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Abstract. We prove the convergence of a cluster expansion for the weakly
coupled Yukawa model in two dimensions.

I. Introduction and Results

The purpose of this paper is to prove the convergence of a cluster expansion [8, 3]
for the Yukawa model in two dimensions1. We use here the model as defined by
Seiler [13] and McBryan [10], and we shall use the presentation of Seiler and
Simon [14].

The Yukawa model has been also studied by Glimm [4], Glimm and Jaffe
[5] and [6], Schrader [12], Brydges and Federbush [2] and Brydges [1].

In this introduction we define the problem and state the main results, in the
second chapter we define and give the properties of our main tool: a set of de-
coupling functions allowing to do the cluster expansion—see also [9] —, in the
last chapter we prove the convergence of the cluster expansion.

Let us give some definitions, see [14].
The partition function in a volume A is:

ZA= j ^ d e t r e n ( l + X J . (I.I)

The unnormalized Schwinger functions in a volume A are:

= f dμ |dcttfc SF (iP2 + m2)-^gi, ( p 2 ^ ? ) 3 / 4 ft*)} Π

where:

* On leave of absence from Centre de Physique Theorique, Ecole Polytechnique, F-91120 Palai-

seau, France
1 A. Cooper and L. Rosen have shown also the same result [17]
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and iP is the gradient operator KΛ is the operator in L2 of kernel:

KΛ(x,y)

(P2 + m2)112

λ is the coupling constant and is real, m is the mass of the fermion, Γ = iy5 in the
pseudoscalar case and Γ = ί in the scalar case, Λ(x) is the characteristic function
of the volume A.

Also:

with

and

Tr r e g :K2

Λ\ is defined as in [14] and we note:

Tr r e g :K2

Λ: = j dxdy :φ(x)bieg(x, y)φ(y):.

Also dμ is the Gaussian measure of mean zero and covariance

+K) exp f^ (- l)n- ΎτKn

Finally fl9 gp hk are functions in suitable spaces (defined later), and for convenience
we suppose that their supports are localized in unit squares of a lattice cover oϊR2:

R2= (J AΛ, Aa is the unit square centered at α.
αez 2

Let:

where χ^ is the characteristic function of the unit square A. Then:

^ = Σ sΛ(fi,...,fn ,8Ίι,~.,ffl Mι,-M'')
<*l,βk

with

QtikSF(Ui, k) fl Φ(fi) det r e n(l +KΛ). (1.2)
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We construct the cluster expansion for SΛ (all the functions, /, g, h having their
support in unit squares); SΛ is obtained by resummation.

Remark. In the sequel we shall take the boson mass m to be equal to m, because
in the analysis of the convergence of the cluster expansion the two masses play
the same role.

Let us call Z 2* the sides of the squares in the net defined by the lattice cover
of R2. To each beZ2* is associated a variable sb9 O ^ s ^ l . For each choice of
{sb}beZ2*wQ define s-dependant quantities:

C(s) (x, y) = Σ H(s; Aa9 Aβ9 Ay)M(Aa9 Aβ9 Aγ)Cm(x, y)χΔJ,x)χΔβ{y)
α,/?,yeZ2

K{s)A(x9 y) = Σ H(s; 4 * Δβ9 Ay)KAynΛ(x, y)xAp)XAfi(y) -
a,β,yeZ2

The definition of breg(s) (x, y) follows in a natural way from the definition of K(s).
Then if in formula (I.I) and (1.2) we replace all the quantities by the corre-

sponding s-dependant quantities this defines Sis) and Z{s).
In Chapter II we define H(s; Aa, Aβ, Ay) and E(Aa, Aβ, Ay) and prove:

Lemma I.I. 0^tf(s; Aa, Aβ, Aγ)^ί9 0^M(Aa9:Aβ9 Ay)^ί9

ΣM(Aa9Aβ9Ay)=l.

b = WbthenH{s;Aa9Aβ9Ay)ϊΞl.
Let DCZ2* defined by D={beZ2*\sb = 0} and let R2\D = X1U...UXp be the

decomposition of R2\D as a disjoint union of connected components then:

H(s; Aa9 Aβ9 Ay)=ΣH(s; Δa9 Δβ9 Δy)\Xh

k

where

Ws;Aa,Ap9Ay) if AaCXk9ApCXk,AyCXk

It is then clear that C(s) (x, y) = 0 C(s) (x, y)\Xk and also that K(s)Λ= ^ K(s)\Xk

ere K
Then

k k

[where K(s)\Xk means the restriction of K(s) to I?(XJ].

and this is obviously true also for detren(l-fi£(s)) because ΎrKq decomposes
itself in a sum ]Γ Ύr(K\Xk)

q.
k

Also

i, hk)=±U tetjiSAgp ft,)
k

where for k given the determinant is formed with the function:
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Then with obvious notation we have:

z=γ\zXk s=γ\s\Xk.
k xk

As a consequence, according to the general scheme of the cluster expansion
(see [8] and [3]), one has a convergent cluster expansion if one can prove that for
some values of the parameters λ and m(m^l) :

Ax) A being a unit square. Z{s) Δ>0 for sb = 0bedA.

A2) Let ΓcZ2* and cfnote \\ — . Let X be one of the connected components
ber dsb

ofK2\(Z2*\Γ)then:

s Π ll/ill-i Π Mjhjhjh.oiίf o(irl\(n(Λ)\)1/2e~QllΓι

ί = l j=1 J

where \Γ\ is the number of bonds in Γ, \\f\\2_1=j 2 dp9 n(A) is the number

of f{ with support in A and β x is some positive constant large enough. Also for a
matrix \A\= sup \A^.

Indeed, giving us /lo>0, there exists m(i0) such that for |A|^/l0, λ real and
m^m(λo)A1 and ^42

 a r e satisfied2, and even by taking m large enough one can
take Qγ as large as we want.

We now want to show that one can bound the norms of the g's functions by
norms of the initial functions g.

First suppose that suppgCA, and that AnAa = 0. Let ηΔ be a CQ function
such that ηΔ{x)=ί if xeA and such that distΐsupp^, Aa)>j (if ΔnΔa = 0). We
have

\\g | | L 2 -

defining D: = (P 2 + m2), then:

where

Using then the Theorem 2.2 of Seiler and Simon [14]:

where QΊ is as big as we want if m is big enough, and d(Δ, Λα) = sup(l, dist(/l, Δa)).

Remark that the theory depends only of the ratio λjm
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Then if zlnzJαΦ0, we use

ll$αH2L = ί \(P~llArg){-

We have thus obtained that:

II L = J \Vυ g)(X)\ XAa\Λ)UA^ | | t/ | |_ i/2

Using then the fact that ^ ^ " d ( J J β f ) ^O(l) we obtain for the original Schwinger

functions bounds in | | # | | _ 1 / 2 and | |/Ϊ | |_I/ 2 > and the exponential decrease between
the support of the g and h give exponential decreases between the support of the g
and h using the exponential decrease:

e-{QΊ-l)d{Δ,Δa)

Then as a consequence of Aγ and A2 we get

Theorem 1. Let λo>0be given.
Uniformly in s, and λ, \λ\<λ0, these exists m large enough such that:

lim SMΛf'>g;h)

exists and is bounded by

θ(i)"θ(if Π ILΛII-i Π iω-i/2llM-i/2ΠW^)01/2

i = l k=ί A

Moreover, there is an exponential clustering which is as big as we want if m is taken
large enough.

Finally under the same conditions as for Theorem 1, and SΛ being defined as in
(I.I), one has:

Theorem 2. The infinite volume limits lim Z^ ιSΛ{f\ g\ h) exists and satisfy all the
A—>oo

Osterwalder-Schrader axioms, including an exponential clustering.

As an obvious consequence:

Corollary 1. There exists a 2 dimensional Yukawa relativistic theory satisfying the
Wightman axioms and possessing a mass gap.

