Commun. math. Phys. 52, 191-202 (1977)

Duality for Dual Covariance Algebras

Magnus B. Landstad

Matematisk Institutt, Universitetet i Trondheim, Norges Laererhøgskole, N-7000 Trondheim, Norway

Abstract. One way of generalizing the definition of an action of the dual group of a locally compact abelian group on a von Neumann algebra to nonabelian groups is to consider $\mathscr{L}(G)$ -comodules, where $\mathscr{L}(G)$ is the Hopfvon Neumann algebra generated by the left regular representation of G. To a $\mathscr{L}(G)$ -comodule we shall associate a dual covariance algebra \mathfrak{A} and a natural covariant system $(\mathfrak{A}, \varrho, G)$, and in Theorem 1 the covariant systems coming from $\mathscr{L}(G)$ -comodules are characterized. In [2] it was shown that the covariance algebra of a covariant system in a natural way is a $\mathscr{L}(G)$ -comodule. Therefore one can form the dual covariance algebra of a covariance algebra and the covariance algebra of a dual covariance algebra. Theorems 2 and 3 deal with these algebras – generalizing a result by Takesaki. As an application we give a new proof of a theorem by Digernes stating that the commutant of a covariance algebra itself is a covariance algebra and prove the similar result for dual covariance algebras.

§1. Introduction

If G is a locally compact group and $\varrho: G \to \operatorname{Aut}(A)$ is a continuous homomorphism of G into the group of *-automorphisms of a von Neumann algebra A, (A, ϱ, G) is called a covariant system and one can form the covariance algebra $\mathfrak{A} = W^*(A, \varrho, G)$. Takesaki showed in [8] that if G is abelian there is a natural covariant system $(\mathfrak{A}, \tau, G^{\uparrow})$ over the dual group G^{\uparrow} and that $W^*(\mathfrak{A}, \tau, G^{\uparrow}) \cong$ $A \otimes \mathscr{B}(L^2(G))$, i.e. the tensorproduct of A with the algebra of all bounded operators on $L^2(G)$.

For a non-abelian G there is no dual group to act on the covariance algebra $\mathfrak{A} = W^*(A, \varrho, G)$, but this author showed in [2] that the natural structure on \mathfrak{A} corresponding to the action of a dual group is that of a $\mathscr{L}(G)$ -comodule. There one used that $\mathscr{L}(G)$, the von Neumann algebra generated by the left regular representation of G is a Hopf-von Neumann algebra, cf. [7].

So if A is a von Neumann algebra, what seems to correspond to a covariant system on A over G^{-} if G is abelian is that of a $\mathcal{L}(G)$ -comodule structure on A.

Given such a comodule we shall define a corresponding dual covariance algebra \mathfrak{A} , and it turns out that there is a natural covariant system $(\mathfrak{A}, \varrho, G)$ over \mathfrak{A} . In Theorem 1 we characterize those covariant systems $(\mathfrak{A}, \varrho, G)$ which come from $\mathscr{L}(G)$ -comodules, this is a dual version of Theorem 1 in [2].

Since the covariance algebra \mathfrak{A} of a covariant system is a $\mathscr{L}(G)$ -comodule it is natural to ask what the dual covariance algebra of \mathfrak{A} is, furthermore if \mathfrak{A} is the dual covariance algebra of a $\mathscr{L}(G)$ -comodule and $(\mathfrak{A}, \varrho, G)$ the corresponding covariant system one wants to know what the covariance algebra of $(\mathfrak{A}, \varrho, G)$ is. The answers to these two questions are given in Theorems 2 and 3 and are natural generalizations of Takesaki's result ([8, Theorem 4.5]) mentioned above.

Finally as an application of Theorem 1 in [2] and Theorem 1 in this article we prove that

(a) the commutant of a covariance algebra over G is itself a covariance algebra over G, and

(b) the commutant of a dual covariance algebra over G is itself a dual covariance algebra over G.

Digernes has proved (a) by other methods in [1].

Roberts has given a different, but related definition of an action of the dual of a group on a von Neumann algebra in [5]. His dual objects are sets of representations of G, while we in this article exploit the duality between the Hopf-von Neumann algebras $\mathscr{L}(G)$ and $L^{\infty}(G)$ developed in [7].

A similar notion of dual action has been given by Nakagami, [3 and 4]. His main tool is a very interesting sort of Fourier analysis on the Hopf-von Neumann algebra $\mathcal{L}(G)$ [or rather $\mathcal{L}(G)$].

The author wants to thank Professor M. Takesaki for making him aware of Nakagami's work. In the final stage of this work the author also received a preprint [6] by S. Strătilă, D. Voiculescu and L. Zsidó announcing the same results.

§2. Duality for Dual Crossed Products

If G is a locally compact group we shall always equip G with a left invariant Haarmeasure, usually denoted dx. Δ is the modular function on G. The spaces $L^p(G)$ with norm $\|\|_p (1 \le p \le \infty)$ are always with respect to this measure. $C_{00}(G)$ is the space of all continuous complex valued functions on G with compact support. $\mathscr{L}(G)$ is the von Neumann algebra generated by the left regular representation of G, and for $x \in G$ we shall denote with x also the corresponding element of $\mathscr{L}(G)$, i.e.

$$(xf)(y) = f(x^{-1}y)$$
 for $x, y \in G, f \in L^2(G)$. (1)

 $\mathscr{R}(G) = \mathscr{L}(G)'$ is generated by $\{v(x) | x \in G\}$ where

$$(v(x)f)(y) = \Delta(x)^{1/2} f(yx)$$
 for $x, y \in G, f \in L^2(G)$. (2)

If $\varphi \in L^{\infty}(G)$, we shall also denote with φ the corresponding operator on $L^{2}(G)$, i.e.

$$(\varphi f)(x) = \varphi(x)f(x) \quad \text{for} \quad \varphi \in L^{\infty}(G), f \in L^{2}(G).$$
(3)

If H is a Hilbert space, $\mathscr{B}(H)$ is the von Neumann algebra of all bounded operators on H.

