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Abstract. The properties of "induced" (or multiplier) representations of groups
which act in Hubert spaces with a reproducing kernel are investigated. A
resume of earlier work is followed by a discussion of criteria for the irreducibility
of such representations. The notions of reproducing kernel and positive
definite spherical function are found to overlap. As a result, functional equations
(analogous to those of Godement for spherical functions) are found for the
reproducing kernel. The abstract theory is illustrated by certain discrete
series representations of the conformal group and by their "limit points".
In particular the so-called ladder representations (which give rise to the
conformal symmetry of zero mass particles) are analysed from this viewpoint.

Reproducing Kernels

1. Introduction

This paper is mainly concerned with developing some results on group representa-
tions in Hubert spaces with reproducing kernels. The ideas were motivated by
the papers of Ruhl [2] on the conformal group, Bargmann's basic work [3] on
the commutation relations and the paper of Perelomov [4] in which he points
out that the notion of "coherent state" and reproducing kernel are the same.

The theory has its origins in the papers of Krein [9] and Aronszajn [10]
although the foundations for the ideas developed here were laid by Kunze [1].
Subsection 2.1 is devoted to a resume of the results of [1]. This is followed by
a discussion of criteria for the irreducibility of "induced representations" in
reproducing kernel Hubert spaces. The rest of Section 2 is concerned with the
relationship between spherical functions and reproducing kernels. The existence
of functional equations for reproducing kernels and their relationship to the
functional equations satisfied by spherical functions of height one (see Godement
[5] for this terminology) is investigated.

The general theory is illustrated by using the work of Graev [6] and Ruhl [2]
on the discrete series representations of the conformal group [which for our
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purposes will be SU(2,2)]. (Note that it was observed by Langlands [7] that
the holomorphic discrete series representations of a semisimple Lie group can
be constructed in Hubert spaces with reproducing kernels.) In particular, we
consider a series of representations labelled by a positive integer n which, for
n^4, lie in the discrete series but for n<4 may be regarded as "limit points".
An example of physical interest is the case n = 1 which corresponds to the zero
mass, zero helicity representation of the conformal group. This leads us to consider
the construction of the so-called "ladder representations" of SU(2,2) [8] in Hubert
spaces of functions holomorphic in the field theoretic "future tube". The re-
producing kernels for these spaces are exhibited and the relationship to the usual
infinitesimal form of the ladder representations [8] is determined by the fact
that the Minkowski space wave functions are the boundary values in a "limit
in mean" sense, of the holomorphic functions. Connections are made with the
classical formulae for solutions of the wave equation.

2. General Theory

2.1. The WorkofKunze

In this subsection I will review the results of [1] and introduce the basic definitions
and notation.1

Definition 2.1.1. Let X be a locally compact Hausdorff space, Fa complex Hubert
space and H a Hubert space whose elements are functions from X to V which
are continuous in the norm topology on V. Suppose there exists a function
φ:X x X-*B(V) (the bounded operators on V) such that

(i) the functions

lie in H for all

(ii) <φx*v9

fora l lFeHandi eK
then H is called a reproducing kernel Hubert space with kernel φ.

Remarks. 1. The functions φx*v are the "coherent states".
2. We use the adjoint φ(x, y)* of φ(x,y) in the definition to accord with the

notation of the examples of Section 3.
Let G be a locally compact group with X of the form G/K, K some closed

subgroup of G.

Definition 2.1.2. A strongly continuous function τ:XxG-+B(V) is a cocycle if
(i) τ(x, e)=I (I, the identity operator and e the identity of G),

(ii) τ(x, gίg2) = τ(x, 0ιM#ι ~ 1 •*, 02)
If K fixes the point x0 say, in X, then (i) and (ii) imply that fc-*τ(x0, fe) is a

representation of K. Call this representation σ.

Note that our notation and formulation differs in several important respects from that used in [1]
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If H is a Hilbert space whose elements are functions from X to V such that
the equation

defines g-^Ug as a strongly continuous unitary representation of G then we call
U the representation induced by the cocycle τ and write indτ(JΪ). This definition
can be seen to be equivalent to the usual one (Varadarajan [10]) in certain cir-
cumstances. To see this define b:X^B(V] by

where y:X-+G is a regular Borel cross-section [10] of G^G/K such that y(x) x0 =
x

and y(x0) = e. Now define

) = b(x)F(x).

Then provided BH^L2(X, V,μ) where μ is an invariant measure on X, it is not
difficult to show that B intertwines indτ(H) with the representation induced by the
cocycle

σy(x, 0)=τ(x0, y(χΓ VQΊ(Q~ i •*)) -
Hence whenever σy(x, g) is unitary for all x, g then B sets up an equivalence of
indτ(ίί) with a subrepresentation of the representation of G on L2(X9 V, μ) induced
by σ. In general however, this is not the case. Examples of such representations
will be considered in Sections 3 and 4.

The first result of [1] is as follows.

Theorem 2.1.3 (Kunze). // H is a Hilbert space (whose elements are functions
from X to V) having reproducing kernel φ9 then the formula (2.1) defines a strongly
continuous unitary representation of G if and only if φ satisfies the covariance
relation

Φ(g-l x9y)*τ(x,g)* = τ(y9g-l)φ(x9g y)* . (2.2)

Now, the kernel φ on the homogeneous space X may be "lifted" to a kernel
on the group G. Following [1] define:

tiβ i> 92)* = Φo, 92 ~ l)Φ(x, )>)*τ(*o, 0Γ *)* (23)

where gi x0 = x and g2 - XQ = y Then it is straightforward to verify

(ί) X(0ι> 92)* = X(02> 0ι)> [note that by definition φ(x, y)* = φ(y, x)],

(ϋ) X(99ι> 99 2)* = *(0ι> 9 2)* > (2.4)

(iii) χ^i/Cj, #2fc2)* = τ(x0, k2~
1)χ(gi, g2)*τ(xo, ^i"1)* . (2.5)

We can also "lift" the Hilbert space # by defining for each FeH a F1 valued
function on G by

The functions F~ form a Hilbert space ίΓ with inner product
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Hence,

<χ> F> = <^*3CoφθJ 0 " Ύv, F>H

So fΓ has reproducing kernel χ and carries a representation W defined by

g0) (2.6)

which is equivalent to indτ(fί).
Let us assume that fc->τ(x0, k) is unitary. Let H be as above. If we make the

further restriction that the maps Ex:f-^f(x) from H to Fhave dense range for
all xeX, then Kunze has characterized those group representations which may
be constructed in a reproducing kernel Hubert space. (Note however that there
exist reproducing kernel Hubert spaces which do not satisfy this restriction,
cf. Section 4.)