Theorem 2 follows from Theorem 1. Indeed we proceed as in [9]. We define
new Schwinger functions SΛ;Y, for Y a big square union of lattice squares and
containing Λ, by:

SΛ;Y: = S{s)tΛ for sb=l if beBγ and sb = 0 otherwise.

Bγ is the set of lattice lines strictly contained in Y. Then by the equivalent of
Proposition IV. 1.3 of [9]:
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On the other hand from Theorem 1, it follows that

lim lim ——
Λ-»oo Y->oo ^Λ Y

exists; this proves the existence part of Theorem 2. Now since this limit is also
the limit of the theory defined by Seiler [13] and McBryan [10], it is obvious
that all the Osterwalder Schrader axioms are satisfied.

It remains thus to prove Aγ and A2. The proof of Aγ results from Seiler [13].
In fact C{s)(x, y)\Δ and K{s)(x, y)\Δ are proportional to C(x, y) and K(x, y)9 x9 ye A.
Thus the proof of Z{s)Δ>0 reduces itself to the Seller's proof of ZΦO for the
volume Λ = A, i.e. to have | | J£ | J |4<1. This condition is obtained by taking λ/m
small enough.

The remaining of the article is devoted to the proof of A2.

II. The Combinatoric of the Cluster Expansion

We give now the explicit form of H which is a function of a parameter mί9 and of
M which is a function of another parameter m2:

Definition. Let mΐ>0 and m 2 > 0 :

Hmi(s;Al9A29Δ3) = £ Π sb Π (^~sb) - * '— - 3 ? — (H l)
γCZ2*bey bφγ ^m^A ± A 3) Cmi(A 3 A2)

and

Mm2(Al9 A29 A3) = Em2(Al9 A29 A3) [ £ Em2(Al9 Δ2, z l j " 1

Um2\
Δl> Δ2> ΔV=ze

CJnι(x,y)= j e ~ m i T § Y[ J\{z)άzΎ

xydΎ
beγc

where dzτ

xy is the Wiener density for the paths in R2 and

τ JO if z(τ)eb O^τ^T
b [1 otherwise

Cy

m,{Δa9 Aβ)= J Cy

mι(x, y)χΔΆ{x)χΔβ{y)dxdy, Cmί = C%

Proof of Lemma LI. It is obvious. In particular H being a convex sum of non
negative quantities smaller than one, we have O^H^l. I f s Ξ l then in formula
(Π.l) the only contribution to the sum over y is for y = Z 2 ^and so H=l.

Finally remark that if σmι(. . )= Σ ^ ί )\xk then σmi(Δx A3)σmi(Δ3; A2)
k

is equal to zero if Al9 A2, and A3 don't belong to the same Xk. This finishes the
proof.

We now reduce A2 to a proposition whose proof is given in Chapter III. This
is obtained through a lemma showing that HmιEm2 has essentially the same com-
binatoric properties as Dirichlet covariances, see [8]. Thus let us consider
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The d/ds derivations acting on C(s) or K(s) are localized:

ds tή' a ds

with obvious notations

γK(s)= Σ γH(s;A,A',A")χAKΔ,,χA,.
US A,Δ' ,Δ" aS

We then can write (see [8]):

= Σ Σ 8»H(s;ΔJ,Δ'J,Δ'i)ΣlRdμ (112)
πe^(Γ) A\,A\,A'{ R

where R contains L, K, or C. M localized in (Δi9 A'i9 Δ") and SP(T) is the set of all the
partitions of Γ.

Now the following lemma summarizes the cluster expansion estimates:

Lemma II.l. Let bj be an arbitrary element of γj9 for j= ί,..., L and let Q4 and Q3

be any positive constants, then there exist a positive constant Q2 and m1 and m2,
m2>m1 such that:

Σ Σ Π {d>>H{s;Δj,Δ'J,Δ'flE(ΔJ,q,Δ'j)e-teέtoW' Δ*+«b>>W}
πe@(Γ) Δι,Δ\,Δ'{ j=ί

π = {yι,» ,yL) : i
ΛL,Δ'L,Δ'£

Se~Mr\. {113)

Proof. Let yCyo>
 w e define:

SXΔ, Δ')= Jί e~^τ J Π (1 - Jΐ(z)) Π Jl(z)dzτ

xyχA(x)χAy)dxdy.
beγ γ$

Then:

A A' A»Λ V TΛ Tin \ V
s;Δ,Δ',Δ)=Σ Π ^ Γ K 1 " ^ ) Σ a (Δ'Δ")CUΔ'-Δ")

yc T y iny 2 = 0

Using

A"

and dγσ^8yC we obtain:

Σd>H(s;Δ9Δ',Δ")E(Δ,Δ',Δ")^O(l) Σ sup ^Cmi(Δ;Δif)
A" y i u y 2

= y A"

. e~ {m2-mi - 2)[d(A,A") + d{A',A")] ffiQ iβ' A")

In formula (II.3), for any π e ^ ( Γ ) , π={yl9 ...,yL} let bt be any element of yt then:
L

Σ T] e~[d{bj

{Ai,Δ[} j = ί
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To finish the proof it is then sufficient to prove

X Σ sup flW'C^AJdtC^AJ
πe^(Γ) γ uyί =yt Δι,Δ[,Δ0Cι i = l

π = {yι,...,yL) yιny[^ϋ
, e~ ( m 2 - m ί - 2)[d{Δι,AXι) + d(A[,AXi)] e(Q3+ l)[d(bι,Δι) + di^^)] Q ^ \ e~ Q2Ί ^ e~ Qo\Γ\

where bt is any element of yt . Suppose that b fey ί 5 we have

If y£ = 0 (or y'i = 0) then we use: Cmί(Ai. zJα):g0(l) and we can choose the param-
eters such that:

0 ( 1 ) e ~ Q y 2 e 2 { Q 3 +1^e~{m2~mi~Q3~^d^Δ^Δ^< \

so that in the remaining of the proof we can forget about the empty yt. We
symmetrize: let now bt (resp. fo ) be an arbitrary element of yt (resp. y ) then for
7iΦ0 we define:

ΔιJι

. e2{Q3 +1) O(\)e~Q2/2 g^i.^i) + ̂ . A )
andforyί = 0,/(0) = l.

To prove (II.3) it is sufficient to prove that:

Σ Σ ϊ\O(ϊ)e-«b"bi)f(vdf(Ϋι)Ze-°<W. (Π.4)

We assert then that the l.h.s. in (II.4) is smaller than 3 :

Σ 0(1)"2" flJ(γt)
πe0>(Γ) ί = l

π = (yί. . .y P )

the proof that this is smaller than e~Q4^ for a correct choice of Q2, m1(m2>mί)
is given in the references [8] and [15] and is one of the main combinatoric tool
of the cluster expansion. This finishes the proof of the lemma.

With this lemma the proof of Λ2 is reduced to the proof of:

Proposition II. 1. For given Q2, λ0, and m2 (large) there exists Q3 and Q6

(independant of the parameters) such that for m large enough and \λ\<λ0 (see
formula II.2): L

sup sup sup Π {e-Q3id(Δ''bJ)+d{bJ-ΔWeQ2}
L bjeΓ Δi,Δ\,Δ'{ ί = l

j = l , . . . , L i !

Γ T ^[diΔj^ + diΔ^Δ])] Γ T e

2m2d{Aj'A'j)Y\[Rdμ\
derived k derived C R

^ 0 ( l ) " 0 ( l f n W ^ ) ! ) 1 / 2 e Q 6 | r | ΓΊ Il/ίll-i Π I I^IIL2 | |A;IIL 2 (Π.5)
A ; = i j = i

Remark. We have used that:

3 It has been pointed out by Lon Rosen that this inequality in a preliminary version and the
corresponding formula in [9] are incorrect



Wightman Axioms for the Weakly Coupled Yukawa Model 305

and R is defined by what we obtain after performing the derivations up to the
factors dyH and M.

Also in the formula above 0(1) in 0(1)" depends on Q2.
Then A2 follows from the fact that one can take Q4 as large as we want by

choosing m2 (and thus m) large enough and define Q1 = Q4.-Q6.

