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Abstract. The complex-dilated many-body Schrodinger operator H(z) is de-
composed on invariant subspaces associated with the "cuts" {μ + z~2R+},
where μ is any threshold, and isolated spectral points. The interactions are
dilation-analytic multiplicative two-body potentials, decaying as r " 1 + ε at
r = 0 and as r~ε at r= oo.

Introduction

The non-relativistic quantum mechanical many-body problem has been the
object of several mathematical investigations during recent years. One of the
central problems is that of asymptotic completeness for systems with multichannel
scattering. Since the work of Faddeev [4] on the 3-body problem new major steps
have been taken by Ginibre and Moulin [5] and Thomas [11] who have in-
dependently generalized Faddeev's result in the 3-body case and at the same time
simplified the proofs, utilizing different, though related Hubert space methods.
Another important work is due to Sigal [9] who has extended Faddeev's result
to the n-boάy case under essentially the same assumptions and utilizing the same
mathematical tools, working with Banach spaces of Holder-continuous func-
tions.

A different approach to the n-boάy problem was introduced by the author and
Combes [3] and independently by van Winter [12]. This may be called the
analytic theory of many-body Schrodinger operators, with the dilation-analytic
version of [3] and the complex dynamical variables version of [12]. The basic
feature of this theory is the construction of a selfadjoint analytic family of operators
H(z) in an angle Sa={z = ρeiφ\ρ>O\φ\<a}, such that H(1) = H. The operators
H(ρeιφ\ φ + 0, although non-selfadjoint, are more accessible for analysis than H
itself, whose properties can then be derived from those of H(eίφ) by letting φ->0.
This program was carried out in [3], so far as the spectral properties are concerned,
for a large class of interactions. When the imaginary parameter φ is "turned on",
the essential spectrum rotates to the angle — 2φ and splits up into a system of
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"cuts", one starting at each threshold of the system. The continuum eigenvalues
become isolated, and new ones ("resonances") may appear between the cuts.

This structure of the spectrum is strongly suggestive of the possibility of
decomposing H(φ) into a direct sum of operators, each of which has only cut or
one point as its spectrum. While the conjecture is immediate, the proof is rather
technical. The problem to be solved is that of obtaining estimates of the resolvent
between cuts, and the core of this problem is to prove that the connected part of
the resolvent goes uniformly to 0 at oo aliong lines between the cuts.

This problem was solved by van Winter [13] in the case, where the interactions
belong to some subclass of the Schmidt class. It was proved in [13] that the Schmidt
norm of the connected part of the resolvent goes to 0 at oo along lines between
the cuts, and the consequent decomposition of H(φ) was established.

The present paper deals with local potentials, comprising functions which are
analytic in an angle, go to 0 as r~ε at oo and go at most as r~ι+ε at 0.

We prove that the norm of the square of the connected part of the resolvent
goes to 0 as some negative power of the distance along lines between the cuts
(Lemma 5.4). The derived estimates of the resolvent between cuts and the de-
composition of H(φ) are formulated in Theorems 6.1 and 6.2.

Section 2 contains some basic results which are crucial in obtaining the
required estimates. These include certain commutation estimates based on a
priori weighted estimates of Agmon [1] and some consequences of the fact, due
to Ginibre (private communication) and Agmon [1] that a suitably weighted
free resolvent goes to 0 in norm at oo as the negative square root of the distance
along lines parallel to the spectrum.

In Section 3 we derive the estimates for the 2-body problem which serve as
the first step in an induction proof on the number n of particles.

In Section 4 we make the induction assumption that all resolvents of Hamil-
tonians of systems of at most n—l particles have the desired properties and
summarize the corresponding properties of the disconnected Hamiltonians of
the n-body system. These are proved by van Winter ([12,13]) for interactions
in Schmidt class and extended in [14] to local potentials.

The decomposition result again gives rise to immediate conjectures. First
of all, it is to be expected that H itself can be decomposed on invariant subspaces
3tf* associated with the thresholds μ, such that the corresponding projections
P± are the limits of Pμ(eiφ) as φ-+0+.

Secondly, one would expect under certain conditions on the potential that
2tf* be the range of the channel wave operators Ωμ and 3^μ{φ) be the range of
channel wave operators Ωμ(φ) for φ > 0 and Ω~(φ) for φ<0, such that Ωμ =
lim Ω* (φ) and Ω~ = lim Ω~ (φ). [It is clear from the structure of σ(H(φ)) that we

φ-+0+ φ->0

can only expect to get semigroups corresponding to f>0 for φ > 0 and to ί < 0
for φ<0.] The proof of these two conjectures would then imply asymptotic
completeness.

This is in brief outline the program for an analytic scattering theory of many-
body system. Although it will involve many technical difficulties, the decomposi-
tion result would seem to make it possible to develop an analytic multichannel
scattering theory for a large class of potentials.