Definition 2. 1.4 (Kunze). Let U be a continuous unitary representation of G on
a Hubert space H0, K a closed subgroup of G and σ a strongly continuous unitary
representation of K on a Hubert space V. If there exists a closed subspace V
of HQ which carries a representation of K unitarily equivalent to σ and is such
that the linear span of {Ugv\geG9 υe V'} is dense in f/0, then we say that U is of
type σ.

Given a representation U of type σ, and A : F-> V a unitary transformation
setting up the equivalence of the preceding definition, define Φ:G-+B(V) by

<ιι, Φ(g)vy = (Au, UgAvy , u,υeV. (2.7)

Now, defining χ ( g l 9 g 2)* = Φ(g i"1 #2)* Kunze shows (Theorem 5 of [1]) that
there is a reproducing kernel Hubert space fΓ (with kernel χ) consisting of
continuous functions from G to K such that χ satisfies

χfoι*ι, £2*2)* = Φ2 ~ ̂ χfgl9 g2)*σ(k1) . (2.8)

Furthermore, the representation of G defined by

= F(g-i

go)(FEίΓ) (2.9)

is equivalent to U.
The above discussion establishes the main results of [1]. The remainder of

this section is concerned with developing some elementary consequences of the
above definitions. Note that the assumption that Ex has dense range for all
xeX will not be made (this leads to a more cumbersome notation than that
adopted by Kunze).

(i) Let H be as above and H0 a subspace of H. Then H0 has a reproducing
kernel ιp:X x X-*B(V) defined by

, y)*u, v\ = (Pφx*u(y), v\ (2.10)

where P is the orthogonal projection from H to H0.
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(ii) If we drop the continuity requirement from the definition of H then it
can be shown that a Hubert space of functions from X to V has a reproducing
kernel if and only if every element F of the space satisfies

\\F(x)\\v£ω(x)\\F\\H for all xeX,

where cφc)>0 depends only on x. (This requires some work to prove.)
(iii) Quite often H will be a subspace of a larger Hubert space H±. Then φ

defines the orthogonal projection onto H^ by /->F where

<o,F(x)>κ = <ψ>,/>fll, feH,. (2.11)

(iv) By the Cauchy-Schwarz inequality we have the useful bounding property
o f φ :

|<ι>, F(x)yv\ £ <ι>, φ(x9 φ>£/2 ||F||H (2.12)

for all v e K
For the remainder, of the paper we will assume that fe->τ(x0? fc) is unitary,

that φ(x0,xQ)=I and that // carries the unitary representation indτ(ff) of G.
With these assumptions we prove (cf. Theorem 4 of [1]):

Lemma 2.1.5. Denote the restriction of indτ(H) to K by k-+Sk. Then the vectors
{φxo*v\ve V} span a subspace V0 of H carrying a representation of K equivalent
to σ. Further, the projection P0 onto this subspace is given by

= </>(*o, y)*Φ(x, *o)*"

=K*ψ(χ,χo)*«(y). (2.13)
Proof. By virtue of (2.2),

Hence Skφxo*u = φxo*σ(k)u. Clearly therefore, S acting in the space F0 gives a
representation equivalent to σ (note that the map F-»F0 defined by

v-+φxo*v

is an isometry).
Consider the operator P0 defined on the vectors φx*u by (2.13). Observe that

the space Hφ defined as the linear span of {φx*v\veV,xeX} is dense in H. So
extending P0 linearly to Hφ makes P0 densely defined. Further, if

is an element of Hφ, then by direct computation

||P0F||2 = <F(x0),F(x0)>F.

But by (2.12) we have

So PO is bounded on Hφ and hence on H. As </>(x0, x0) = J so PO = PO It
straightforward to check that P0 = P0* thus completing the proof.
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Remark. Acting on an arbitrary FeH, P0 has the form

2.2. Criteria for Irreducibility

Following Krein [9] we introduce the

Definition 2.2.1. Let H, φ be as for Lemma 2.1.5 and denote the strongly continuous
^valued functions on X by C(X, V\ Call φ(G,K, F)-zonal if the conditions:

(i) there is a function ψ : X x X -> B( V) such that both ip and φ — \p are reproducing
kernels for Hubert spaces of functions contained in C(X, V\

(ii) ψ satisfies (2.2), force ψ to be a multiple of φ.
Note that whenever ψ satisfies (i) we can define

A(φx*u, φy*v) = <φ(x, y)*u, v\ .

A can be extended to a sesquilinear functional on Hφ x Hφ (Hφ as in the proof
of Lemma 2.1.5). Since φ—ψis also a reproducing kernel we have

for all FeHφ. Thus A is continuous from HφxHφ to C and therefore extends
uniquely to HxH. By the Riesz representation theorem there is a bounded
(self-adjoint) operator A~:H^>H such that

forallF,F'εH.
Now let us record the

Lemma 2.2.2. IfB'.H^H is bounded then B has a kernel b:Xx X^B(V) such that

<u,(BF)(x)>κ = <&3Cu,F>fl

where bx(y) = b(x, y) is defined by

Further, B is in the commuting algebra ofindτ(H) if and only if b satisfies (2.2).