III. The Cluster Expansion: Proof of Proposition II. 1

First let us see what we obtain when we do a derivation d/dsb, b e Γ o n a Schwinger
function S(ω)

S(ω)= Π detjkSF(xp yk; φ) Π Φ&) det r e n(l +K)

ω(x1...;yί,...;t1,...)dμYldxjdyJY\dti (III.l)
j i

where SF(x, y\ φ) stands for the kernel of (l+K)~1, and ω is some function with
each argument localized in some unit square of the lattice cover. Also for simplicity
since we look at some algebraic aspects we omit any reference to λ, Γ of A.

Acting on an expression of the form j Rdμ where R and dμ depend on s, the
derivation d/ds produces two categories of terms:

d

R being of the form of the integrand in (III.l) one sees that one has essentially to
know the effect of d/ds or d/dφ on SF(x, y φ) or on det r e n(l + K).

One gets:

| d e t r e n ( l + K )

= det ren(l+K) h dxdyχΔi,x)χΔβ{y)
Uβ

Σ J dwdzχAγ(z)χAό(w)SF(y, z; φ)K(z, w)K(w5 x)ψ (x, y)
y,δ a S

— SF(x,y;φ)= £ j - ίdz — (x9z)SF(z9y;φ)χ/igί(x)χΔβ(z)

+ \dzdw χAoc(z) χAβ(w) K(x, z) — (z, w) SF(w, y φ)

-Σ\dzdwdv du χAoc(v) χAβ(u) χAγ(z) χAδ(w)

SF(x, z; φ)K(z, w)K(w, v) - ^ (v, u)SF(u, y; φ)

. Λ C C Λ C

— .Λ^p — dFΛ2δF .
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The formula of derivations for d/dφ(z) are the same with —— replaced by
as

dK(x,y) = 2 1 ~ 1 / 4

We note δ/dφ det r e n(l + K) = det r e n(l + K) {Tr SFA'2 + A'3}

A S F = A\SF-SFA'2SF.

By their definition the A{ or A[ are completely localized expressions. In each of
these terms between any two localization squares there is always a chain of
"propagators":

o r ,... , ... -F+m
(P2+ m2 )l/2

Each boson propagator, each boson field and each propagator is localized.
The At and A\ are polynomials in the boson field of degree 3 at most, and

between any two such fields there is always a chain of "propagators". Each At

or A\ has at most 3K. Finally, acting on SF a derivation generates an expression
or order 2 in SF, and acting on det r e n(l + K) an expression of degree 1 in SF.

Before estimating the number of terms produced by derivation we have first
to reorder them in view of preserving the antisymmetric structure since it is
essential for the volume dependance estimate ([13,10]). Therefore after each
derivation we perform the following operation:

- when the derivation acts on det ί / ciSFdet r e n(l+i£) put together the terms
which increase the degree in SF. They form a new determinant of one order higher
(this can be checked easily).

- other terms are left unchanged.

Now as a first step in proving Proposition Π.l we bound the number of terms
produced by the derivations. To do this we use the technique of the combinatoric
factors (see [7]).

To take account of the sum over the localization squares we need exponential
localization factors of the type e

0{l)d{Δ>ΔΊ or e

O{1)d{btA) where A and A' are two
localization squares in an A{ or A[ generated by a derivation relatively to sb.

Two localizations squares in an At or A\ are linked by a chain of "propagators".
There is at most 6 "propagators" by chain. We thus distribute the localization

factors to the "propagators" using:

ii Δ)+\2

Let L be the number of derived K or C. We take account of these factors by the
following combinatoric factors:

eO(ί)d{A,A')

derivations "propagators"

ΓT eOa)[d(b,Ai) + d(b,A2)] TΊ eO
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where product over the derivations means product over the derived K or C,
Aί, and A2 being the localizations squares of K(x, y) or C(x, y) and b is one of the
bond relatively to which K or C is derived.