If W_G is the unitary operator over $L^2(G \times G)$ defined by

$$W_G f(s,t) = f(s,st) \quad \text{for} \quad s, t \in G, f \in L^2(G \times G),$$
(4)

we can define a normal isomorphism $\delta_G: \mathscr{L}(G) \to \mathscr{L}(G) \otimes \mathscr{L}(G)$ by

$$\delta_G(a) = W^*_G(a \otimes I) W_G \quad \text{for} \quad a \in \mathscr{L}(G) \,. \tag{5}$$

 $A(G) = \mathcal{L}(G)_*$ = the predual of $\mathcal{L}(G)$ is an algebra under the multiplication defined by

$$\alpha\beta(a) = (\alpha \otimes \beta)(\delta_G(a)) \quad \text{for} \quad a \in \mathscr{L}(G), \, \alpha, \, \beta \in A(G) \,.$$
(6)

In fact A(G) will be a commutative semi-simple Banach *-algebra and is usually called the Fourier-algebra of G, cf. [7, § 2]. For any unexplained definitions and notations concerning von Neumann algebras and covariant systems we refer to [2].

Suppose now A is a von Neumann algebra realized over some Hilbert space H_0 . If we have a normal isomorphism $\delta: A \to A \otimes \mathscr{L}(G)$ satisfying

$$(\delta \otimes i)\delta = (i \otimes \delta_G)\delta \tag{7}$$

we shall call the pair (A, δ) a $\mathcal{L}(G)$ -comodule, and we say that δ is a dual action of G on A. (Note that if G is abelian (7) will in fact define a covariant system for A and G², cf. [4, Theorem 2.1].) As noted in [2] a comodule (A, δ) will make the predual A_* of A into an A(G)-module if we define

$$\varphi \alpha(a) = (\varphi \otimes \alpha)(\delta(a)) \quad \text{for} \quad \varphi \in A_*, \, \alpha \in A(G), \, a \in A \,.$$
(8)

Definition. Let $\mathfrak{A} = W^*(A, \delta, G)$ be the von Neumann algebra generated by $\delta(A) \cup I \otimes L^{\infty}(G)$ over $H = L^2(G, H_0) \cong H_0 \otimes L^2(G)$. \mathfrak{A} is called the *dual covariance algebra of* (A, δ) and does not depend on the Hilbert space H_0 on which A is represented.

Let $\mu: L^{\infty}(G) \to \mathfrak{A}$ be the normal isomorphism defined by $\mu(f) = I \otimes f$. We can define a σ -continuous automorphic representation ϱ of G on \mathfrak{A} by the formula

$$\varrho_x(a) = (I \otimes v(x))a(I \otimes v(x^{-1})) \quad \text{for} \quad x \in G, a \in \mathfrak{A} .$$
(9)

Then $\varrho_x(\delta(a)) = \delta(a)$ for $a \in A$ and $\varrho_x(\mu(f)) = \mu(f_x)$ for $f \in L^{\infty}(G)$ where

$$f_x(y) = f(yx). \tag{10}$$

So we have that $\varrho_x(\mathfrak{A}) = \mathfrak{A}$, and $(\mathfrak{A}, \varrho, G)$ is in fact a covariant system.

Therefore if $\mathfrak{A} = W^*(A, \delta, G)$ is the dual covariance algebra of a $\mathscr{L}(G)$ -comodule (A, δ) we can define a σ -continuous automorphic representation $\varrho: G \to \operatorname{Aut}(\mathfrak{A})$ and a normal isomorphism $\mu: L^{\infty}(G) \to \mathfrak{A}$ such that

$$\varrho_x(\mu(f)) = \mu(f_x) \quad \text{for} \quad f \in L^\infty(G), \, x \in G \,. \tag{11}$$

Our main result is that this property in fact characterizes such dual covariance algebras:

Theorem 1. Given a von Neumann algebra \mathfrak{A} and a locally compact group G, then \mathfrak{A} is the dual covariance algebra of some $\mathscr{L}(G)$ -comodule (A, δ) if and only if there is a σ -continuous automorphic representation ϱ of G over \mathfrak{A} and a normal isomorphism

 μ of $L^{\infty}(G)$ into \mathfrak{A} such that

$$\varrho_x(\mu(f)) = \mu(f_x) \quad \text{for} \quad f \in L^\infty(G), \, x \in G \,. \tag{11}$$

 (A, δ) are uniquely determined up to isomorphisms by

$$A \cong \{a \in \mathfrak{A} | \varrho_x(a) = a \quad \text{for all} \quad x \in G\}$$

$$\tag{12}$$

and

$$\langle \delta(a)(\xi \otimes f), \eta \otimes g \rangle = \int \langle a\mu(f_t)\xi, \mu(g_t)\eta \rangle dt \tag{13}$$

for $a \in A$, $\xi, \eta \in H$, $f, g \in C_{00}(G)$, if \mathfrak{A} is considered as a von Neumann algebra over a Hilbert space H.