The proof is straightforward so we omit it. The point of the preceding discussion
lies in

Lemma 2.2.3. φ is (G, K, V}-zonal if and only ίfmdτ(H) is irreducible.

Proof. Suppose indτ(H) is not irreducible and P is a non-zero projection onto
a proper invariant subspace. Now PH has a reproducing kernel say ψ and hence
the kernel for (/ — P)H is φ — ψ. Now applying Lemma 2.2.2 to P forces ψ to satisfy
conditions (i) and (ii) of Definition 2,2.1. So φ is not zonal.

Conversely, let φ satisfy conditions (i) and (ii) of the definition with ψ not
a multiple of φ. By the remarks preceding Lemma 2.2.2, φ defines an operator
A^'.H^H. Now by Lemma 2.2.2 A~is in the commuting algebra of indτ(#) (noting
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that A~ necessarily has as its kernel, ψ). Since ψ is not a multiple of φ, .this forces
the commuting algebra to be non-trivial. Equivalently, indτ(jFf) is not irreducible.

Our object now is to determine conditions under which a given kernel is zonal.
As before denote the restriction of indτ(Ή) to K by k-*Sk.

Theorem 2.2.4. Let H, φ, indτ(H) be as above and P0 be the projection defined
in Lemma 2.1.5, Suppose that

k-+τ(xQ, fc)

is an irreducible representation of K and there exists a subgroup G0 of G such that
the following condition holds: there is a projection Pc with P0^PC, lying in the
centre of the commuting algebra of the representation indτ(H) restricted to G0.
Then φ is (G, K, V)-zonal.

Remark. One way in which the condition on Pc may be realized is if there is a
subspace PCH of P0H, such that on restricting indτ(H) to G0, one obtains a maximal
primary (or factor) representation of G0 (in the terminology of Mackey [11])
in PCH.

Proof. Suppose that indτ(#) is not irreducible and that P is the projection onto
a proper invariant subspace. Define the kernel ψ for PH by (2.10). From the
hypotheses on Pc we deduce that PCP0 = P0PC and PCP=PPC. Further, the map
v^>φxo*v is an isometry from V onto P0H and therefore Pc defines a projection
Pc~ say, on V. Hence, for ue P~V\

*u . (2.14)

Further ψ satisfies (2.2) and hence the relation

But fc->τ(x0, fc) = σ(k) is irreducible and so ψ(xQ9 x0) is a multiple: λl of the identity.
Now (2.14) implies that ψXΌ*u lies in P0H and hence that

for all t?eK From this it follows readily that ψxo*u=λφxo*u for all uePcV. This
forces λ = 1 and since σ is irreducible we must have

Now let g-x0 = x so that from (2.2)

φ(x9 y)*τ(x0,g- λ)* =τ(

Hence φ = ψ, implying that P is the identity; a contradiction. So indτ(ίf) is
irreducible.

Corollary 2.2.5. // the multiplicity of the representation σ in the restriction of
indτ(jFf) to K is one then φ is (G, K, V)-zonal.

Proof. Set Pc equal to P0.
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Remark. In this context I should mention the very important result of Kobayashi
[12]. With the notation as before suppose that X has the structure of an
n-dimensional complex manifold with quasi-invariant measure μ. Form the
holomorphic vector bundle E over G/K with fibre V (this is the induced bundle).
The representation σ acts in the fibres and on the space of holomorphic n-forms
on G/K with values in E, it induces a representation U of G. Kobayashi shows
that there is a reproducing kernel φ for the Hubert space H of square integrable
holomorphic w-forms. Furthermore whenever H is non-trivial the restriction of U
to H defines a unitary representation of G so that φ satisfies an analogue of (2.2).
Kobayashi then shows that this representation is always irreducible. In Section 3
we will see the idea behind Kobayashi's proof used in a particular example.

In the case where σ is not irreducible it is more difficult to find conditions
for zonality. In this direction we have the following result. Recall the definition
of JFΓ, the kernel χ : G x G-»B(F) [Eq. (2.3)] and the representation W of G defined
by (2.6).

Proposition 2.2.6. If P0 lies in the centre of the commuting algebra of the repre-
sentation k-*Wk of K then the commuting algebra of {Wg\geG} is isomorphic
(as a von Neumann algebra) to the algebra of operators which commute with

The proof is not difficult and so we omit it. We conclude this subsection
with the remark that there are close connections between the ideas discussed here
and Naimark's notion of "quasihomogeneity" [13]. In fact when σ is irreducible
and K is compact it is not difficult to show that indτ(H) is quasihomogeneous
in the sense of [13]. One should compare Proposition 2.2.6 with Naimark's
Theorem 5.

23. Functional Equations

We lead into the connection between spherical functions and reproducing kernels
with a brief introduction to Godement's work [5]. Suppose that K is a compact
subgroup of G, that Tis a representation of G on a Banach space B and that in the
restriction of T to K, σ occurs with finite multiplicity. Denote by B(σ) the closed
subspace of B formed by taking the linear span of those vectors which transform
under the representation fe-> Tk of K according to σ. If there exists a continuous
projection E(σ) of B onto B(σ) define

Then φσ is called a spherical function for G, K and Godement proves [5] that
φσ satisfies

(2-15)

if and only if σ occurs once only in the representation k-> Tk of K. Let 1 denote
the trivial representation of K and set

Γ=ind1(fl)

where H is a reproducing kernel Hubert space with kernel φ.
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Suppose that 1 occurs once only in fc-> Tk and set

So χxo is a spherical function and the functional Equation (2.15) becomes:

$κΦXo(kg k~lg' Xv)dk=φXQ(g xώφXQ(g' xώ .