Decomposition of Many-Body Schrodinger Operators 129

1. Definitions and Notations

We consider a system S= {l,...,n} of n particles, with masses m1?...,mn. A cluster
Cx is a subset {i'lv..,ij) of S, i1<...<il9 2^l^n. Let Cp be the cluster {l,...,p}.
Let r c _uj be the position vector from the center of mass of Cj_1 to particle j ,

d^^Ψcj-J We set

and
r c p = r L

Moreover

and

A decomposition Dk is a set of disjoint clusters C1,...,^1* and single particles
m+l,...,fe. We write DtCDk if />k and every cluster of D, is contained in some
cluster of Dk. We set

rDk

 = v Ci' /c"1) »

We denote by H^i)kthe free Hamiltonian of the centers of mass of the clusters
C1,...,Cm and the single particles in S\{C 1 u...uC m }. Let /f be the number of
particles in the cluster C\ let p = (/1 —1)+...+(/m—1) be the total number of
internal position vectors of the clusters Cι,...,Cm, and set

f
Γ i ( X ί l ' X ι 2 ' X ί 3 M ί 3x?x

 + dxf2 ^

With this choice of coordinates, the free Hamiltonian of the system S in the center
of mass frame of reference is of the form

H0=-μ1A1-μ2Δ2-...-μpAp

where the μt > 0 are certain functions of m1,.. .5mw.
We shall need the following estimates.

Lemma 1.1. (1) // Dι C Dk, then

(2) // ίfie particle j does not belong to any of the clusters of Dk+1, if Dk is obtained
by adding j to one of the clusters C of Dk+ί, and zeC, then
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(3) // C1 and C2 are clusters of the decomposition Dk+1, if ίe C1 andje C2, and
Dk is obtained from Dk+1 by joining C1 and C2, then

Proof It is clear that (1) holds, and that (2) and (3) are reduced to proving

(4) l

and

(5)

where D is the decomposition containing only the clusters C1 and C2. The in-
equalities (4) and (5) are easily proved by induction using the triangle inequality
and the fact that the distance from the particle; to the center of mass of the cluster
C is proportional to the distance from j to the center of mass of Cuj.

In all our estimates, C denotes different positive constants, also possibly on
two sides of an inequality.

2. Some Basic Estimates

In this section we prove some results which are of basic importance for the estimate
of the connected part of the resolvent. First we derive some commutation estimates
on the basis of the following result of Agmon [1].

Lemma 2.1. Let OL>\ be a fixed constant. Let the coordinate vectors ~r1,.../n-1

be chosen as in Section 1, such that Ho is of the form

H0=-μ1Δ1-μ2Δ2-...-μn_1Δn_1 .

There exists a constant C independent of λe<£ such that for all feQ)Ho and
i=l,...,n —1,7=1,2, 3, we have

(1)

This is a special case of [1], Lemma A2.
Let D be a decomposition and let "f1.. .rp be coordinate vectors chosen relative

to D as in Section 1. Then xfjS^D f°r ί= l.-.p, J = 1,2, 3, and hence

Summing (2) over i and j we obtain for λe <C, fe S>Ho

i|Π _|_r2^-(α/2)p j||2<c||π +r 2 ) ( α / 2 ) (H — /l)/ | | 2 . (3)

From (3) we derive the following estimate.

Lemma 2.2. Let α>^, β<\ be fixed constants, and let D be a decomposition. For
| Im/l | = ε>0 and for all / e Jf we have

II (4)
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Proof. The inequality (4) for all fe ffl is equivalent to

||(l + r έ ) - ( α / 2 ) K o W ( l + r έ f / 2 ) ( H o - A ) | | ^ C ε for | I n U | ^ (5)

or, taking adjoints, equivalent to

^ ^ 2 ) for | ImA|^ε. (6)

To simplify notation, we assume that all the coefficients μhϊ=l...k, are equal
to 1, so that

Then the operator, whose norm has to be estimated by (6), is

(Ho - λ)(l + rlf l2)R0(λ)(l + r2

DΓ^2)

r * ) « * - * ' 2 > J - 2 ( [ ^ ^ (7)

D)

rlfl2) ~l + (β/2)((β/2) - l)r2 (1 + r2

Df^ ~ 2 ]

On the right-hand side of (7), the first term is a bounded operator, and the
last term is bounded by C||Λ0(/l)||. In order to obtain (6) it therefore suffices to
show

(8)

for all fe@{l + r2)!X/2{Ho-λ) and

This follows from (3), since β<\, o o j , in fact with Cε independent of ε, and (4)
is proved.

We shall also make use of the following result due to Ginibre (private com-
munication), cf. also [5], and Agmon ([1], Appendix A, Remark 2).

Lemma 2.3. Let α >^ be fixed. Then for λ = s + it

\\(l+r2

s)-^2)Ro(λ)(l+r2

sy^2)\\<Cs-^2 for s>K.

A simple, but useful observation is the following.

Lemma 2.4. Let M be a subset of (C, and let A{λ) be a function from M into 3$(3tf),
such that

\\Λ{λ)\\^C for λeM.