The first step is to prove the uniqueness above, in fact we shall prove:

Lemma 1. If $\mathfrak{A} = W^*(A, \delta, G)$ and ϱ is defined by (9), then

$$\delta(A) = \{ a \in \mathfrak{A} | \varrho_x(a) = a \quad \text{for all} \quad x \in G \}.$$
(14)

Proof. Let B be the right hand side of (14), so $B = \mathfrak{A} \cap (I \otimes \mathscr{R}(G))'$. Obviously $\delta(A) \in B$. Since $\delta(A) \in A \otimes \mathscr{L}(G)$ we have

$$A' \otimes \mathscr{R}(G) \subset \delta(A)' . \tag{15}$$

Let $W = I \otimes W_G$, so W is a unitary operator over $H \otimes L^2(G) \cong H_0 \otimes L^2(G \times G)$. Then

 $W^*(\delta(A) \otimes I)W = (i \otimes \delta_G)\delta(A) = (\delta \otimes i)\delta(A)$

 $\subset (\delta \otimes i)(A \otimes \mathscr{L}(G)).$

So $\delta(A)' \otimes \mathcal{R}(G) \subset W^*(\delta(A)' \otimes \mathcal{R}(L^2(G))W$. Since $W \in (I \otimes I \otimes \mathcal{R}(G))'$, this implies that $W(\delta(A)' \otimes I)W^* \subset \delta(A)' \otimes \mathcal{L}(G)$. Therefore we can define a normal isomorphism $\delta' : \delta(A)' \to \delta(A)' \otimes \mathcal{L}(G)$ by

$$\delta'(a) = W(a \otimes I)W^* \quad \text{for} \quad a \in \delta(A)' \,. \tag{16}$$

By (15) $I \otimes v(x) \in \delta(A)'$ for $x \in G$, and

 $\delta'(I \otimes v(x)) = I \otimes v(x) \otimes x \quad \text{for} \quad x \in G.$ (17)

We next want to prove that $(\delta' \otimes i)\delta' = (i \otimes \delta_G)\delta'$. If we extend the definition of δ' to all elements in $\mathcal{B}(H)$ using the same formula (16), it will suffice to prove that

$$(\delta' \otimes i)\delta'(a \otimes f \cdot v(x)) = (i \otimes \delta_G)\delta'(a \otimes f \cdot v(x))$$
⁽¹⁸⁾

for all $a \in \mathscr{B}(H_0)$, $f \in L^{\infty}(G)$, $x \in G$, since elements of this form is a total set in $\mathscr{B}(H)$. Now if we use (17) and that $W \in (I \otimes L^{\infty}(G) \otimes I)'$ we have

$$\delta'(a \otimes f \cdot v(x)) = W(a \otimes f \cdot v(x) \otimes I)W^* = a \otimes f \cdot v(x) \otimes x .$$

So the left hand side of (18) equals

$$(\delta' \otimes i)(a \otimes f \cdot v(x) \otimes x) = a \otimes f \cdot v(x) \otimes x \otimes x = a \otimes f \cdot v(x) \otimes \delta_G(x)$$

 $=(i \otimes \delta_G)(a \otimes f \cdot v(x) \otimes x) =$ right hand side of (18).

194

This means that $(\delta(A)', \delta')$ is a $\mathscr{L}(G)$ -comodule and that the map $I \otimes v : G \to \delta(A)'$ is such that the triple $(\delta(A)', I \otimes v, \delta')$ satisfies the assumptions of [2, Theorem 1] so we have in particular that

$$\delta(A)' = [C \cup I \otimes \mathscr{R}(G)]'' \tag{19}$$

where

$$C = \{c \in \delta(A)' | W(c \otimes I)W^* = c \otimes I\}.$$
(20)

Now in order to prove that $\delta(A) = B$ it suffices to show that $\delta(A)' \subset B'$, i.e. that $C \cup I \otimes \mathscr{R}(G) \subset B'$. Obviously $I \otimes \mathscr{R}(G) \subset B'$, so we must show that $C \subset B'$. Since $\mathfrak{U}' \subset B'$, it suffices to show that

$$C \subset \mathfrak{A}' = \delta(A)' \cap (I \otimes L^{\infty}(G))'$$
, i.e. that $C \subset (I \otimes L^{\infty}(G))'$.

This follows from observing that if $c \in C$, then

$$c \otimes I = W(c \otimes I)W^* \in W(I \otimes I \otimes L^{\infty}(G))'W^* \cap (I \otimes I \otimes L^{\infty}(G))'$$
$$= (I \otimes L^{\infty}(G) \otimes L^{\infty}(G))'.$$
(21)

So $c \in (I \otimes L^{\infty}(G))'$, in fact $C = \delta(A)' \cap (I \otimes L^{\infty}(G))'$. This proves the lemma.

We have now proved that if we start with a $\mathscr{L}(G)$ -comodule (A, δ) and $\mathfrak{A} = W^*(A, \delta, G)$ we recover (A, δ) or rather the isomorphic comodule $(\delta(A), \delta \otimes i)$ as follows: $\delta(A) = \{a \in \mathfrak{A} | \varrho_x(a) = a \text{ for all } x \in G\}$. That $\delta \otimes i$ then in fact is given by the formula (13) follows from:

Lemma 2. If $a \in \mathscr{B}(H_0) \otimes \mathscr{L}(G)$, $f, g \in C_{00}(G)$, $\xi, \eta \in L^2(G, H_0)$ we have that

 $\langle W^*(a \otimes I)W(\xi \otimes f), \eta \otimes g \rangle = \int \langle a\mu(f_t)\xi, \mu(g_t)\eta \rangle dt$.

