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Abstract. The properties of "induced" (or multiplier) representations of groups
which act in Hubert spaces with a reproducing kernel are investigated. A
resume of earlier work is followed by a discussion of criteria for the irreducibility
of such representations. The notions of reproducing kernel and positive
definite spherical function are found to overlap. As a result, functional equations
(analogous to those of Godement for spherical functions) are found for the
reproducing kernel. The abstract theory is illustrated by certain discrete
series representations of the conformal group and by their "limit points".
In particular the so-called ladder representations (which give rise to the
conformal symmetry of zero mass particles) are analysed from this viewpoint.

Reproducing Kernels

1. Introduction

This paper is mainly concerned with developing some results on group representa-
tions in Hubert spaces with reproducing kernels. The ideas were motivated by
the papers of Ruhl [2] on the conformal group, Bargmann's basic work [3] on
the commutation relations and the paper of Perelomov [4] in which he points
out that the notion of "coherent state" and reproducing kernel are the same.

The theory has its origins in the papers of Krein [9] and Aronszajn [10]
although the foundations for the ideas developed here were laid by Kunze [1].
Subsection 2.1 is devoted to a resume of the results of [1]. This is followed by
a discussion of criteria for the irreducibility of "induced representations" in
reproducing kernel Hubert spaces. The rest of Section 2 is concerned with the
relationship between spherical functions and reproducing kernels. The existence
of functional equations for reproducing kernels and their relationship to the
functional equations satisfied by spherical functions of height one (see Godement
[5] for this terminology) is investigated.

The general theory is illustrated by using the work of Graev [6] and Ruhl [2]
on the discrete series representations of the conformal group [which for our
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purposes will be SU(2,2)]. (Note that it was observed by Langlands [7] that
the holomorphic discrete series representations of a semisimple Lie group can
be constructed in Hubert spaces with reproducing kernels.) In particular, we
consider a series of representations labelled by a positive integer n which, for
n^4, lie in the discrete series but for n<4 may be regarded as "limit points".
An example of physical interest is the case n = 1 which corresponds to the zero
mass, zero helicity representation of the conformal group. This leads us to consider
the construction of the so-called "ladder representations" of SU(2,2) [8] in Hubert
spaces of functions holomorphic in the field theoretic "future tube". The re-
producing kernels for these spaces are exhibited and the relationship to the usual
infinitesimal form of the ladder representations [8] is determined by the fact
that the Minkowski space wave functions are the boundary values in a "limit
in mean" sense, of the holomorphic functions. Connections are made with the
classical formulae for solutions of the wave equation.

2. General Theory

2.1. The WorkofKunze

In this subsection I will review the results of [1] and introduce the basic definitions
and notation.1

Definition 2.1.1. Let X be a locally compact Hausdorff space, Fa complex Hubert
space and H a Hubert space whose elements are functions from X to V which
are continuous in the norm topology on V. Suppose there exists a function
φ:X x X-*B(V) (the bounded operators on V) such that

(i) the functions

lie in H for all

(ii) <φx*v9

fora l lFeHandi eK
then H is called a reproducing kernel Hubert space with kernel φ.

Remarks. 1. The functions φx*v are the "coherent states".
2. We use the adjoint φ(x, y)* of φ(x,y) in the definition to accord with the

notation of the examples of Section 3.
Let G be a locally compact group with X of the form G/K, K some closed

subgroup of G.

Definition 2.1.2. A strongly continuous function τ:XxG-+B(V) is a cocycle if
(i) τ(x, e)=I (I, the identity operator and e the identity of G),

(ii) τ(x, gίg2) = τ(x, 0ιM#ι ~ 1 •*, 02)
If K fixes the point x0 say, in X, then (i) and (ii) imply that fc-*τ(x0, fe) is a

representation of K. Call this representation σ.