Then for any decomposition D

| | ( l + r 2 ) - ^ ( A ) | | ^ C | | ( l + r 2 ) - 2 ^ ( A ) | | 2 - p for λeM. (9)

Proof We have
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Repeating this argument, we obtain the Lemma.
From Lemma 2.3 follows

Lemma 2.5. Let α> \ be fixed. Then

\\{l+r2

s)-ial2)R0(s + it)\\SCεs-{1/4) for | ί | ^ ε > 0 , s > K . (10)

Proof By the first resolvent equations and Lemma 2.3,

We shall make use of the following estimates due to Iorio and O'Carroll [6].

Lemma 2.6. Let wo =w o + g o , where uueLp(R3) for some p>3 and qijeLco(R\
ΐ</=l,...,n.

Then for all ij, /c, / and |Im λ\ ̂ ε > 0 we have

(i)

and

(ii)

Proof Since ^ e l 0 0 ^ 3 ) , it suffices to prove that for |Im>l |^ε>0 we have

and

llMyΛoWII^Q. (12)

The inequalities (11) are proved in (6), and (12) follows from (11), using

Lemma 2.7. Let I be a closed interval and let

Suppose that B(λ) is a continuous function from Sj into ^(Jf7), which is analytic
in the interior Sj of Sj and satisfies

J WBis + iήffdt^CjWfW2 for teI,feJT.
— αo

Then

\\B(λ)\\^C for λeSj.

Proof For fgeJt? the function (fB(λ)g) is analytic in Sj and

00

ί UB(s + it)g)\2ds<C for tel.
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This implies (cf. [8]) that

UB(s + it)g)\^C for seR9teI.

Then the Lemma follows from the uniform boundedness principle.

3. The 2-Body Problem

We consider the Schrodinger operator in J4? = L2(R3) given by

where Ho is the self-adjoint operator associated with — A, and v is the maximal
multiplication operator corresponding to a real-valued function v(r) on JR3

satisfying the following conditions.

(i) v = (l+r)~ε{u + w),

where u and w can best be described in polar coordinates.

Let 0 < a < -, let Sa be the angular sector

Sa={z = ρeiφ\0<ρ<oo, -a<φ<a},

and let Ω be the unit sphere in JR3.
The functions u and w are restrictions to (0, oo) of analytic functions u(z)

and w(z) from Sa into L2(Ω) satisfying the following conditions for some p> §.

(ii) sup \]\\u{re^)\\UΩ)rHr\<Cε.
\φ\ia-ε l l J

(iii) sup \]\\u(re^)\\2JP(!2)r
2dr\<Ce.

\φ\^a~ε lO J

(iv) sup { sup \\q(reiφ)\\Loo
\φ\£a-ε [θ<r<co

For radial potentials u(r) and w(r) these conditions reduce to the requirement
that u and w be restrictions to R+ of analytic functions on Sa satisfying (ii)-(iv)
with

N r ^ ) | | L P ( β ) and | |u(r^)| |L 2 p ( Ω )

replaced by \u(reιη\ and | | ί ( r ^ ) | | L 0 0 ( l l ) by \φe*)\.
The condition on the potential is satisfied by a radial function υ(r\ which is

the restriction to (0, oo) of a function v(z) analytic in the angle Sa and such that

| ^ 0 ( r - 1 + ε ) for r->0,

\ = 0{r-ε) for r-*oo

uniformly in every angle {\φ\ ^ α — δ}.
Conditions (ii) and (iii) imply

(v) sup \]\\u(re^)\\2

LHn)r
2dr)<CE

\ω\ <a-ε lO J
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and

(vi)

It

(vii)

sup
\φ\£a-ε

sup

follows that v

sup
\φ\£a-ε

(R+ί

ί II
I R

1 ί Hre^)\\2

LHn)r
2dj<CE.

satisfies (v), (vi) and

v(reiφ)\\12{Ω)r
2dr> R^oo> 0 .

E. Balslev

It then follows from [2] Theorem 4.1, that v is ^-dilation-analytic and Ho-
compact. We recall the meaning of this. Let U(ρ) be the dilation group on Jf
defined by

and let

v(ρ)=U(ρ)υU(ρ)-1 .

Then v(ρ) is restriction to (0, oo) of an analytic function v(z) from Sa into the space
of compact operators from 3)HQ into ffl.

We consider the self-adjoint analytic family of type A in the sense of Kato
defined for ze Sa by

The spectrum of H(z) = H(ρeιφ) (cf. [3]) depends only on φ and consists of
(1) the essential spectrum σe(φ) = e~2ιφR+

(2) the φ-independent discrete spectrum σd(φ) contained in the anglα(i^+,
e~2ίφR+) and with 0 as the only possible accumulation point.

In what follows, we keep z = ρeiφ fixed with φφO, letting for simplicity ρ = 1
and set H(φ) = H(eiφl R(λ, φ) = R(λ9 e

iφ) etc.
We shall now establish the properties of the operator H(φ) which will be used

in the following sections, and which provide the first step in the induction proof
of the same properties for the ra-body Hamiltonian.

Let / be a closed interval not containing 0, such that the strip

is contained in the resolvent set ρ(H(φ)).