Using (2.2) this reduces to:

But jx Tkdk is the projection P1 onto the fixed point set of the representation
fc-» Tk of K. So the functional equation is

for all x, yeX (setting 0' x0 =x and #~ * x0 = y).
Now remove the compactness assumption on K and return to the general

situation with the assumptions as in the preamble to Lemma 2.1.5. We impose,
for the remainder of this section, the additional restriction that σ be irreducible
(and hence that the criterion for zonality given by Corollary 2.2.5 is valid). With
k-+Sk denoting the restriction to K of mdτ(H) write C(S) for the commuting
algebra of S. By Lemma 2.1.5 there is a subspace of H, say H(σ\ which carries
the representation $Γ of K satisfying (see Mackey [11] for the terminology):

(i) SΓ is maximal primary.
(ii) Every subrepresentation of S~ is quasiequivalent to σ.
[To see this one takes the central support in G(S) of P0.] As a consequence

of Lemma 2.1.5 we have

Theorem 2.3.1. With the restrictions of the previous paragraph, the projection Pσ

onto H(σ) satisfies for allueV,xeX:

Pσφx*u = φx*φ(x,x^u (2.16)

if and only if the multiplicity of σ in indτ(H) restricted to K is one.

In the particular case where G is unimodular and K is compact Pσ has the form

(PσF)(g)=lκC(k)F(k-1g)dk (2.17)

for FeH, where C(k) = dσΎτσ(k) with dσ the dimension of σ (see [5]). Recalling
the definition of χ [Eq. (2.3)] we have

Corollary 2.3.2. With the assumptions above, the irreducible representation σ
occurs once only in the restriction of indτ(H) to K if and only if

kO^χfoi, k-1gj*dk = χjg2)*χβl(er. (2.18)

Proof. Apply both sides of (2.18) to some veV and then substitute from (2.3).
The result then follows directly from Theorem 2.3.1.

When F=C we can interpret the theorem as asserting that the function χe

is a positive definite spherical function of height one (see [5]). For, in this case
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and so

Noting that a reproducing kernel is always a positive definite operator valued
function [1], this suggests we consider the converse problem of when a positive
definite spherical function is a reproducing kernel. Following Warner [14] we
introduce the following assumptions and definitions.

(a) Let G be unimodular with K a large compact subgroup and let μ be a finite
dimensional representation of K acting on a Banach space V.

(b) Define a μ-spherical function to be a continuous function

such that

Ψ(kίgk2) = μ(k1)Ψ(g}μ(k2).

(c) Let U be a topologically completely irreducible strongly continuous
representation of G in a Banach space B such that in the restriction of U to K,
a given irreducible σ occurs with multiplicity mφO (necessarily finite as K is
large in G). Let μ be the representation mσ (i.e. the direct sum of m copies of σ).
Suppose further that there is a continuous projection Pμ onto the space of vectors
in B which transform according to σ under fc-> Uk and define

Then ψv is a μ-spherical function. All spherical functions φ, "of type σ and height
m" (see [5]), have the form \p(g)= Tr Ψ%(g) for some μ-spherical function Ψ% [14].

Now, on V = PμB we can define an inner product such that μ is unitary. Then
Ψ defined by

ιp(g)=ΎτΨu

σ(g) (2.19)

is positive definite whenever Ψ% is such that

is positive definite for all t?e V. In this case we call Ψυ

σ a positive definite μ-spherical
function. One may now use Theorem 1 of [1] to obtain a reproducing kernel
Hubert space for which

is the reproducing kernel. Alternatively consider the following interesting argument
(due essentially to K. C. Hannabuss).

Define Ψu

σ as above to be a positive definite μ-spherical function. For con-
venience write Ψ for Ψ%. Let C0(G, V) be the space of strongly continuous F-valued
functions with compact support in G. Define:

for all /eC0(G, V). Denote by Ψ(G, F) the image of C0(G, F) under the map
- On (̂0, F) there is an inner product

<Ψ(f\
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Positivity of the inner product follows from the positive definite property of Ψ.
If for some /, <<F(/), !P(/)>y=0 then <<F(/'), Ψ(f)>Ψ=Q for all /'eC0(G, V)
by the Cauchy-Schwarz inequality. Equivalently,

for all f'e C0(G, V) and hence ψ(f)=Q. So < , yψ is non-degenerate and we may
complete Ψ(G, V) to give a Hubert space H(Ψ) say.

Lemma 2.3.3. H(Ψ) is a reproducing kernel Hilbert space with kernel #, #0~*

Proof. Let δe be the Dirac measure at the identity and as usual write Ψg*v for
the function g0-^Ψ(g~ίgQ)*υ(veV). Then by taking an approximate identity
{/JαeΛ f°r G it is not difficult to see that Ψ(fΛv) converges weakly in H(Ψ) to
Ψ(δev). Hence Ψgv(go)* = Ψ(δgυ)(g0) and it is straightforward to verify that
00, g^>Ψ(g()~

1g)* has the reproducing property for functions in Ψ(G,V). An
arbitrary element FeH(Ψ) may be identified with the function F~ defined by
<ι>, Γ(g)yv = < <P,*ι>, F>^ (cf. Theorem 1 of [1]).

Returning to the main argument, observe that on H(Ψ) we can define a strongly
continuous unitary representation by

wβψ(f) (g')= IG Ψ(gΰ-
lgrf(g-ίgϋ}dgϋ .

As the elements of H(Ψ) satisfy F(xk) = μ(k~1)F(x) the representation g-+Wg is
of the "induced" form we have been discussing to date.

Now let
(i) FO be the space of vectors {Ψe*v\ve V}.

(ii) PO be the projection onto F0 given by (Lemma 2.1.5)

PQΨg*υ=Ψ*Ψ(g9e)*Ό.

Then we have for all u,υeV

<<Fe*w, PΌWgP0Ψ*Όy = <u, Ψ(g, e)*vy

so we have, from the definition oΐΨ= Ψ%,

Ψe(g) = E(μ)UgE(μ) = P0WgP0 . (2.20)

Lemma 2.3.4. The representations U and Ware Naimark equivalent (see

Proof. Let B0 denote the dense subspace of B spanned by {Ugv\geG, υeV}.
Let HΨ be the span of {Ψg*v\geG,veV}. Following Kunze [1] define

SVgΌ=Ψ*Ό.

