 1^*(J ® / ® L"(G))W]" (43)

α ί̂i 2Γ is isomorphic to the covariance algebra of the £?(G)-comodule (δ(A)\ δf)
where δ' is defined by

δ'{a)=W(a<g)I)W* for aeδ{A)'. (44)

Proof. SΆ=lW^{δ{A)®I)WκjI®I®Lco{G)J. {I®l®v{x))W{I®I®v{x~ι)) = W
and if we define μ L^G)-*?!' by

μ(f)=W*(I®I®f)W for feL°{G)

we see that with ρ as in (9), Theorem 1 is satisfied so 91' is generated by μ(L°°(G))
and SΓn(/®/® v(G));. From (40) we have that

This proves (43). Furthermore

= W*(δ(A)',δ\G)

where δ' is defined by (44). It was proved in Lemma 1 that (δ(A)\ δf) really is a
i?(G)-comodule.