Proof. It suffices to prove this for $a=b\otimes x$ with $b\in \mathscr{B}(H_0)$, $x\in G$, since both sides define bounded normal linear functionals on $\mathscr{B}(H)$.

$$\langle W^*(b \otimes x \otimes I)W(\xi \otimes f), \eta \otimes g \rangle = \langle (b \otimes x \otimes x)(\xi \otimes f), \eta \otimes g \rangle$$

= $\langle xf, g \rangle \langle (b \otimes x)\xi, \eta \rangle = \int \int f(x^{-1}t)\overline{g(t)} \langle b\xi(x^{-1}s), \eta(s) \rangle dt ds$
= $\int \int f(x^{-1}st)\overline{g(st)} \langle b\xi(x^{-1}s), \eta(s) \rangle ds dt$
= $\int \int \langle b(\mu(f_t)\xi)(x^{-1}s), (\mu(g_t)\eta)(s) \rangle ds dt$
= $\int \langle (b \otimes x)\mu(f_t)\xi, \mu(g_t)\eta \rangle dt .$

Let us now turn to the second part of Theorem 1, so suppose we have a von Neumann algebra \mathfrak{A} over a Hilbert space $H, \varrho: G \to \operatorname{Aut}(\mathfrak{A})$ and $\mu: L^{\infty}(G) \to \mathfrak{A}$ as in Theorem 1. We want to prove that $\mathfrak{A} \cong W^*(A, \delta, G)$ where (A, δ) is defined by (12) and (13). Let

$$\mathfrak{A}_0 = \{a \in \mathfrak{A} \mid \exists K \ge 0, \int \varphi \circ \varrho_x(a^*a) dx \le K \|\varphi\| \quad \text{for all} \quad \varphi \in \mathfrak{A}_*^+ \}.$$

Then $\mathfrak{A}\mathfrak{A}_0 \subset \mathfrak{A}_0$ and $\mathfrak{A}_1 =$ the *-algebra generated by $\mathfrak{A}_0^*\mathfrak{A}_0$ is a *-subalgebra of \mathfrak{A} .

Lemma 3. \mathfrak{A}_0 and \mathfrak{A}_1 are both σ -dense in \mathfrak{A} .

Proof. Since there is a net $f_i \in C_{00}(G)$ such that $\mu(f_i) \to I$ in the σ -topology and since \mathfrak{A}_0 is a left ideal in \mathfrak{A} , it suffices to prove that $\mu(f) \in \mathfrak{A}_0$ for all $f \in C_{00}(G)$.

If $\varphi \in \mathfrak{A}^+_*$, $\varphi \circ \mu \in L^{\infty}(G)^+_* \cong L^1(G)^+$, so there is a function $h \in L^1(G)^+$ such that $\varphi \circ \mu(f) = \int f(x)h(x)dx$ for all $f \in L^{\infty}(G)$.

If $f \in C_{00}(G)$ we therefore have:

$$\begin{split} &\int \varphi \circ \varrho_x(\mu(f^*f)) dx = \int \varphi \circ \mu((f^*f)_x) dx \\ &= \int \int (f^*f)_x(y) h(y) dx dy = \int \int |f(yx)|^2 h(y) dx dy \\ &= \int |f(x)|^2 dx \int h(y) dy = \|f\|_2^2 \varphi(I) = \|f\|_2^2 \|\varphi\|, \end{split}$$

since there are no problems in changing the order of integration. So $\mu(f) \in \mathfrak{A}_0$.

Now let $A = \{a \in \mathfrak{A} | \varrho_x(a) = a \text{ for all } x \in G\}$ and define a positive linear map $p: \mathfrak{A}_1 \to A$ by requiring

$$\varphi(p(a)) = \int \varphi \, \varphi_x(a) dx \quad \text{for all} \quad \varphi \in \mathfrak{A}_* \,. \tag{22}$$

Note that we in Lemma 3 in fact proved that for $f \in C_{00}(G)$

$$p(\mu(f^*f)) = \|f\|_2^2 I.$$
(23)

Lemma 4. A and $\mu(L^{\infty}(G))$ generates \mathfrak{A} .

Proof. Let $\mathscr{B} = [A \cup \mu(L^{\infty}(G))]''$, we shall prove that $\mathfrak{A} = \mathscr{B}$. It will by Lemma 3 suffice to show that each element of the form $b = a\mu(\alpha)$ is in \mathscr{B} for all $a \in \mathfrak{A}$ and $\alpha \in C_{00}(G)$. So suppose such an element $b = a\mu(\alpha)$ is given together with a $\varphi \in \mathfrak{A}_*$ and $\varepsilon > 0$. Choose a compact neighbourhood U of e in G such that

 $|\varphi(\varrho_v(b)-b)| < \varepsilon$ for all $y \in U$.