Extend S linearly to B0. Then clearly S is one-one and onto HΨ and satisfies
SUg= WgS on B0. To complete the proof we will show that S~ 1:HΨ-*B0 is closable.
For this, it is sufficient to show that if {Fr}QHΨ is a sequence converging to zero
in H(Ψ) and S~lFr-^feBQ then/ = 0.

If Fr(g) = (Σj Ψg*Vj{g))(r) then, as norm convergence in H(Ψ) implies pointwise
convergence we have

^/^O for all geG.
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That is, J5(μ)l7g-ι(^I7gjt?/Uθ [using (2.20)], for all geG. Equivalently
E(μ)Ugf = Q for all geG. But U is topologically completely irreducible and so /
must be zero.

We have now almost proved

Theorem 2.3.5. (i) If ψ is a spherical function of type σ and height m defined via
(2.19) in terms of a positive definite μ-spherical Ψυ

σ (where U is topologically com-
pletely irreducible and μ = mσ) then there is a unitary irreducible representation
W of G in a Hilbert space H(Ψ) with reproducing kernel

such that U is Naimark equivalent to W. Further, with P0 denoting the projection
onto the sub space of H(Ψ) spanned by {Ψe*v\ve V],

φ(g)=Ύr(P0WgP0).

(ii) The reproducing kernel satisfies the functional equation

e)* . (2.21)

Proof, (i) It remains only to prove that W is irreducible. This follows from the
remark on page 305 of [14].

(ii) If we can show that Pσ= P0 then the proof is complete. This follows from
Proposition 4.5.1.6 of [14] (cf. also 6.1.1.8 of Volume 2 of [14].)

The theorem asserts the existence of a functional equation for positive definite
μ-spherical functions of arbitrary height. Note that only in the case where the
height is one does there exist a corresponding equation for the spherical function

Further, the reproducing kernel approach allows a reinterpretation of the
functional equation as asserting (when the multiplicity of σ is one) a sufficient
condition for the irreducibility of the representation determined by the kernel.

3. Application to SU(2, 2)

3.1. Notation

Throughout this section G= SU(2,2) and X= SU(2)xSU(2)x 17(1) is the
maximal compact subgroup of G. The notation and preliminary results are to be
found in Ruhl [2]. The usual form of SU(2,2) consists of 4 x 4 matrices

D]

(where A, B, C, D are 2 x 2 matrices over <C) such that
L , detM=l, (3.1)
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with

-(? -J;
σ0 being the 2 x 2 identity. We will consider the form of SU(2,2) obtained from
that above by letting

σo σo

and defining the map M-> UMU~ 1.
This takes SU(2,2) onto the group of matrices of determinant one which

preserve ° 1. In this realisation G/K is naturally homeomorphic to the
W o O /

future tube [2]

(Here we will use the usual notation of relativistic quantum mechanics.) SU(2,2)
acts on T by

(3.2)

where

R ίS\ /A B

and W = WoσΌ + w σ(σ = (σί9 σ2, σ3) being the Pauli matrices).
The representations considered by Ruhl [2] are those of the holomorphic

discrete series of SU(2,2) (see Harish-Chandra [15] and Graev [6] for the general
theory). These may be regarded as representations induced from the compact
Cartan subgroup of SU(2,2) or equally, from the maximal compact subgroup
K (cf. Langlands [7]). We will consider only a subclass of these representations.

Consider the Hubert space Kn whose elements are C-valued functions holo-
morphic in T and satisfying

where y2 = yo~y2, d4Wis Lebesgue measure on C4 and n^4 is integral. Acting
on this space is a unitary irreducible representation of SU(2,2) defined by

(Un

gF)(W)= ά&(-TW* + Q*ΓnF(g~l W) (3.4)

where

R iS\

-IT Q)'

The proof of this fact may be deduced from [6] using the results of [2]. We will
give a proof, which depends on the reproducing kernel for Kn, at the end of
Subsection 3.2.



90 A. L. Carey

3.2. Limit Points

We are interested in the cases n = l,2, 3 treated briefly by Ruhl [2]. The case
n=3 (but not n = l , 2 ) is actually covered by the general theory of Knapp and
Okamoto [16] so this analysis has some interest as a worked example. We follow
the treatment by Gelfand et al. [17] of SU(1,1) and introduce a new normalisation
for the inner product. Define

Rn(y) = (y2Γ4θ(y0)θ(y2)/Γ(n-2) Γ(n-3) ,

where Θ(y0)θ(y2) is the characteristic function of T. Define

(F,F\=$€4\F(W)\2Rn(y)d4W.

Recalling the definition of the generalised function (y2)+ of Gelfand et al. [18]
we see that

RJίy) = Θ(y0) (y2)\~ 4/Γ(n - 2)Γ(n - 3) .

It is in fact an analytic function of the index π, the factor Γ(n — 2)Γ(n — 3) "cancelling"
the poles of the numerator.

This generalized function takes the values

R2(y)=(πβ)δ(y)

KιO>)=(π/4)D<5(>>),

for n=3, 2, 1 respectively. Substitution in (3.3) gives
2δ+(y2)d^d^y (3.5)

where w = x + iye (C4 and

(3.6)

where M=Minkowski space. As HFI^2 is degenerate we will reserve the n = l
case until the next section.

From the work of Ruhl [2] one can deduce that there are Hubert spaces
K3, K2 of functions holomorphic on T earring unitary representations of SU(2, 2)
given by (3.4) for n = 3,2. One may also deduce that K3 and K2 have norms given
by (3.5) and (3.6) respectively. I will give an independent treatment of these facts
which illustrates some of the reproducing kernel techniques.