We will not list these factors in the following.
Because of Lemma II. 1 we don't need to take account of how many times,

and relatively to what set of bonds a K or C is derived i.e. we count only the
derivations acting on a non derived K or C. In a given term we attribute a factor 2
to each K or C to decide whether it is derived or not. This gives a 2 0 ( 1 ) L since the
number of K or C is bounded by 0(1 )L.

Also for each derived Ai9 A[ we fix each localization square A using a com-
binatoric factor O(l)e d ( M ) .

We are thus ready to compute the number of terms generated by the deriva-
tions. Giving a factor 2 to each derivation we separate its effect according to the
following cases.

α) — acts on everything except the measure dμ.
as

β) — acts on dμ.
as

We first compute the combinatoric factors for the case α. With a factor 0(1)
given to the derivation, we divide case α in several subcases:

oq) — derives SF and we select Λ^p.
as

α2) We consider the sum of terms of higher degree in SF which form
a determinant of higher order.

α3) — derives det r e n(l + K) and we select A3.as

α4) — derives a K o r C created by a previous derivation (i.e. a fermion prop-

agator in A{ or Aβ.

• Let us consider the combinatoric for each case separately (excluding the
localization factors).

Case α 4 : the combinatoric factor is 1 since the derived propagators have
already been chosen.

Case α 3: the combinatoric factor is 1 since there is only one term.
Case α 2 : the combinatoric factor is 1 since there is only one term.
Case a1: it is the case: SF(x, y; φ)^(AίSF) (x, y).

Let i in detikSF(xi9 yk; φ) labels the columns. The term given by the determinant
in case a1 is a sum of determinant each with a column v41iSF. The combinatoric
factors we are looking for control the number of columns (initial or produced by
derivations). With a factor 2 we distinguish 2 subcases:

a) the smearing function for the variable x is a Ai or A[ created by a previous
derivation.

b) the smearing function for the variable x is an original g{ of formula (1.2).
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We consider first the case a). The function A{ (or A[) has been produced by a

ivation — and thus contains:
as

(w> v)χΛ2(v) or has been produced by χΔl{z) —— .

localized derivation — and thus contains:
as

The square A2 is chosen with a localization factor exp{O(l)d(b, A2)}.
Let Ra;C(A) be the number of times that in a) A2 = A. In a given term at the end

of the expansion, let nc(A) be the sum of the number of times that in —— (u, υ),

v is localized in A and of the number of times that in -— (u, v\ u or v is localized in A.
as

Then the number of At or A\ with A2 = A is bounded by nc(A). Doing this choice
Rac times we obtain as combinatoric factor:

ac

S Π n
A A A

We then "attr ibute" to each derivation in case a) with A2 = A,a localization factor

e

2d{b>A\ this attribution allows us to use the following lemma:

Lemma III.l.

\\\nc{A)nc{Δ)

A [ b su ch that Δ2 = Δ

Π e
•> such that Δ2 = Δ

Proof. The first inequality is just Lemma (10.2) of [8]. The second inequality
follows also from this lemma if one remarks that: Rac(A)^2nc(A).

The overall combinatoric factor for case a) is therefore O(l)O(l)L.
Consider now case b). Let NC(AO) be the number of functions gi9 ί=ί,..., JV

which have support in Ao (it is also in the determinant the number of columns
with functions gt localized in Ao. We choose with a localization factor gWMMo)
the square Ao support of the function g{.

Let now RbtC(A) be the number of times that in case b) Ao = A. We thus get a
combinatoric factor:

Y[Nc(A)Rb>ciA).
A

Attributing [as in case a)] to each derivation a factor ed(b'A\ we have at our disposal
a factor e~d{b'A) that we used in the following lemma.

Lemma III.2.

Δ b such that Δ0 = Δ

Proof. One has (see [8], Lemma 10.2):

TΊ e-d(b,Δ)

b such that Δo = Δ
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so that :

iVc(zj) I [ e = e
b

< 0(l)eO{1){lnNc{A))3 < 0(1) eO{1)NciA)

but now Y\ oxp{0(l)Nc(A)} = 0(l)N, this proves the lemma.
A

The total combinatoric factor for case αx is thus 0(1)0(1^0(1)^.
We now compute the combinatoric factors for case β. Since in this case each

d/ds derivation generates two d/dφ derivations we compute the combinatoric
factor of d/dφ derivations.