Take another neighbourhood V of e with $V^{-1}V \in U$ and functions $f, g \in C_{00}(G)^+$ with supports in V and such that

$$\int f(y)dy = \int g(x^{-1})dx = 1.$$
(24)

Take $h(y) = \int f(x^{-1}y)g(x^{-1})dx$, then h has support in U and $\int h(y)dy = 1$. Let $_x f(y) = f(x^{-1}y)$ and define an element c by

$$c = \int p[b\mu(xf)] \mu(xg) dx$$

= $\int \int \varrho_y(a)\mu(\alpha_y \cdot x f_y \cdot xg) dy dx$. (25)

If K = support (a) we have that $(\alpha_y \cdot x f_y \cdot x g)(z) = \alpha(zy) f(x^{-1}zy)g(x^{-1}z) \neq 0$ only if $x \in KV^{-1}$ and $y \in V^{-1}V$. So c is well-defined as a weak Bochner integral and $c \in \mathcal{B}$.

$$\int f(x^{-1}zy)g(x^{-1}z)dx = \int f(x^{-1}y)g(x^{-1})dx = h(y)$$

for all $z \in G$, so $\int \mu({}_x f_y \cdot {}_x g) dx = h(y)I$. By changing the order of integration in (25) we see that

$$c = \int h(y)\varrho_{y}(b)dy \,. \tag{26}$$

Therefore

$$\begin{aligned} |\varphi(c-b)| &= |\int h(y)\varphi(\varrho_y(b)-b)dy| \\ &\leq \int_U h(y)|\varphi(\varrho_y(b)-b)|dy \leq \varepsilon \int h(y)dy = \varepsilon \,. \end{aligned}$$

So $\mathfrak{A}\mu(C_{00}(G)) \subset \mathscr{B}$, thus \mathscr{B} is σ -dense in \mathfrak{A} , and $\mathfrak{A} = \mathscr{B}$.

We now want to make A into a $\mathscr{L}(G)$ -comodule and for $a \in \mathfrak{A}$ we shall define an element $\delta(a)$ of $\mathscr{B}(L^2(G, H))$ by

$$\langle \delta(a)(\xi \otimes f), \eta \otimes g \rangle = \int \langle \varrho_t(a)\mu(f_t)\xi, \mu(g_t)\eta \rangle dt$$
(27)

for $\xi, \eta \in H, f, g \in C_{00}(G)$.

Note that for $a \in A$ the definitions (27) and (13) agree. First let us check that (27) really defines a bounded operator. If $a \in \mathfrak{A}$, $\{f^i\}_{i=1}^n \subset C_{00}(G)$ and $\{\xi^i\}_{i=1}^n \subset H$ we have by (23) that

$$\begin{split} &\int \left\|\sum_{i} \varrho_{t}(a) \mu(f_{i}^{i}) \xi^{i}\right\|^{2} dt \leq \|a\|^{2} \sum_{i,j} \langle \mu(f_{i}^{i}) \xi^{i}, \mu(f_{j}^{j}) \xi^{j} \rangle dt \\ &= \|a\|^{2} \sum_{i,j} \langle f^{i}, f^{j} \rangle \langle \xi^{i}, \xi^{j} \rangle = \|a\|^{2} \left\|\sum_{i} f^{i} \otimes \xi^{i}\right\|^{2}. \end{split}$$

So (27) really defines $\delta(a)$ as a bounded operator over $L^2(G, H)$. Obviously $\delta(a) \in \mathfrak{A} \otimes \mathscr{B}(L^2(G))$ for $a \in \mathfrak{A}$. Furthermore, if $a \in \mathfrak{A}$

$$\langle (I \otimes v(x)\delta(a)(I \otimes v(x^{-1}))(\xi \otimes f), \eta \otimes g \rangle = \langle \delta(a)(\xi \otimes v(x^{-1})f), \eta \otimes v(x^{-1})g \rangle = \Delta(x^{-1}) \int \langle \varrho_t(a)\mu(f_{tx^{-1}})\xi, \mu(g_{tx^{-1}})\eta \rangle dt = \langle \delta(\varrho_x(a))(\xi \otimes f), \eta \otimes g \rangle.$$
 (28)

So $\delta(A) \in \mathfrak{A} \otimes \mathscr{L}(G)$.

If $\varphi \in \mathfrak{A}_*$, $f, g \in C_{00}(G)$ and $h \in A(G)$ is defined by $h(x) = \langle x \cdot f, g \rangle$ for $x \in \mathscr{L}(G)$ we have from (27) that

$$\begin{aligned} (\varphi \otimes h) &\circ (\varrho_x \otimes i)(\delta(a)) = (\varphi \circ \varrho_x \otimes h)(\delta(a)) \\ &= \int \varphi \circ \varrho_x(\mu(g_t)^* a\mu(f_t)) dt \\ &= \int \varphi(\mu(g_{xt})^* a\mu(f_{xt})) dt = (\varphi \otimes h)(\delta(a)) \end{aligned}$$

for all $a \in A$, $x \in G$. Thus $\delta(A) \subset A \otimes \mathscr{L}(G)$.

Now note that from (23) it follows that we can define a unitary operator U over $L^2(G, H)$ such that

$$U(\xi \otimes f)(s) = \mu(f_s)\xi \quad \text{for} \quad \xi \in H, f \in C_{00}(G).$$
⁽²⁹⁾

If ϱ_1 is the normal isomorphism of \mathfrak{A} defined by

$$\varrho_1(a)f(s) = \varrho_s(a)f(s) \text{ for } a \in A, f \in L^2(G, H), s \in G,$$
(30)

we see from (27) that we have

$$\delta(a) = U^* \varrho_1(a) U \quad \text{for} \quad a \in \mathfrak{A} , \tag{31}$$

so δ is obviously a normal isomorphism.