Lemma 3.1. There exists δ>0 such that

\\R0(e-2iφ(s + ίt\ φ)v(φ)R0(e-2i<p(s + ίt\ φ)v(φ)\\SCs-δ for seR, tel.

Proof. By Lemma 2.6, we have

ίtl φ)v(φ)R0(e-2i*(s + ίt\ φ)v(φ)\\

^ r ) - ε | | \\w{φ)RQ(e-2i«{s + it\ φ)w(φ)\\

for seRjel.

The function ||lίo(s + ίίχi + r)" β | | is bounded by Cs~δ for seR, tel with some
δ>0 by Lemmas 2.4 and 2.5 (ii), and the Lemma is proved.
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Lemma 3.2. For te I, fe J f we have

J IIRCe- ί̂s + iίX^/pΛ^CjH/ll2.
— 00

Proof. By iteration of the second resolvent equation we obtain for λe ρ{H(φ))

R(λ, φ) = R0(λ9 φ)-R0(λ, φ)v(φ)R0(λ, φ) + R0(λ, φ)υ(φ)R0(λ, φ)v(φ)R(λ, φ).

For λ = e~2iφ(s + itl seR, tel, this yields

lφ) = (l-R0(e-2i^s + ίtlφ)υ(φ)R0(e-2iφ(s +

(l-R0(e~2iφ(s + ίt\ φ)v(φ))R0(e-2i(p(s + ίtl φ).

By Lemma 3.1, the norm of the first factor is bounded for tel, s>K. It is
clearly bounded for large negative s and hence by continuity bounded for all
se R, te I. The norm of the second factor is bounded for se R, te I by Lemma 2.6.
Hence HΛ^-^^Cs + iί), φ ) / | | ̂ CjllRoίβ-^ns + iίλ Φ ) / | | = CjHRoίs + iO/ll for seJR,
te /, and the Lemma follows.

Corollary 3.3. \\R(λ, φ)\\£C for λe SJφ).

Proof This follows from Lemma 2.7 and Lemma 3.2 and also directly from the
above expression for R(λ, φ).

4. The n-Body Problem

We shall now consider a system S of n particles 1,.. .,n interacting through 2-body
potentials %(r o ), i < j =,...,n.

The real-valued functions ^ ( r ^ ) on R3 are assumed to satisfy conditions
(i)—(iv) of Section 3. This implies that the multiplication operators vu corresponding
to Viftij) are i/0-ε-bounded, and hence a unique self-adjoint operator H is defined

As in the 2-body problem we introduce the self-adjoint analytic family H(z)
defined for ze Sa by

For a cluster C we set J^c = L2(rc) and Hc(z) denotes the operator in
defined by

We identify Hc(z) with the operator Hc{z)® /fel in Jf, where Jfel is the identity
on L2(rτcl) and r^1 denotes internal coordinate vectors of the center of mass of C
and the particles in S\C.

If C1 ?...,Cm are disjoint clusters, we set
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If Dk is the decomposition with clusters C1 ?...,Cm, we set

k Σ X j
1=1 ijed

where H%*rel(z) is the free Hamiltonian of the centers of mass of C l v . . , C m and the
particles of S\{CX u . . . u Cw}.

We shall also denote pairs (ίj) by α. We shall for simplicity of notation take
^ O, and set

) = R(λ, <p), RC(A, z) = (H c (φ)-A)" 1 etc.

The basic tool in the study of R(λ, φ) is the Weinberg-van Winter equation,
which we formulate in two forms as follows.

The /-connected and the r-connected parts Iι

Dk(λ, φ) and FDk(λ, φ) of RDk(λ, φ)
are defined by

?DJ& φ)= Σ Σ Ro(l A J A ^ f t f ) (i)
Dn-ιC...cDk(a1...an-k)

and

ΓDιμ,φ)= Σ Σ vXn_k{φ)RDk+1(λ,φ)... (2)
Dn-iC...CDk (αi . αn-k)

where

Σ
I>n-lC.Cί)k

is over all chains of decompositions Dn_1 C...CDk+1 such that Dj arises from
Dj+! by joining two clusters of D 7 + 1 , and

Σ
(αi...αn-k)

is over all (αx...αw_k) such that the particles of the pair 0Ln_} belong to the same
cluster of Dj but are single or belong to different clusters of Dj+1, in other words
αn_7 connects clusters of Dj+ί to obtain Dj, j=k,...,n— 1.

We then have the following two forms of the Weinberg-van Winter equation
for RDk(λ, φ), valid for λeρ(HDk(φ)).

l-form RDk(λ,φ)= £ {'ΐΓ'1(rn-l)\RDJλ9φ) + Iι

Dk{λ9φ)RDk(λ9φ) (3)
DmcDk

r-form RDk(λ,φ)= £ {-l)m-\m-ΐ)\RDm{λ,φ) + RDκ(λ,φ)IR

Dk{λ,φ). (4)
DmCDk

The /-form is the one given in [12II (6.38)]. The r-form is obtained in the same
way from the Born series

RDk(ίφ)= Σ Σ Ro(^φ
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where the (oq. . α j vary over all sets of pairs which connect particles in some
cluster of Dk.