With a factor 0(1) by d/dφ derivation we divide the effect of d/dφ in several
cases in analogy to case α:

oίi) d/dφ derives SF and we select A\SF.
a!2) We consider the sum of therms of higher degree in SF which form a deter-

minant of higher order.
α3) d/dφ derives det r e n(l +K) and we select Ά3.
α4) d/dφ derives fields φ created by previous derivations (i.e. fields in Ai or

A[).
n

α'5) d/dφ derives \\ φ(ft) (of formula 1.2).

The derivation d/dφ is localized in some square Ao (already chosen). Let us
now consider the combinatoric factor for each case. Cases α'l5 α'2, and α3 are as
above.

Case α 4: the field φ(z), zeA0, which is derived is in some A1 or A[ produced by

We choose Δ2 with a factor e°(^d(Δo,Λ2)t ^ o w ajj ^ o r ^ generated by deriva-
tions localized in A2 have at most 3nc(A2) fields, since there is at most 3 fields in
each A{ or A[. The combinatoric factor is then:

We deal with this factor as above, see Lemma III.l, this gives a bound: O(l)O(l)L.
Case α;

5: let R(A0) be the number of times that derivations d/dφ, acting on
n

Y[ φ{fi% are localized in Ao. Each time the number of choices is n(A0) (remember
ί = l

it is the number of ft with support in Ao). Thus the total combinatoric factor is

Π n{A)R{A).
A

Attributing a factor ed{b>Ao) to each derivation relative to b, localized in Ao, we have
by Lemma III.2:

n(A)R{A) Π e~dib'
b deriving in A
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Finally we have got that for the cluster expansion, the combinatoric factors are
(see Proposition II. 1):

O(l)O(l)LO(l)nO(lf Π eoa)idih*M + «bt Δm Π e°il)d

derivations "propagators"

where d stands for d(A, A'), A and A' being the localization squares of the
"propagator". Define X0 = sup{l,/l0}. Now the following lemma is sufficient to
prove Proposition II. 1:

Lemma III.3. Fix mx and m2 as for Lemma II. 1 and let R be an element in the
expansion of Proposition I LI, then there exist Q3 large (depending on m2 and mj ,
m large enough and β 5 > 0 such that:

sup sup sup J Π e-iQ
bi,ί=l,...,L Aι,Δ'uΔ'\ R [i=ί

f] e°w" Π eOWd0{\)L\\Rdμ\
derived "propagators"

boson propagators

Δ ί= 1 j=ί

(III.2)

Q5 can be taken as large as we want if m is taken sufficiently large and is independant
of Γ. The 0(1) factors in the right hand side and Q6 are independant of m l 5 m2, m,
and Γ.

This lemma includes the combinatoric factors of ]Γ in Proposition II.1, thus

taking Q2 + 3 log/l0 ^ Q5 and the supremum over L, one has proved this proposi-
tion.

Let us now prove Lemma III.3. The integrand JR has the general form:

R= $detikSF(xi,yk;φ)w(x1,..r,y1,...)detren(l+K)dx1...dyί...

where w(x1, ...;y1 ?...) is a product or integral of product of gi9 hk, C, Ai9 Λ[ and

To bound |J Rdμ\ we use:

Proposition III. 1. Let ί^i, k^N + 2L, and M (in the definition o/det r e n(l + K) be
large enough depending on λ0 then there exists Q6>0:

Proof. Applying twice Schwarz inequality the proposition follows from the work
of Seiler and Simon [14]: their proof applies here since they have also localized
each K(x, y) in unit squares, the fact of multiplying it by 0^H(A, A9A

f)^
ye A') leaves the proof available up to obvious modifications.



Wightman Axioms for the Weakly Coupled Yukawa Model 311

Note: Our preprint version [16] was self contained and in particular included
a third proof of the linear lower bound, which differs from those of McBryan
[10] and [11] and of Seiler and Simon [14].