In order to show that (A, δ) is a $\mathscr{L}(G)$ -comodule it now remains to show that $(\delta \otimes i)\delta = (i \otimes \delta_G)\delta$. If $a \in A$, $\xi, \eta \in H$, $f, g, h, k \in C_{00}(G)$ we have:

$$\begin{split} &\langle (\delta \otimes i)\delta(a)(\xi \otimes f \otimes g), \eta \otimes h \otimes k \rangle \\ &= \int \langle \delta(a)(\mu(f_t) \otimes I)(\xi \otimes g), (\mu(h_t) \otimes I)(\eta \otimes k) \rangle dt \\ &= \int \langle \delta(a)(\mu(f_t)\xi \otimes g), \mu(h_t)\eta \otimes k \rangle dt \\ &= \int \int \langle a\mu(g_s \cdot f_t)\xi, \mu(k_s \cdot h_t)\eta \rangle dt ds \\ &= \int \int \langle a\mu(g_{st} \cdot f_s)\xi, \mu(k_{st} \cdot h_s)\eta \rangle ds dt \\ &= \int \langle \delta(a)(\xi \otimes g_t f), \eta \otimes k_t h \rangle dt \\ &= \int \langle \delta(a)(I \otimes g_t)(\xi \otimes f), (I \otimes k_t)(\eta \otimes h) \rangle dt \end{split}$$

(Lemma 2)

 $= \langle W^*(\delta(a) \otimes I) W(\xi \otimes f \otimes g), \eta \otimes h \otimes k \rangle$

 $= \langle (i \otimes \delta_G) \delta(a)(\xi \otimes f \otimes g), \eta \otimes h \otimes k \rangle.$

We have now shown that (A, δ) is a $\mathcal{L}(G)$ -comodule, and in order to complete the proof of Theorem 1 we shall show that δ defined in (27) is an isomorphism between the covariant systems $(\mathfrak{A}, \varrho, G)$ and $(W^*(A, \delta, G), \varrho^{\tilde{}}, G)$ where $\varrho^{\tilde{}}$ is the natural automorphic representation of G on $W^*(A, \delta, G)$ defined by (9).

If we put an element $\mu(h)$ with $h \in L^{\infty}(G)$ into (27) we have from (23) that

 $\langle \delta(\mu(h))(\xi \otimes f), \eta \otimes g \rangle = \langle p(\mu(g)^*\mu(h)\mu(f))\xi, \eta \rangle$ = $\langle \xi, \eta \rangle \langle hf, g \rangle = \langle (I \otimes h)(\xi \otimes f), \eta \otimes g \rangle.$

Thus $\delta(\mu(h)) = I \otimes h$ and from Lemma 4 it follows that $\delta(\mathfrak{A}) = W^*(A, \delta, G)$. From (28) it follows that

 $\varrho_{x}(\delta(a)) = (I \otimes v(x))\delta(a)(I \otimes v(x^{-1})) = \delta(\varrho_{x}(a)) \quad \text{for} \quad x \in G, a \in \mathfrak{A},$

proving that the covariant systems $(\mathfrak{A}, \varrho, G)$ and $(W^*(A, \delta, G), \varrho^{\sim}, G)$ are equivalent.

§3. The Bidual of a Covariant System and of a $\mathcal{L}(G)$ -Comodule

We have now seen that a $\mathscr{L}(G)$ -comodule (A, δ) gives rise to a covariant system $(\mathfrak{A}, \varrho, G)$ with $\mathfrak{A} = W^*(A, \delta, G)$. In [2] it was shown that a covariant system (A, ϱ, G) gives rise to a $\mathscr{L}(G)$ -comodule (\mathfrak{A}, δ) with $\mathfrak{A} = W^*(A, \varrho, G)$. It is therefore natural to ask what $W^*(W^*(A, \varrho, G), \delta, G)$ and $W^*(W^*(A, \delta, G), \varrho, G)$ are. It should come as no surprise that both are isomorphic to $A \otimes \mathscr{B}(L^2(G))$, a fact which was proved for an abelian G in [8].

Theorem 2. Given a covariant system (A, ϱ, G) let (\mathfrak{A}, δ) be the $\mathscr{L}(G)$ -comodule defined in [2, Chapter 2], i.e. $\mathfrak{A} = W^*(A, \varrho, G)$ and $\delta(a) = W^*(a \otimes I)W$. Then $W^*(\mathfrak{A}, \delta, G) \cong A \otimes \mathscr{B}(L^2(G))$.

Proof. Suppose A acts on a Hilbert space H_0 and let ρ^- be the faithful representation of A on $H = L^2(G, H_0)$ given by

$$\varrho^{\sim}(a)f(s) = \varrho_{s^{-1}}(a)f(s) \quad \text{for} \quad a \in A, f \in H, s \in G.$$
(32)

Then $\mathfrak{A} = [\varrho \,(A) \cup I \otimes \mathscr{L}(G)]''$ and $\delta(\mathfrak{A})$ is generated by $\varrho \,(A) \otimes I \cup \{I \otimes x \otimes x | x \in G\}$. So $W^*(\mathfrak{A}, \delta, G)$ is generated over $L^2(G \times G, H_0)$ by

$$\varrho^{\sim}(A) \otimes I \cup I \otimes \delta_{G}(\mathscr{L}(G)) \cup I \otimes I \otimes L^{\infty}(G) .$$

Let $\varrho^{0}: G \to \operatorname{Aut} \varrho^{\sim}(A)$ be given by
 $\varrho^{0}_{x}(a) = (I \otimes x)a(I \otimes x^{-1}) \quad \text{for} \quad x \in G, a \in \varrho^{\sim}(A) .$ (33)

The covariant systems $(\varrho(A), \varrho, G)$ and (A, ϱ, G) are then equivalent. From [2, Proposition 2.2] it follows that

$$\varrho^{\tilde{}}(A) \otimes \mathscr{B}(L^2(G)) = [W^*(\varrho^{\tilde{}}(A), \varrho^0, G) \cup I \otimes I \otimes L^{\infty}(G)]''.$$
(34)