For k= 1 we obtain the equations for R(λ, φ).
We set

Our basic objective is to estimate R(λ, φ) on lines {λ = e~2ίφ(s + ίt)\seR}
between cuts, and the method for obtaining this is by proving that

and solving the iterated Equation (1) for R(λ, φ).
In order to obtain this we need uniform estimates on the norms of the operators

RD(e~2iφ{s + it\ φ) for seR. Such estimates were obtained by van Winter ([12II,
13]), using convolution techniques. These results can be extended to our class
of potentials by establishing certain additional estimates to justify the different
steps of the proofs of [12II] and [13]. This is carried out in detail in [14]. We
quote here the result required for the estimate of \\{Iι(λ9 φ))2\\.

We make the following induction assumption on the operators Hc(φ), where
C is any cluster of at most n — ί particles and φ φθ. We notice that these assump-
tions are verified in Section 3 in the two-body case. The set of thresholds μc(φ)
of Hc(φ) is denoted by Σc(φ).

Induction Assumption

(11) σe( cφ

(12) σd(Hc(φ)) is contained in the angular sector formed by the half-lines λeC + R +

and λeiC + e~2ίφR+, where λeC=mίn{Σc(φ)nR}. The points in σd(Hc(φ)) are
independent of φ unless absorbed by σe(Hc(φ)) and accumulate at most at thresh-
olds or at oo. For any two neighboring cuts and any ε > 0 there exists K(ε)>0
such that there are no resonances in the strip between the cuts at distance ^ ε
from the cuts, provided the distance along the cuts is greater than K(s). Similarly,
in the half-plane to the right of the cut corresponding to the threshold μ with
largest Reμ there are no resonances at distance ^ ε from the cut, provided the
distance along the cut is greater than K(ε).

(13) For any closed interval /, such that Sz(φ) C ρ(Hc(φ)\ we have

J \\Rc(e-2ίns + itlφ)f\\2dsSCI\\f\\2 for
— 00

We notice that (13) implies

(14) J \\Rc\e-2iφ(s + ίtlφ)f\\2ds^CI\\f\\2 for

since
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Also, by Lemma 2.7, (13) and (14) imply

(15) \\Rc(λ,φ)\\^C for λeSj(φ)

(16) \\Rc\λ,φ)\\*C for

We notice, as was pointed out by Simon [10], that the assumptions (II),
(12) on the spectrum of Hc(φ) imply that Hc(φ) is sectorial with arbitrarily small
opening angle, and hence

(17) \\Rc(λ, φ) || ^ C μ Γ 1

for λ in any fixed angular sector contained in ρ(Hc(φ)), directed away from e~2ίφ

Definition. We define [ΛCl *ΛC2](λ, φ) by

[Λc> * K C * P , φ)f = - L J Λ C i μ - μ , φ)Rc^ φ)fdμ for / e J f
zπι Γ l

and

lRCί * £ C 2 *.. .* RCk * Λfel](A, (?)

inductively in the same way.
On the basis of the induction assumption on the operators Rc(λ, φ) we obtain

the following result on the operators RD{λ, φ).

Lemma4.1. Let D be the decomposition corresponding to the clusters C l v . . ,C k ,
k

and let I be a closed interval such that Sj(φ) C f] ρ(HCί{φ)). Then

( i ) Rj,{λ, φ) c c l

(ii) f \\RD{e-2i^s + itlφ)f\\2dsSCI\\f\\2 for

(iii) ff^φJllgC, for
(iv) σ( c

Proof We refer to [12II], [13] and [14] for the proof, indicating only the main
points, where [14] differs from [12II] and [13]. One is, that (15)—(16) are simple
consequences of (13) by Lemma 2.7, and that (17) follows from (11) and (12).

Another crucial estimate utilized in [14] in the proof of Lemma 4.1 will also
be needed independently, so we formulate this separately as follows.

Lemma 4.2. For \
(i) \\viJ(φ)Ro(e-2i*(s + it\ φ)\\ S CΛΓ

1/2

(ii) \\υfj(φ)R0(e-2i«(s + it\ φ)\\ ̂  CεΓ^

Proof Since R0(e-2iφ(s + itlφ) = e2iφR0(s + itl we can replace R0(e~2iφ(s + itl
by R0(s + it) in (i) and (ii). We have, setting λ = s + it,

llft/φίRoμίll^CIIΛoWll^qimAI-^CJImAΓ 1^ for

The operator u^iφ) is H(oj)-smooth, that is

J Wu^R^is + ίήfVds^CWfW2 for /eJf,ίΦ0.
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It is proved in [7] Theorem 5.1, that this implies

By [13] Lemmas 4.1, 4.5, 4.6, 5.2, and Lemma 2.7 (see also 14 Lemma 4.1)
we have

= J uij{
r

where Γ is the pair of parallel lines Imμ= T^ImA. Then for feffl,

\\UiJiφ)RQ(λ)f\\2^C\lmλ\-1 J HΛ^
r

and (i) is proved.
The prove (ii), we notice that

Since ufj{φ)eLp(R3) for some p > § , ^(φ) is i/0-smooth, and the proof of (i)
applies.