Note that our notation and formulation differs in several important respects from that used in [1]
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If H is a Hilbert space whose elements are functions from X to V such that
the equation

defines g-^Ug as a strongly continuous unitary representation of G then we call
U the representation induced by the cocycle τ and write indτ(JΪ). This definition
can be seen to be equivalent to the usual one (Varadarajan [10]) in certain cir-
cumstances. To see this define b:X^B(V] by

where y:X-+G is a regular Borel cross-section [10] of G^G/K such that y(x) x0 =
x

and y(x0) = e. Now define

) = b(x)F(x).

Then provided BH^L2(X, V,μ) where μ is an invariant measure on X, it is not
difficult to show that B intertwines indτ(H) with the representation induced by the
cocycle

σy(x, 0)=τ(x0, y(χΓ VQΊ(Q~ i •*)) -
Hence whenever σy(x, g) is unitary for all x, g then B sets up an equivalence of
indτ(ίί) with a subrepresentation of the representation of G on L2(X9 V, μ) induced
by σ. In general however, this is not the case. Examples of such representations
will be considered in Sections 3 and 4.

The first result of [1] is as follows.

Theorem 2.1.3 (Kunze). // H is a Hilbert space (whose elements are functions
from X to V) having reproducing kernel φ9 then the formula (2.1) defines a strongly
continuous unitary representation of G if and only if φ satisfies the covariance
relation

Φ(g-l x9y)*τ(x,g)* = τ(y9g-l)φ(x9g y)* . (2.2)

Now, the kernel φ on the homogeneous space X may be "lifted" to a kernel
on the group G. Following [1] define:

tiβ i> 92)* = Φo, 92 ~ l)Φ(x, )>)*τ(*o, 0Γ *)* (23)

where gi x0 = x and g2 - XQ = y Then it is straightforward to verify

(ί) X(0ι> 92)* = X(02> 0ι)> [note that by definition φ(x, y)* = φ(y, x)],

(ϋ) X(99ι> 99 2)* = *(0ι> 9 2)* > (2.4)

(iii) χ^i/Cj, #2fc2)* = τ(x0, k2~
1)χ(gi, g2)*τ(xo, ^i"1)* . (2.5)

We can also "lift" the Hilbert space # by defining for each FeH a F1 valued
function on G by

The functions F~ form a Hilbert space ίΓ with inner product



80 A. L. Carey

Hence,

<χ> F> = <^*3CoφθJ 0 " Ύv, F>H

So fΓ has reproducing kernel χ and carries a representation W defined by

g0) (2.6)

which is equivalent to indτ(fί).
Let us assume that fc->τ(x0, k) is unitary. Let H be as above. If we make the

further restriction that the maps Ex:f-^f(x) from H to Fhave dense range for
all xeX, then Kunze has characterized those group representations which may
be constructed in a reproducing kernel Hubert space. (Note however that there
exist reproducing kernel Hubert spaces which do not satisfy this restriction,
cf. Section 4.)

Definition 2. 1.4 (Kunze). Let U be a continuous unitary representation of G on
a Hubert space H0, K a closed subgroup of G and σ a strongly continuous unitary
representation of K on a Hubert space V. If there exists a closed subspace V
of HQ which carries a representation of K unitarily equivalent to σ and is such
that the linear span of {Ugv\geG9 υe V'} is dense in f/0, then we say that U is of
type σ.

Given a representation U of type σ, and A : F-> V a unitary transformation
setting up the equivalence of the preceding definition, define Φ:G-+B(V) by

<ιι, Φ(g)vy = (Au, UgAvy , u,υeV. (2.7)

Now, defining χ ( g l 9 g 2)* = Φ(g i"1 #2)* Kunze shows (Theorem 5 of [1]) that
there is a reproducing kernel Hubert space fΓ (with kernel χ) consisting of
continuous functions from G to K such that χ satisfies

χfoι*ι, £2*2)* = Φ2 ~ ̂ χfgl9 g2)*σ(k1) . (2.8)

Furthermore, the representation of G defined by

= F(g-i

go)(FEίΓ) (2.9)

is equivalent to U.
The above discussion establishes the main results of [1]. The remainder of

this section is concerned with developing some elementary consequences of the
above definitions. Note that the assumption that Ex has dense range for all
xeX will not be made (this leads to a more cumbersome notation than that
adopted by Kunze).