Let U be the unitary operator over $L^2(G \times G, H_0)$ defined by

$$Uf(s,t) = f(t^{-1}s,t).$$
(35)

Then

$$W^*(\varrho^{(A)}, \varrho^0, G) = [U^*(\varrho^{(A)} \otimes I) \cup U \cup I \otimes I \otimes \mathscr{L}(G)]''.$$

So

$$\varrho^{\tilde{}}(A) \otimes \mathscr{B}(L^{2}(G)) = [U^{*}(\varrho^{\tilde{}}(A) \otimes I)U \cup I \otimes I \otimes \mathscr{L}(G) \cup I \otimes I \otimes L^{\infty}(G)]''.$$

Now $U(I \otimes I \otimes x)U^* = I \otimes x \otimes x$ for $x \in G$, and $U \in (I \otimes I \otimes L^{\infty}(G))'$ so

$$A \otimes \mathscr{B}(L^2(G)) \cong \varrho \, (A) \otimes \mathscr{B}(L^2(G)) = U^* W^*(\mathfrak{A}, \delta, G) U ,$$

which proves the theorem.

Theorem 3. Given a $\mathscr{L}(G)$ -comodule (A, δ) let $(\mathfrak{A}, \varrho, G)$ be the covariant system defined by $\mathfrak{A} = W^*(A, \delta, G)$ and ϱ as in (9). Then $W^*(\mathfrak{A}, \varrho, G) \cong A \otimes \mathscr{B}(L^2(G))$.

Proof. $\mathfrak{A} = W^*(A, \delta, G)$ is generated by $\delta(A) \cup (I \otimes L^{\infty}(G))$ over $L^2(G, H_0)$ if we consider A as a von Neumann algebra over H_0 . $B = W^*(\mathfrak{A}, \varrho, G)$ is then generated by $V^*(\mathfrak{A} \otimes I)V \cup I \otimes I \otimes \mathscr{L}(G)$ where V is the unitary operator over $L^2(G \times G, H_0)$ defined by

$$V f(s,t) = \Delta(t)^{1/2} f(st,t).$$
(36)

Define another unitary operator S by

$$Sf(s,t) = \Delta(t)^{-1/2} f(s,t^{-1})$$
(37)

then $S^*V^*(I \otimes \varphi \otimes I)VS = W(I \otimes I \otimes \varphi)W^*$ for $\varphi \in L^{\infty}(G)$, and $S^*(I \otimes I \otimes x)S = I \otimes I \otimes v(x)$ for $x \in G$. Since VS and $\delta(A) \otimes I$ commute we therefore have that

$$B = [V^*(\delta(A) \otimes I)V \cup V^*(I \otimes L^{\infty}(G) \otimes I)V \cup I \otimes I \otimes \mathscr{L}(G)]''$$

= $S[\delta(A) \otimes I \cup W(I \otimes I \otimes L^{\infty}(G))W^* \cup I \otimes I \otimes \mathscr{R}(G)]''S^*$
= $SW[W^*(\delta(A) \otimes I)W \cup I \otimes I \otimes L^{\infty}(G) \cup I \otimes I \otimes \mathscr{R}(G)]''W^*S^*.$

So if we can prove that

$$[W^*(\delta(A) \otimes I)W \cup I \otimes I \otimes \mathscr{B}(L^2(G))]'' = \delta(A) \otimes \mathscr{B}(L^2(G))$$
(38)

the theorem is proved. (38) is equivalent to

$$W^*(\delta(A)' \otimes \mathscr{B}(L^2(G))) W \cap (I \otimes I \otimes L^{\infty}(G))' \cap (I \otimes I \otimes \mathscr{R}(G))' = \delta(A)' \otimes I, \qquad (39)$$

i.e. that

$$W^*(\delta(A)' \otimes \mathscr{L}(G)) W \cap (I \otimes I \otimes L^{\infty}(G))' = \delta(A)' \otimes I .$$

$$\tag{40}$$

Let $D = W(I \otimes I \otimes L^{\infty}(G))W^*$ and $E = (\delta(A)' \otimes \mathscr{L}(G)) \cap D'$. Now define a map $\delta'' : E \to E \otimes \mathscr{L}(G)$ by

$$\delta''(a) = (I \otimes I \otimes W_G^*)(a \otimes I)(I \otimes I \otimes W_G) = (i \otimes \delta_G)(a) \quad \text{for} \quad a \in E,$$
(41)

where *i* is the identity automorphism of $\mathscr{B}(L^2(G, H_0))$. Obviously $\delta''(\delta(A)' \otimes \mathscr{L}(G)) \subset \delta(A)' \otimes \mathscr{L}(G) \otimes \mathscr{L}(G)$ and $\delta''(D) = D \otimes I$, so (41) will in fact define a normal isomorphism of *E* into $E \otimes \mathscr{L}(G)$ which obviously satisfies $(\delta'' \otimes i)\delta'' = (i \otimes \delta_G)\delta''$. $I \otimes v(x) \otimes x = W(I \otimes v(x) \otimes I)W^* \in E$ and $\delta''(I \otimes v(x) \otimes x) = I \otimes v(x) \otimes x \otimes x$ for $x \in G$, so again we can use Theorem 1 in [2] to conclude that *E* is generated by

$$F = \{a \in E | \delta''(a) = a \otimes I\} \text{ and } \{I \otimes v(x) \otimes x | x \in G\}.$$

Using the same argument as in (21) we have that

$$F = E \cap (I \otimes I \otimes L^{\infty}(G))' = (\delta(A)' \otimes \mathscr{L}(G)) \cap D' \cap (I \otimes I \otimes L^{\infty}(G))'$$
$$= (\delta(A)' \otimes \mathscr{L}(G)) \cap (I \otimes L^{\infty}(G) \otimes L^{\infty}(G))'$$
$$= (\delta(A)' \cap (I \otimes L^{\infty}(G))') \otimes I = C \otimes I$$

where C is as in (20). So the left hand side of (40) equals:

$$W^*EW = W^*[F \cup \{I \otimes v(x) \otimes x | x \in G\}]''W$$
$$= [C \otimes I \cup I \otimes \mathcal{R}(G) \otimes I]'' = \delta(A)' \otimes I$$

according to (19). So the formula (40) holds and the theorem is proved.