From Lemmas 4.1 and 4.2 we obtain

Lemma 4.3. Let D be a decomposition, and let S7(φ) C ρ(HD(φ)). Then for λe <S/(φ)
and i<j=l,...,n we have
(i) WViji
(ii) ||(

Proof. By the second resolvent equation and Lemmas 2.6, 4.2(i), and 4.8(iii)

•\\RD(λ,φ)\\ for λeSj(φ).vij(φ)Ro{λ,φ)+ X vu(φ)R0(λ,φ)vkl(φ)
k<t=l

Furthermore, by (i) and Lemma 4.2(ii)

\\{Vij(φ))2RD(λ, φ)\\ = ||(«y(φ))2R0(λ, φ) + (vu(φ))2R0(λ, φ)υkι(φ)RD(λ, φ)\\

ί\\(vij(φ))2R0(λ,φ)\\+ f
fc<Z=l

\\vkι(φ)(RD(λ,φ)\\^C for

5. Estimate of the Norm of {I\λ,φ)f

We first apply the results of Sections 2 and 4 to establish some commutation
estimates involving the operators RD(λ, φ).

Lemma 5.1. Let Dx and D2 be decompositions, and suppose that C'nC" = 0 for
all clusters CofΌγ and C" of D2.Lettt>\,β<\ be fixed, and let Sj(φ) C ρ(HD2(φ)).
Then

W(l+r2

DlΓ«l2RD2(λ,φ)f\\

SCI\\(l+r2

Dιy^Ro(λ,φ)f\\ for λe S,(φ),/e Jf . (1)
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Proof. (1) is equivalent to

for λeSAφ). (2)

or to

Kl + Tiy^R^λ.φW^φXί + iiy^l^Cj for λeSάφ). (3)

Taking adjoints, we have

11(1 + iif*VD2(-φ)RD2(λ,

+ }/2\\(VD2(-φ))2RDβ,-φ)(l+r2

DiΓ«'2\\. (4)

By Lemma 4.3 (ii), the second term in (4) is bounded for λeSjiφ). Taking
adjoints, it remains to prove

\\{\ + r2

Dy«l2RD2{λ,φi\+r2

Df2\\^C for λeSjiφ). (5)

Let S=C1\JC2, where Cί contains all the clusters of D1 and C2 contains
those of D2

By Lemma 4.1 (2)

f \\Rc

D\(e-2^{s + it),φ)f\\2ds^CI\\f\\2 for telJeJf, (6)
— OO

where

Hc

D\(φ) = ICl

It follows from Lemma 2.2 (4), that

\\{l + r2

Dy*l2Rc

0i{λ, φ)(l + r2

Df2f\\ £Cj\\Rfr(λ, φ)f\\ for

(7)

which in turn implies

ϊ \\
— oo

2 for ί6/,/eJf . (8)

From (6) and (8) it follows by [13] Lemma 5.2, see also [14] Lemma 4.1, that
for some ε > 0 and fe ffl

J
— 00

• [(1 + rly^R^ (e- 2i«(u - iε), </>)(! + r2

Df2^fdu
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and hence

2\\^C for tel.

Thus, (5) holds, and the Lemma is proved.

Lemma 5.2. Let D and Dk be decompositions, where k is the number of clusters
and single particles in Dk, and Sj(φ) C ρ(HDk(φ)). Let A(λ) be a function from Sj(φ)
into Si{βfe\ such that

\\A(λ)\\SC for λeSj{φ).

Let a> j , β<^. Then there exists δ>0, such that for λeSj(φ) and any i,j

||(1 + r2

Dy°'2RDk(λ, #, y (<jφ4(λ) | |^C| |(H-rέ)-" / 2 (l +r i J)-M(A)||*. (9)

Proof. We prove this for fixed n by induction on k. For k=nwe have by Lemma
2.2 (4) and Lemma 2.6 (ii) for λe S^φ), fe Jf

and (9) holds with <5 = 1.
In the following estimates ^ > 0 denotes different constants, fixed in each

estimate. We now make the induction assumption
(*) The estimate (9) holdes for all A(λ), i, j , D, and Dm with m^k+ί.

Let us verify (9) for m — k. Using Equation (3) of Section 4 and (*) we obtain
for some δ>0.