Let

Consider the Hubert spaces L2(M) and L2(dT,dv) where dv is the measure
d4xd3y/2y0 on dT. Given /eL2(lM) and f'eL2(dT,dv\ define functions F and F
holomorphic in T by

) = (π/3) C2 JM /(x) ((Wl - x)2) ' 2d4x (3.7)

= C3 JC4 /'(w) ((Wl - w-ϊ2Γ*d*xd*yδ+(y2) . (3.8)
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where w=x + ίy and C2 and C3 are normalisation constants. These integrals
exist as the functions

w->((w! - w)2)~ 3, we dT

lie in L2(M) and L2(dT, dv) respectively for all we T(see below). We define function
spaces K2 and K3 by (3.7) and (3.8) as the holomorphic extensions into T of
elements of L2(M) and L2(dT> dv). It remains to show that K3 and K2 are Hubert
spaces with norms given by (3.5) and (3.6). To do this we follow Ruhl [2] and
use the Fourier-Laplace transform.

Let

(3.9)

and define Hubert spaces Hp

λ from functions h: V* ->(C satisfying

(Λ, h)λ = (π/2) j \h(p)\2θ(p0)θ(p2)d4p(p2Γλ< oo

where A^O. Now define Hubert spaces H™ of functions holomorphic in T via
the Fourier-Laplace transform Jδ? :

)= J Λ(P) exp(ip w)θ(p0)θ(p2)d4p (3.10)

where /? w=p0w0 — /? w. Observe that the functions fc£ defined by

are in #5 for all we Γ Hence (3.10) is defined as an ordinary integral being just
the inner product (k^h)λ. Now Ruhl shows that H^_2 = Kn for n^4. Further,
the reproducing kernels for these spaces are defined by

0"(w1? w2)* = J expι>(w2 - w x) (p2Γ2d4pθ(p0)θ(p2)

(3.11)

where Cn is a normalization factor (see [2]). The reproducing property follows
from the relations

FeKn.

Now, for n = 2 the above formulae still hold provided we define <φ2*, F>2 by
(3.7) (for a suitably chosen constant C2). The relationship between F and its
"boundary value" / in (3.7) is determined by the fact that if F=<£h then / is the
Fourier transform of h. Further, the function Fy defined by Fy(x)=F(w), w = x + iy
converges in the L2 norm on M to / as y-+Q (see [2]).

When n = 3 we need to do a little more work. Define a map 2Γ from R\ into
L2(dT, dv) by setting

, x + iyedT,
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for those /e/ff which are integrable with respect to Lebesgue measure on V*.
ZΓ is norm preserving and so defines an isometry of H\ onto a closed subspace
QΪL2(dT, dv) (it is not difficult to show that f cannot map onto L2(dT, dv)). Setting
f' = &~h for heH^ we see that

That is, X3 is just the image under Sg of H\ and the norm (3.5) is well defined
provided the "boundary value" /' of F' = £*heK3 is defined to be &~h.

We now derive proofs of unitarity and irreducibility of the representations Un

defined by (3.4). The covariance relation (2.2) follows directly from the identity

where

-i / R

9 =(-iT

using the definition (3.11) of φn. Unitarity now follows from Theorem 1 of [1]
(i.e. Theorem 2.1.3 of Subsection 2.1). Irreducibility may be obtained in several
ways. The following argument may be found in Kobayashi's paper [12] and in
Bargmann [3].

Let ψn* be the kernel for some non-trivial invariant subspace of Kn> then φπ*
necessarily satisfies the covariance relation

Since SU(2,2) acts transitively on T we can write

ψ»(W, W) = det ί(W* Γ* + β*) (TW + β)] V(iσo, iσ0)

( o , c\ - 1
takes iσ0 to W. But equally φn(W, W) satisfies a similar

relation and so

ψ^W9W) = dnφ
n(W,W)9

for some dne!R. Define a function χn by

χ«(Wl, W2)=d^Wίt W2r-^Wlt

Make a change of variable by setting

Then ζ,η-*χn(ζ,η) is holomorphic in ζ and η and is zero when W1 = W2. This is
precisely when ζ,η are both real forcing χ"=0. Hence the representations Un

are irreducible.
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4. The Ladder Representations of SU(2, 2)

4.1. Preliminaries

The ladder representations [8] are those which give rise to the conformal symmetry
of zero mass particles. They have the interesting property that on restriction to
a Poincare subgroup of SU(2,2) they remain irreducible [8]. Our intention in
this section is to give a treatment of the ladder representations which makes use
of the reproducing kernel techniques. We begin with some facts about the zero
mass representations of the Poincare group (see [19] for an elaboration of the
results listed here).

We will take the Poincare group P to be 1R4 ©SL (2, <C). Write P4 for momentum
space and let X$ = {pelP4|p0>0 and p2 = 0} be the surface of the forward light
cone. The P invariant measure on XQ is

Let Vs be the (2s-f l)-dimensional Hubert space carrying the representation
σs of SL(2, (C) labelled (s, 0) (see [19] for this labelling) where the norm is chosen
so that σs restricted to SU(2)£SL(2, <C) is unitary. Let dμs be the measure

on XQ and define a non-unitary representation N of P on L2(Xj, Vs,dμs) by

^p) (4.1)

where # = (w, Λ)eP.
I will take the Lie algebra of SL(2, C) to be spanned by [Jt, Lt\i = 1, 2, 3} with

Uί, Jj] = iZίjkJk [Li9 LJ] = - iεijkjk

Denote by pΛ the element (1,0,0, l)eIP4 and let χs(p*) be the unique vector of
norm one in Vs such that

σs(exp(UJ3))χs(p> exp(Us)χs(/0 . (4.2)

If p is any point on X0

+ let

fp^-Φo'O^Po)

be the SL(2, (C) matrix

o1/2 0
0 p0-

and Rp be the rotation taking (p0?0, 0,p0) to (po>Pι>P2>P3) Putting the above
together we define

Now, the zero mass (positive energy) helicity s representation of P(s=0,
1/2, 1, 3/2, ...) is constructed on the subspace Γs of L2(X0

+, Vs,dμs) consisting
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of solutions of the equation:

L3-ι*A)P«/(P) = sPo/(p) (4.3)

where σs denotes the representation of the Lie algebra of SL(2, C) corresponding
to σs. A straightforward calculation shows that the non-orthogonal projection
onto Γs is given by

(Pf) (p) = σs(Rplp)P0σs(lp *R~

where P0 is the projection in Vs defined by

*V = <χs(/0, vyv sχs(pΛ) , veVs.