(i) Let H be as above and H0 a subspace of H. Then H0 has a reproducing
kernel ιp:X x X-*B(V) defined by

, y)*u, v\ = (Pφx*u(y), v\ (2.10)

where P is the orthogonal projection from H to H0.
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(ii) If we drop the continuity requirement from the definition of H then it
can be shown that a Hubert space of functions from X to V has a reproducing
kernel if and only if every element F of the space satisfies

\\F(x)\\v£ω(x)\\F\\H for all xeX,

where cφc)>0 depends only on x. (This requires some work to prove.)
(iii) Quite often H will be a subspace of a larger Hubert space H±. Then φ

defines the orthogonal projection onto H^ by /->F where

<o,F(x)>κ = <ψ>,/>fll, feH,. (2.11)

(iv) By the Cauchy-Schwarz inequality we have the useful bounding property
o f φ :

|<ι>, F(x)yv\ £ <ι>, φ(x9 φ>£/2 ||F||H (2.12)

for all v e K
For the remainder, of the paper we will assume that fe->τ(x0? fc) is unitary,

that φ(x0,xQ)=I and that // carries the unitary representation indτ(ff) of G.
With these assumptions we prove (cf. Theorem 4 of [1]):

Lemma 2.1.5. Denote the restriction of indτ(H) to K by k-+Sk. Then the vectors
{φxo*v\ve V} span a subspace V0 of H carrying a representation of K equivalent
to σ. Further, the projection P0 onto this subspace is given by

= </>(*o, y)*Φ(x, *o)*"

=K*ψ(χ,χo)*«(y). (2.13)
Proof. By virtue of (2.2),

Hence Skφxo*u = φxo*σ(k)u. Clearly therefore, S acting in the space F0 gives a
representation equivalent to σ (note that the map F-»F0 defined by

v-+φxo*v

is an isometry).
Consider the operator P0 defined on the vectors φx*u by (2.13). Observe that

the space Hφ defined as the linear span of {φx*v\veV,xeX} is dense in H. So
extending P0 linearly to Hφ makes P0 densely defined. Further, if

is an element of Hφ, then by direct computation

||P0F||2 = <F(x0),F(x0)>F.

But by (2.12) we have

So PO is bounded on Hφ and hence on H. As </>(x0, x0) = J so PO = PO It
straightforward to check that P0 = P0* thus completing the proof.
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Remark. Acting on an arbitrary FeH, P0 has the form

2.2. Criteria for Irreducibility

Following Krein [9] we introduce the

Definition 2.2.1. Let H, φ be as for Lemma 2.1.5 and denote the strongly continuous
^valued functions on X by C(X, V\ Call φ(G,K, F)-zonal if the conditions:

(i) there is a function ψ : X x X -> B( V) such that both ip and φ — \p are reproducing
kernels for Hubert spaces of functions contained in C(X, V\

(ii) ψ satisfies (2.2), force ψ to be a multiple of φ.
Note that whenever ψ satisfies (i) we can define

A(φx*u, φy*v) = <φ(x, y)*u, v\ .

A can be extended to a sesquilinear functional on Hφ x Hφ (Hφ as in the proof
of Lemma 2.1.5). Since φ—ψis also a reproducing kernel we have

for all FeHφ. Thus A is continuous from HφxHφ to C and therefore extends
uniquely to HxH. By the Riesz representation theorem there is a bounded
(self-adjoint) operator A~:H^>H such that

forallF,F'εH.
Now let us record the

Lemma 2.2.2. IfB'.H^H is bounded then B has a kernel b:Xx X^B(V) such that

<u,(BF)(x)>κ = <&3Cu,F>fl

where bx(y) = b(x, y) is defined by

Further, B is in the commuting algebra ofindτ(H) if and only if b satisfies (2.2).