\\(l+r2

DΓ«l2RDJλ,φ)Vij(φ)A(λ)\\

+ 11(1 +tir«2Il

Dk& φ)RDk(λ, φPiji

^ C | | ( l +r2

Drβl2(ί +riJ)-Ά{λ)\\i+ ||(1 +r2

D)~"2Iι

Dk(λ, φ)RDk(λ, φ)υtJ(φ)A(λn •

(10)

We estimate a typical term arising from iβk(A, φ) using successively Lemma
2.2(4), Lemma 2.6 (ii), Lemma 1.1(2), (3), Lemma 2.4, and Lemma 4.3 (i), and
obtain for some <5>0

^C\\R0{λ, ψtl+rlr^w^ψtl + rlyR^μ, φ)

υa2(φ)...VΰCn_k(φ)RDk(λ, φ)oi}{φ)A{.λ)\\

eRDn_M> φK2(φ)...van_k(φ)RDk(λ, 9)

χl2RD^M^Kϊ(ψ)-^n.k(φ)RDk(^

where Dι is the decomposition obtained from D by connecting the pair α t .
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The last norm in the chain of inequalities (11) is estimated in the same way
using successively (*), Lemma 4.3 (i), Lemma 1.1 (2), (3), Lemma 2.4, and Lemma
4.3 (i), and we obtain for some δ > 0

where D2 is the decomposition obtained from D1 by joining the pair α 2.
We continue in this way and obtain after n — k steps for some δ > 0 the estimate

(12)

where Dk is the decomposition obtained by connecting all particles which are
connected in either D or Dk.

We now use Equation (4) of Section 4 to estimate the norm on the right hand
side of (12). This yields

l2RDk(λ, φ)FDk(λ, φ)»y(φμ(Λ)||. (13)

The first terms in (13) are estimated as the first terms in (10), using (*) and
Lemma 1.1 (1), for some <S>0 by

y (14)

The last term on the right hand side of (13) is estimated using Lemma 1.1 (1) by

'2RDk(λ, φ)ΓDk(λ, φ)

S 11(1 + r2

DoΓ«'2RDk(λ, φ)ΓDk(λ, φ)v^φ)A(λ)\\, (15)

where D° is the decomposition obtained by connecting the pairs which are
connected in D, but not in Dk.
We now apply Lemma 5.1, Lemma 2.4, Lemma 4.3 (i), and Lemma 2.2(4)

to obtain for some <5>0 the estimate

, φ)FDk(λ, φ)vt{φ)A{λ)\\

φ)Ir

Dk(λ, φ)

o(λ, φ)ΓDk(λ, 9)

(16)

A typical term of the operator, whose norm is the last one in the chain of
inequalities (16), is estimated, using Lemma 2.6 (ii), Lemma 1.1 (2), (3), Lemma 2.4,



Decomposition of Many-Body Schrόdinger Operators 143

and Lemma 4.3 (i), for some δ > 0 by

n_ XK φ)vaι(φ)R0{λ, φ)

o(λ> φ)Vij(φ)A(λ)\\

Dn_μ, φ)vJφ)R0(λ, φ^jiφ^λ)\\δ (17)

where D ( 1 ) is obtained from D° by connecting the pair αw_fc. We estimate the last
term in the chain of inequalities (17) in the same way, using (*), Lemma 4.3 (i),
Lemma 1.1 (2), (3), Lemma 2.4, and Lemma 4.3 (i), and obtain for some δ>0

...va2(φ)RDn_ μ, φ)vJφ)R0(λ, φ)vιj{φ)A(λ)\\

y (18)

where Di2) is obtained from £>(1) by connecting the pair αre_Λ_ α. Repeating this
process, we obtain after n—k steps for some δ>0

(R0(λ,

φ)vu(φ)A(λ)\\
a ( 1 9 )

Here D{k) is obtained from D° by connecting all pairs of Dk. We notice that Dω

is also obtained from D by connecting all pairs of Dk, that is D(k) = Dk. Using this
and (*), Lemma 2.6 (i) and Lemma 2.6 (ii) we obtain finally for some δ > 0

^ (20)

Combining the estimates (10), (12)—(16), (19), and (20), we obtain (9) for the de-
composition Dk; by induction (9) holds for 2rgfcrgπ, and the Lemma is proved.

Lemma 5.3. Let SjC f] ρ(HD(φ)). Then there exists δ>0 such that
D

for seR,teI. (21)

Proof. A typical term of (Iι(e 2iφ{s + ίt\ φ))2 is estimated, using Lemma 2.6 (i)
and Lemma 4.3 (i) by

o& φ)vai{φ)...RD2(λ, φ)van^(φ)R0(λ, φ)vβί(φ)...RD2(λ, φ)υβn_Sφ)\\

0(λ9 φ)vΛl{φ)...RD2{λ, φ)van_^)R0^ φ)\\ . (22)
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The operator on the right hand side of (22) is estimated using Lemma 2.6 (ii),
Lemma 2.4, and Lemma 4.3 (i) for some δ>0 by

\\R0(λ, φ)υaι(φ)...RD2(λ9 φ)t^_ 1(φ)Λ 0& φ)\\

Ψ)Ϋ (23)

The operator on the right hand side of (23) is estimated using Lemma 5.2, Lemma
4.3 (i), Lemma 1.1 (2), and Lemma 2.4 for some δ>0 by

IKl + r ^ Γ ^ i ^

r2

Dn_2Γ«!2RDn_2(λ, φ)υa3(φ)...RD2(λ9 φ K n _ {qήRofo φ)\\δ . (24)

Repeating this process, we obtain after n — \ steps for some δ > 0

«/2R0(λ, φ)\\δ. (25)

Combining (25) with Lemma 2.5 and summing over all the terms of (I(λ, φ))2,
we obtain (21), and the Lemma is proved.