We will write

£(p) = σs(Rplp)P0σs(lp ^Rp *) . (4.4)

The advantage of defining the Poincare representations on L2(X0

+

9 Vs,dμs)
is that the inner product may be transformed onto Minkowski space. To see
this we introduce first the Schwarz space on IR4(IP4) of C°° functions of fast decrease
taking values in FS:^(IR4, FS)(^(1P4, Fs)). Let ̂ 0(P

4, Fs)bethesubspaceof^(P4, Vs)
consisting of functions of compact support not containing the origin. Write 3F
for the Fourier transform from both L2(IP4, Vs) to L2(]R4, Vs) and from < '̂(P4, Vs)
to '̂(IR4, Fs). Finally, note that every function feL2(X0

+, Vs,dμs) defines a
distribution fδ+ on ̂ (F4, Vs) by

+) (Φ)= ίx5 Σv2^!1 Λ(ω, P)φv(ω, p)d*p/2ω (4.5)

where ω = \p\.
Now, it is not hard to show that the inner product in L2(X0

 + , VS9 dμs) transforms,
for functions φ, \p<Ξ^ίfQ(W*, Vs) into:

Λ \r s T / \^v/ \rs Ύ ) \ /
OX0

where

(ii) j8s is the Fourier transform of the tempered distribution

using the notation of Gelfand et al. [18],
(iii) βs*φ+ denotes convolution in the x0 variable only. (Note that it is not

trivial that βs*φ+ is well defined.)
Now (4.6) is an integral over the spacelike hypersurface x0 = 0. If we write

< , >| for the corresponding integral over any sufficiently smooth spacelike
hypersurface Σ9 an application of Green's theorem gives

<,>! = <, >o
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Essentially what we are doing here is taking a space of J^-valued solutions
of DF(x)=0 and defining an inner product by an integral over a Cauchy initial
data surface. The form < , >| is positive definite because we are restricting to
positive energy solutions of the wave equation. This space of solutions J 0̂(IP

4, V^
may now be completed to give a Hubert space Hs say, whose elements may be
identified with those of $~L2(X0

 + , VS9 dμs) where 2Γ is the map

4.2. Some Properties of Γs

If/eΓ s and 0 = (0, JRp/p)~1eP then we have, from Equation (4.3)

Σi WύPtV*. /) 00 - s(Nθ f ) (pO ,

and this reduces to

Recall that χs(p) is the unique vector of norm one satisfying this last equation.
Hence

where cge<C depends only on p. Thus we may define a measurable function
f°:X0

 + -+€ byf°(p) = cg where 0=(0, Kp/pΓ1. We now have

= σs(Rplp)(Ng f)(p")

= σs(Rplp)cgχs(p")

Our object is to show i
The first step is to note that with

r (iβ 0

we have lp= exp(-flog(p0)L3). Secondly, recall that in the representation

and therefore

Finally since σs(,Rp) is unitary

l l/ II 2 = J \f°(p)\2χs(prχs(plδ+(P2)d4p

This proves

Lemma 4.2.1. Every function /eΓs has the form
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for some f°eΓQ. Furthermore the inner product of ίwo functions in Γs is given by

</ι,/2>= fp« 7?(PJf?(p)δ+(p2}d4p

so that the map /°->/ /row Γ0 orcίo Γ2 is an ίsometry.

Let fj(j=l,2) be elements of Γs and denote by F° the Fourier transform of
fjδ + . Then the inner product has the simple form:

(4.7)

(with δμ = — - and dσμ = "area measure" in IΊ whenever //<5+ is actually the

product of a function // in ^(S*4, C) with the distribution δ+.
We conclude this subsection by determining some dense subspaces of Γs

Lemma 4.2.2. Define for each we T, Gw~(p) = exp( — ip w). The functions Gw~eΓ0

for all we T and their linear span is dense.

Proof.

where y is the imaginary part of w. Hence

|3;|2)<(X) since j,0>|y| in T.

Density follows from two known results:
(i) the functions {ω->exp(-2ωy0)l);o>l)7|)>

7fiχed} span a dense subspace
ofL2(0,oo);

(ii) the functions {/>-»exp(ip-Jt)|jtelR3} span a dense subspace of the space
of functions square integrable on the sphere of radius ω = \p\ (the measure being
that arising from d3p/2ω). As a corollary we note that the functions fw defined by
fw(p) = Gw~(p)χs(p) span a dense subspace of Γs. A similar argument to that above
gives

Lemma 4.2.3. The functions h^:p-^pQSGw(p)ev where w ranges over T and

έ? v(v=l,...,2s + l)

ranges over an orthonormal basis of Vs, span a dense subspace of L2(X0

+, Vs, dμs).

4.3. Hubert Spaces of Holomorphic Functions

This is the central topic of this section. Here we produce the Hubert spaces in
which the ladder representations act, as Hubert spaces of holomorphic functions
and exhibit the reproducing kernels.