§4. The Commutant of a Covariance Algebra and of a Dual Covariance Algebra

Digernes proved in [1, Theorem 3.14] the following:

Theorem 4. Suppose A is a von Neumann algebra over a Hilbert space H and that U is a continuous unitary representation on H of the locally compact group G such that

$$\varrho_x(a) = U_x a U_{x^{-1}} \in A \quad \text{for all} \quad x \in G, a \in A.$$

Let the covariance algebra $\mathfrak{A} = W^*(A, \varrho, G)$ act on $L^2(G, H)$ as usual. Then \mathfrak{A}' is generated by $A' \otimes I$ and $\{U_x \otimes v(x) | x \in G\}$, and in fact $\mathfrak{A}' \cong W^*(A', \varrho', G)$ where $\varrho' : G \to \operatorname{Aut}(A')$ is defined by

$$\varrho'_{x}(a) = U_{x}aU_{x^{-1}} \quad for \quad a \in A' .$$

$$\tag{42}$$

We shall first give an alternate proof of this theorem using [2, Theorem 1] and then state and prove a similar result for the dual covariance algebra of a $\mathscr{L}(G)$ -comodule.

200

Proof of Theorem 4. Let $\mathfrak{A} = W^*(A, \varrho, G)$ as defined in [2], then

 $W(\mathfrak{A}' \otimes I)W^* \subset \mathfrak{A}' \otimes \mathscr{L}(G)$,

cf. the first part of the proof of Lemma 1, and it is straight forward to check that

 $U_x \otimes v(x) \in \mathfrak{A}'$ for $x \in G$.

Defining the map δ' as in (16), i.e.

 $\delta'(a) = W(a \otimes I)W^* \text{ for } a \in \mathfrak{A}'$

we have that $\delta'(U_x \otimes v(x)) = U_x \otimes v(x) \otimes x$ and that $(\delta' \otimes i)\delta' = (i \otimes \delta_G)\delta'$, so as in Lemma 1 we can use [2, Theorem 1] to conclude that \mathfrak{A}' is generated by

 $C \cup \{U_x \otimes v(x) | x \in G\}$

where

 $C = \{c \in \mathfrak{A}' | \delta'(c) = c \otimes I \}.$

For *C* we can use the same argument as in (21) to conclude that $C = \mathfrak{A}' \cap (I \otimes L^{\infty}(G))'$, so $C = A' \otimes I$ according to [2, Proposition 2.2].

So $\mathfrak{A}' = [A' \otimes I \cup \{U_x \otimes v(x) | x \in G\}]''$ as stated, furthermore, Theorem 1 of [2] also gives us that $\mathfrak{A}' \cong W^*(A', \varrho', G)$.

The dual version of Theorem 4 is the following:

Theorem 5. Suppose (A, δ) is a $\mathcal{L}(G)$ -comodule and let $\mathfrak{A} = W^*(\delta(A), \delta \otimes i, G)$ be the covariance algebra of the equivalent comodule $(\delta(A), \delta \otimes i)$. Then

$$\mathfrak{A}' = [\delta(A)' \otimes I \cup W^*(I \otimes I \otimes L^{\infty}(G))W]''$$
(43)

and \mathfrak{A}' is isomorphic to the covariance algebra of the $\mathscr{L}(G)$ -comodule $(\delta(A)', \delta')$ where δ' is defined by

$$\delta'(a) = W(a \otimes I)W^* \quad for \quad a \in \delta(A)' . \tag{44}$$

Proof. $\mathfrak{A} = [W^*(\delta(A) \otimes I)W \cup I \otimes I \otimes L^{\infty}(G)]''$. $(I \otimes I \otimes v(x))\mathfrak{A}'(I \otimes I \otimes v(x^{-1})) = \mathfrak{A}'$ and if we define $\mu: L^{\infty}(G) \to \mathfrak{A}'$ by

 $\mu(f) = W^*(I \otimes I \otimes f)W \quad \text{for} \quad f \in L^\infty(G)$

we see that with ρ as in (9), Theorem 1 is satisfied so \mathfrak{A}' is generated by $\mu(L^{\infty}(G))$ and $\mathfrak{A}' \cap (I \otimes I \otimes \nu(G))'$. From (40) we have that

$$\mathfrak{A}' \cap (I \otimes I \otimes \nu(G))' = [W^*(\delta(A) \otimes I)W \cup I \otimes I \otimes L^{\infty}(G) \cup I \otimes I \otimes \nu(G)]'$$
$$= \delta(A)' \otimes I.$$

This proves (43). Furthermore

 $W\mathfrak{A}'W^* = [W(\delta(A)' \otimes I)W^* \cup I \otimes I \otimes L^{\infty}(G)]''$ $= W^*(\delta(A)', \delta', G)$

where δ' is defined by (44). It was proved in Lemma 1 that $(\delta(A)', \delta')$ really is a $\mathscr{L}(G)$ -comodule.