6. Decomposition of the Operator H(φ)

The basic properties of R(φ) can now be established, verifying the induction
assumption of Section 4 and proving the estimates required for the decomposi-
tion.

Theorem 6.1. The operator H(φ) has the properties (II)—(17) listed in the induction
assumption of Section 4 for the operators Hc{φ). In particular we have for Sj(φ) C
ρ{H(φ)%teIandfeje

ί \\R(e-2ins + ίtlφ)f\\2ds^CI\\f\\2. (1)
— 00

Proof It suffices to consider (II)—(13), since (14)—(17) follow from these. By Lemma
n

4.1, the operators I\λ,φ) and Q{λ,φ)= X X (- \)m~\m-1)! RDJλ, φ) are

analytic for λe f] ρ(HD(φ)) = (£\{μ(φ) + e-2iφR+\μ(φ)eΣ(φ)}.
D

Then (II) and the first two statements of (12) for the operator H(φ) follow
as in [3]. In the same way it follows, that by iteration of Equation (3) of Section 4
we obtain

))2)-1^ + J U φ))Q{λ, φ), (2)

where (1 — (Iι(λ, φ))2)~ι is meromorphic on (£\σe(H(φ)) with a set of poles contain-
ing and having the same properties as the set of poles of (1—Iι{λ, φ))" 1 .

By Lemma 5.3

uniformly for ί e l , provided that Sj(φ) Op) ρ(HD(φ)).
D
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This implies the last statement of (12), and moreover we obtain for some
K > 0 the estimate

\\R(e~2i*(s + it),φ)f\\

ύC\\Q{e-2iφ{s + it\φ)f\\ for fe J f and s^Kjel. (3)

Now we obtain by the second resolvent equation and Lemma 4.3 (i) for

Σ {\\R0(l<p)f\\ + Σ \\RD(lψK(φ)\\ \\R0(λ,φ)f\\} £C\\R0(λ,φ)f\\. (4)
D aeD

From (3) and (4) follows

J \\R(e-2iφ{s + it)9φ)f\\2ds£C\\f\\2

9 fe tftel. (5)

This implies (1) which is (13) with Hc(φ) replaced by H(φ).

Remark ([13] Remark 3.5). From the fact that \\R(λ, φ)\\ <ΞC for λeSj(φ) it follows
that for fe tf, R{e~2iφ(s + it\ φ)f -j^* 0 uniformly for te L

Now the decomposition theorem for H(φ) follows from Theorem 6.1 as shown
by van Winter ([13] Theorem 8.1).

Theorem 6.2. Let Γ be a pair of oppositely oriented lines Λί = {e"2ιφ(s +it 1)\co>
s> — oo} and A2 = {e"2l(p(sJrit2)\ — oo<s<co}, where tί<t2, such that Aγ and
Λ2 are contained in ρ(φ\ and such that at least one half-line μ(φ) + e~2ιφR+ of
σe(φ) lies between Aγ and A2. Then a bounded linear operator PΓ(φ) is defined by
the expression

if Pr(ψ)g)= ~ lίm J (f, R(A, φ)g)dA, f, ge jf, (6)
Z π lX->ooΓκ

where Γκ={λeΓ\\s\SK}.

The operator PΓ{φ) is a projection operator, which is Γ-independent as long
as Γ does not cross σ(φ) and satisfies

(i) PΓ(φ)R(λ, φ) = R(λ, φ)PΓ(φ) for λe ρ(φ).
(ii) The operator RΓ{λ, φ) = PΓ(φ)R(λ, φ) has an analytic continuation to the

region outside of Γ given by

(fRΓ(λ,φ)g)=^\im f (fR(μ, φ)g)(μ-λ)-1dμ .
Z π ί K ^ o o Γκ

(iii) If Γ and Γ" are contours such that [ίl, ί i ] n [ ί j , ^ 1 = 0, then

pr(φ)Pr»(φ)=Pr»(φ)PAφ)=θ-

(iv) If σ(φ) is contained between Aγ and A2, then
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Remark. Theorems 6.1 and 6.2 are valid also if there is an infinite number of
thresholds, since even in that case σe(H(φ)) has the relatively simple structure
described in / (1) and / (2). This allows the convolution representation of section
4 with a finite number of parallel lines, and consequently the estimates of Section 5.
If there is a finite number of thresholds, resonances, and eigenvalues, we obtain a
complete decomposition of H(φ) on subspaces corresponding to the cuts, res-
onances and eigenvalues. If the number is infinite, the question remains whether
the sum of individual projections converges. In this case Theorem 6.2 allows a
decomposition of H(φ) as a sum of operators each of which has as its spectrum
one cut with a cluster of resonances or a cluster of cuts with a cluster of resonances.
In the 3-body case for example only the first type would occur except possibly
atO.
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