The proof is straightforward so we omit it. The point of the preceding discussion
lies in

Lemma 2.2.3. φ is (G, K, V}-zonal if and only ίfmdτ(H) is irreducible.

Proof. Suppose indτ(H) is not irreducible and P is a non-zero projection onto
a proper invariant subspace. Now PH has a reproducing kernel say ψ and hence
the kernel for (/ — P)H is φ — ψ. Now applying Lemma 2.2.2 to P forces ψ to satisfy
conditions (i) and (ii) of Definition 2,2.1. So φ is not zonal.

Conversely, let φ satisfy conditions (i) and (ii) of the definition with ψ not
a multiple of φ. By the remarks preceding Lemma 2.2.2, φ defines an operator
A^'.H^H. Now by Lemma 2.2.2 A~is in the commuting algebra of indτ(#) (noting
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that A~ necessarily has as its kernel, ψ). Since ψ is not a multiple of φ, .this forces
the commuting algebra to be non-trivial. Equivalently, indτ(jFf) is not irreducible.

Our object now is to determine conditions under which a given kernel is zonal.
As before denote the restriction of indτ(Ή) to K by k-*Sk.

Theorem 2.2.4. Let H, φ, indτ(H) be as above and P0 be the projection defined
in Lemma 2.1.5, Suppose that

k-+τ(xQ, fc)

is an irreducible representation of K and there exists a subgroup G0 of G such that
the following condition holds: there is a projection Pc with P0^PC, lying in the
centre of the commuting algebra of the representation indτ(H) restricted to G0.
Then φ is (G, K, V)-zonal.

Remark. One way in which the condition on Pc may be realized is if there is a
subspace PCH of P0H, such that on restricting indτ(H) to G0, one obtains a maximal
primary (or factor) representation of G0 (in the terminology of Mackey [11])
in PCH.

Proof. Suppose that indτ(#) is not irreducible and that P is the projection onto
a proper invariant subspace. Define the kernel ψ for PH by (2.10). From the
hypotheses on Pc we deduce that PCP0 = P0PC and PCP=PPC. Further, the map
v^>φxo*v is an isometry from V onto P0H and therefore Pc defines a projection
Pc~ say, on V. Hence, for ue P~V\

*u . (2.14)

Further ψ satisfies (2.2) and hence the relation

But fc->τ(x0, fc) = σ(k) is irreducible and so ψ(xQ9 x0) is a multiple: λl of the identity.
Now (2.14) implies that ψXΌ*u lies in P0H and hence that

for all t?eK From this it follows readily that ψxo*u=λφxo*u for all uePcV. This
forces λ = 1 and since σ is irreducible we must have

Now let g-x0 = x so that from (2.2)

φ(x9 y)*τ(x0,g- λ)* =τ(

Hence φ = ψ, implying that P is the identity; a contradiction. So indτ(ίf) is
irreducible.

Corollary 2.2.5. // the multiplicity of the representation σ in the restriction of
indτ(jFf) to K is one then φ is (G, K, V)-zonal.

Proof. Set Pc equal to P0.
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Remark. In this context I should mention the very important result of Kobayashi
[12]. With the notation as before suppose that X has the structure of an
n-dimensional complex manifold with quasi-invariant measure μ. Form the
holomorphic vector bundle E over G/K with fibre V (this is the induced bundle).
The representation σ acts in the fibres and on the space of holomorphic n-forms
on G/K with values in E, it induces a representation U of G. Kobayashi shows
that there is a reproducing kernel φ for the Hubert space H of square integrable
holomorphic w-forms. Furthermore whenever H is non-trivial the restriction of U
to H defines a unitary representation of G so that φ satisfies an analogue of (2.2).
Kobayashi then shows that this representation is always irreducible. In Section 3
we will see the idea behind Kobayashi's proof used in a particular example.