It seems also to us that the nice proof of McBryan can also be extended to the
s-dependant models described here.

Under the conditions of A29 \Λ\ = \X\^\Γ\ + ί (\X\ = surface of X). The next
step is to bound J \\w\\l2dμ.

First we estimate the effect of the functional integration dμ on ||w||4 by
computing the combinatoric factors corresponding to the contractions between
the fields φ.

We characterize the fields φ by squares:
1) For a field φ(f) of formula (I.I), the "characterizing square" is A if support

of f{ is in A.
2) For a field belonging to some At (resp. A[) the characterizing square is A

d t , d
if A{ (resp. Aβ has been generated by χA(x) γκ(^ Ί r e s P bY XA(X)-ΓC(X> ')

or by χΔ(y) — C( , y)

The number of fields characterized by A is less than 4n{A)+12nc(A) (since
there is at most 3 fields φ by Ai or Ά^).

Attributing a factor e°w
d{<Δ>Δ') to each contraction between a field characterized

by A with a field characterized by A', we get as a combinatoric factor for the
contractions:

Π 0(l)4n{A)+ 12n°<A)\[4n(Δ)+ l2nc{Δ)] ! | 1 / 2

A

Attributing factors e

0{1)d{b'Δ) to the derivations we treat the last term as before.
Finally the (localization) factors e

O{1)d{AtAf) can be decomposed in a product
of localization factors by boson propagator and by "propagator".

The total combinatoric factor for the contractions is thus for |J ||w||jj>dμ|1/4.

Γί(λ \nΠ(λ \L TT (vt( ΛϊtW2 TT /,O(l)[d(Aι,bι) + d(bί,A'ι)] ΓT ,yθ{l)d
U { L ) U { ϊ ) [ [ { n { Δ ) i ) j | £ V L V l [ [ e

A derivations boson propagators

Let us consider a fully contracted term: we call such a term a big graph. A big
graph is decomposed in small graphs, and each small graph will be estimated by
its Hilbert-Schmidt norm, see [7]. A big graph is formed with:

vertices: the gt, hk, and ft functions and also the functions χA, '
boson propagators noted — and "propagators" noted —h—.

The small graphs are:

^ Ϋ r Y

X X Z X Z

and also: φbτQgφ:
We first apply the H.S. norm to the vertices in g and h, this gives a bound:

7 = 1
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To bound this new big graph, we first use the technique of [7, 9] and we extract
from each "propagator" and each boson propagator localized in A and A' a
factor g - w w ^ ' ) where 0(1) is taken as large as we want by taking m large enough.

We then use the following bounds:

\χA(pM0(ί)F(p), { l

[for any 0 < ε < l / 3 if m is taken large enough depending on Q 8], and

1

(p2 + m 2 ) 1 / 2

Finally if a boson propagator is attached to a /Γfunction of formula (1.2) we use

•~ ~ < -^—-eQse~Q8. The bounds for the small graphs are:
pz + m

ll*^" II H.s .

IIH.S. = I

For the small graph with 3 boson lines, because the boson line can possibly
contract between themselves we are obliged to consider:

|1H.S.>

These 3 norms are bounded by O(l)(6Γβ 8)3 + 1 + iX^.
Finally if A and A' are neighbours or identic it is proved in [14] see also [16]

that:

If A and A' have no intersection then it is trivial that:

From that we get:

We have then obtained for each term a bound consisting of:
Exponentially decreasing factors for all the localizations, and the decrease

is as strong as we want provided that we take m large enough.
A product of norm of small graphs, and for each term the number of small

graphs is smaller than O(1)L non counting the small graphs associated with g,
h and /.

So that each contracted terms is bounded by:

O(l)L\e-e*\Lλ3

0

L\eQr fl llϋll-i Π l l & M l M z ' Γ
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Thus collecting the various bound and taking O(l)e~Q8 = e~Qs we have:

Π e°^^+"^^γ[\\M^f[ ll^ll^lb Π
derivations ί = 1 j=ί "propagators"

This finishes the proof og Lemma III.3.
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