Let f:X0

+^Vs be square integrable with respect to dμs, then its Fourier-
Laplace transform defined componentwise by

p2)<iV (4.8)
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exists as an ordinary integral by Lemma 4.2.3 and the fact that (4.8) is just

Furthermore, fvδ+ is a tempered distribution with support in the closure of
Vp

+ [Vp

+ defined by (3.9)] implying that (4.8) defines a function holomorphic
in T [2]. Denoting the Fourier-Laplace transform by 3? define

as the Hubert space with inner product

where FJ. = J2?(/j3+)j= 1,2.
The first question we will settle is: what can be said about the Shilov boundary

values of elements of H™ (Minkowski space is the Shilov boundary of T [21]).
We know [20] that such functions will converge in a distribution theoretic

sense to their boundary values ^f = ̂ (fδ+) but in fact more is true.

Theorem 4.3.1. With F = &f and Fy defined by

\im\\F y-
y^Q

So F converges in norm to its boundary value &~f.

Proof. Firstly, &~f is an element of Hs and for each y in V+ where

the function Fy is in Hs. Secondly, since Fy is the image under 2Γ of the function

we have

Thus

But

lexp(-p j )- l

and

|exp(-p.j;)-l|2||/(p)||2/p§^0 as y^O.

Therefore by the Lebesgue dominated convergence theorem,

\im\\F y-*Γf |||=0.
-
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Next observe that H™ is a reproducing kernel Hubert space with kernel

φs(wl5 w2)*= j exp(ip - (w2-w1))pgsδ+(p2)rf4p

=<h-2\ /c:> /
where / is the identity operator on Vs. This is clear from

Define

φ(w1,w2)* = <hW2";ftWl >.

From the known Laplace transform of δ+(p2) we have

V>(wι, w2)*-π/2(w2-w1)
2 ,

whence for s=0 we have recovered the reproducing kernel for the n=l case
of Section 3.

Proposition 4.3.2. T7i£ space Γ™ = 5£ΓS is a reproducing kernel Hilbert space with
an operator-valued kernel whose components are

= <eμ? J exp [ip - (w2 - wj] p^(p)*ev>F^+(p2)d4p . (4.9)

Proo/. We prove firstly that Φw*MeΓ^ for all ueVs. Recalling the definition of
E(p) by (4.4) we have

and hence ΦW*M lies in Γ^ provided the function

p->exp(-ΐp w) <χs(p),w>

is in L2(X0

 + , dμ0) (Lemma 4.2.1). But this last function has norm

It remains to check the reproducing property. Given FeΓJ" we have

F(w)= ίexp(φ.w)/°(p)χs(p)δ+(p2)cί4p

and therefore

<Φw*u, F>s= I exp(ip.w) <£(p)*M, χs(p)>f°(p)δ+(p2)d4

P

= ί exp(φ.w) <M, χs(p)yf°(p)δ+(p2)d4

P

by the definition of χs(p) and £(p). So

<Φw*«,F>,=<ιι,F(w)>κ.

as required.
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Using the results of Subsection 4.1 we can rewrite the above formulae in
Minkowski space terms. Let /eL2(X0

+, VS9 dμs) then for F = £?(fδ+)

= $exp(ip w)fv(p)δ + (p2)d4p

Now (^Gw~) (x)* = π/2(w-x)2 and so for / "sufficiently well behaved",

Fv(w) = <GW- /v> = <^GW- 3T/v>0

zπ
I / 1 / / i i ί •vl 'ΊC// f I -v\

(w-x)2 3x0

These are just the classical Kirchoff formulae (expressing the solution ^fv of
the wave equation in terms of its initial data via the Green's function for positive
energy solutions), extended to functions holomorphic in T. These formulas have
a distribution theoretic meaning for arbitrary feL2(X0

+, Vsdμ) [22]. Thus the
reproducing property of the kernel merely expresses the "reproducing property"
of the Green's function (cf. [23]). Similar formulae can be derived for elements
of/7.

Finally, we note that from (2.12) there exist bounds for the elements of /7
and #™. For #? we compute (F = &(fδ+))9

0/0

where y is the imaginary part of w. For Γ^ the function w->Φ(w, w)* can be deter-
mined after some calculation as

2s+ ̂  (σs)μv

where (σs)μv denotes the μvth matrix element. This gives a bound by substitution in

Remark. Let D be the domain of (-F2)1/2 in L2(JR3). Then the elements of Γ£
are the holomorphic extensions into T of tempered distributions on Minkowski
space defined via the Kirchoff formula from initial data in D.

4.4. The Ladder Representations

Consider the following action of SU(2,2) on Vs-valued functions holomorphic
inΓ:

l.W (4.10)
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where

(i) W = w0σ0 + W'σ and Q~l

iT Q)'

(iii) σs is extended in the obvious way to GL(2, (C).

A distinguished Poincare subgroup of SU(2,2) is given by matrices with T = 0,
i.e. matrices of the form

a ιTα*"Λ , fa'1 -ΐcΓ1

where αeSL(2, <C) and 7 = ι?0σ0 + » σ, ^μeR Restricting (4.10) to Poincare
elements we have

This is just the representation N defined by (4.1) transferred via the Laplace
transform onto functions in T. Restricting therefore to Γ™ we obtain the (positive
energy) zero mass helicity s representation of the Poincare group.

Now it is not hard to compute the expressions for the generators of SU(2,2)
acting on the functions holomorphic in T. Setting the imaginary part of w equal
to zero in these expressions yields the formal expressions of Mack and Todorov [8]
for the infinitesmal form of the ladder representations acting on functions on
Minkowski space. It would be nice to have a global proof of the unitarity of
these representations but unfortunately only the s=0 case is easily treated. The
proof is as follows.

The reproducing kernel is

and the covariance relation for

R
-β --IT

is just

But this is no more than the covariance relation (2.2). So by Theorem 1 of [1]
we have unitarity of the representation (4.10) for s = 0.

Note that this proof fails for the higher spin cases simply because it is not
clear that these are of the "induced form" that we have been discussing (cf. Gross
[24]). One can prove however that (g F)(W)=Q for all gεG if and only if

So H™ is not invariant under the SU(2,2) action (cf. [25]).
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