In the case where σ is not irreducible it is more difficult to find conditions
for zonality. In this direction we have the following result. Recall the definition
of JFΓ, the kernel χ : G x G-»B(F) [Eq. (2.3)] and the representation W of G defined
by (2.6).

Proposition 2.2.6. If P0 lies in the centre of the commuting algebra of the repre-
sentation k-*Wk of K then the commuting algebra of {Wg\geG} is isomorphic
(as a von Neumann algebra) to the algebra of operators which commute with

The proof is not difficult and so we omit it. We conclude this subsection
with the remark that there are close connections between the ideas discussed here
and Naimark's notion of "quasihomogeneity" [13]. In fact when σ is irreducible
and K is compact it is not difficult to show that indτ(H) is quasihomogeneous
in the sense of [13]. One should compare Proposition 2.2.6 with Naimark's
Theorem 5.

23. Functional Equations

We lead into the connection between spherical functions and reproducing kernels
with a brief introduction to Godement's work [5]. Suppose that K is a compact
subgroup of G, that Tis a representation of G on a Banach space B and that in the
restriction of T to K, σ occurs with finite multiplicity. Denote by B(σ) the closed
subspace of B formed by taking the linear span of those vectors which transform
under the representation fe-> Tk of K according to σ. If there exists a continuous
projection E(σ) of B onto B(σ) define

Then φσ is called a spherical function for G, K and Godement proves [5] that
φσ satisfies

(2-15)

if and only if σ occurs once only in the representation k-> Tk of K. Let 1 denote
the trivial representation of K and set

Γ=ind1(fl)

where H is a reproducing kernel Hubert space with kernel φ.
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Suppose that 1 occurs once only in fc-> Tk and set

So χxo is a spherical function and the functional Equation (2.15) becomes:

$κΦXo(kg k~lg' Xv)dk=φXQ(g xώφXQ(g' xώ .

Using (2.2) this reduces to:

But jx Tkdk is the projection P1 onto the fixed point set of the representation
fc-» Tk of K. So the functional equation is

for all x, yeX (setting 0' x0 =x and #~ * x0 = y).
Now remove the compactness assumption on K and return to the general

situation with the assumptions as in the preamble to Lemma 2.1.5. We impose,
for the remainder of this section, the additional restriction that σ be irreducible
(and hence that the criterion for zonality given by Corollary 2.2.5 is valid). With
k-+Sk denoting the restriction to K of mdτ(H) write C(S) for the commuting
algebra of S. By Lemma 2.1.5 there is a subspace of H, say H(σ\ which carries
the representation $Γ of K satisfying (see Mackey [11] for the terminology):

(i) SΓ is maximal primary.
(ii) Every subrepresentation of S~ is quasiequivalent to σ.
[To see this one takes the central support in G(S) of P0.] As a consequence

of Lemma 2.1.5 we have

Theorem 2.3.1. With the restrictions of the previous paragraph, the projection Pσ

onto H(σ) satisfies for allueV,xeX:

Pσφx*u = φx*φ(x,x^u (2.16)

if and only if the multiplicity of σ in indτ(H) restricted to K is one.

In the particular case where G is unimodular and K is compact Pσ has the form

(PσF)(g)=lκC(k)F(k-1g)dk (2.17)

for FeH, where C(k) = dσΎτσ(k) with dσ the dimension of σ (see [5]). Recalling
the definition of χ [Eq. (2.3)] we have

Corollary 2.3.2. With the assumptions above, the irreducible representation σ
occurs once only in the restriction of indτ(H) to K if and only if

kO^χfoi, k-1gj*dk = χjg2)*χβl(er. (2.18)

Proof. Apply both sides of (2.18) to some veV and then substitute from (2.3).
The result then follows directly from Theorem 2.3.1.

When F=C we can interpret the theorem as asserting that the function χe

is a positive definite spherical function of height one (see [5]). For, in this case


