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Abstract. It is shown that, in a globally hyperbolic and geodesically complete
space-time, a part of a partial Cauchy surface that is bounded by a uniformly
convex sphere is compact and simply connected.

Introduction

There are several indications that we might reasonably disregard the possibility
that the universe has anything other1 than a very simple topological structure.
Geroch [ί] has shown that an asymptotically simple and empty space-time is
homeomorphic to IR4. A result by Hawking2 on future asymptotically predictable
space-times would seem to limit the possible topology of those space-times. There
have also been some results on the possibility of the topology of space changing
with time [2, 3, 4].

It would be difficult to prove anything about the topology of space near to
singularities, due to the arbitrariness associated with them. As the universe is
expected to be globally past incomplete it would also be difficult to say anything
about its topology as a whole without some uniformity principle. For these
reasons we limit ourselves to a part of space that can be "enclosed by" a well-
behaved sphere. There is no restriction on the size of the sphere. We show that
geodesic incompleteness is associated with topological peculiarities in such a part
of space. That such incompleteness should occur separate from either collapsed
objects or the beginning or end of the universe is objectionable.

The theorems are only proved for space-times with global Cauchy surfaces.
There seems to be little reason to suppose that firstly the universe has one3, and
secondly the results cannot be proved without one. It is a serious disadvantage,
however, as the results are intended to be applicable to non-global topology
without reference to, possibly unrealistic, global properties.

1 E. g., multiple connectedness
2 Proposition 9.2.1 of Reference [5]
3 See, for example, Reference [5]
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We firstly give a definition of a uniformly convex sphere. We suppose such a
sphere to be embedded in a spacelike hypersurface. We show, under certain
conditions, that the sphere divides the surface into two parts, that is there is no
connection between the part of the hypersurface outside the sphere and the part
inside, except through the sphere itself. We also establish that the part of the
surface enclosed by the sphere is compact and simply connected.

The proofs follow in parts the singularity theorems of Hawking and Penrose
[5]. Definitions are in accordance with [5] unless otherwise stated. We shall use
ί+(X) for the boundary of the future of X, but dγX for other topological boundaries.

Definitions

A uniformly convex sphere in a space-time is the image of a spacelike C2 embedding
of S2, such that one congruence of null vectors orthogonal to it is converging.
This definition should be compared with that of a closed trapped surface [5]. The
latter requires both sets of null vectors to be converging; if this is the case for a
uniformly convex sphere we may apply the following to either set of vectors.
For this paper we will assume that the converging null vectors are future directed,
as the theorems are otherwise time symmetric. We will always use C to denote a
uniformly convex sphere.

Suppose C is contained in a partial Cauchy surface S. It will divide a small
neighbourhood of itself in that surface into two parts, though it may not so divide
the whole of S. The part that lies on the same side of C as the converging null
vectors we will call, loosely, the inside neighbourhood. Thus "a curve in S that
ends on the inside of C" is a curve that reaches C by passing through its inside
neighbourhood.

We can now define the part of S enclosed by C as:

Λ(C, £) = Cu (xeS: There exists a curve in S from x to the)

\ inside of C that does not cross C J .

This may of course be the whole of S.
The set of future inextensible null geodesies with past endpoints on C, and

there tangent to the converging null vectors, we will call K(C).

Theorems

All the theorems proved, except Theorem 6, require the existence of a Cauchy
surface, Jf, for the space-time (M, g\ which we will assume implicitly. Only sketch
proofs are given here. Detailed proofs are available from the author on request.

V will be a timelike vector field on M [1], and φ the map that takes points of M
along the integral curves of V to where they intersect 3tf. We will only need φ
to be continuous, and to map open sets to open sets.

Theorem 1. Suppose (M, g) is null geodesically complete, and the energy condition
[5] holds for null vectors. Suppose that C is contained in Jf, and that Λ(C, Jf) φ Jf.
Then A(C, &C) is compact.
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Outline of Proof. Let T = I + (je\A(C, M?))\(J^\A(C, Jt?)). T will be generated
by segments of members of K(C\ as C=d#>A(C9 Jf). That T is compact can be
shown by a proof closely analogous to one contained in Theorem 1, Chapter 8.2,
of [5]. As φ is continuous, φ(T) is compact.

T has no edges, except at C, so φ(T) can have no boundary in Jf, except at C.
Thus φ(T) = A(C, Jf) and A(Q Jf) is compact. D

The C Covering Manifold. We need to define a covering manifold of M in which C
divides any partial Cauchy surface that contains it into two parts. This is done
in the appendix. We describe here a more intuitive construction.

Take a countably infinite number of copies of M, and order them with the
integers. Cut each one at φ~ιφ(C). Rejoin them by attaching the outside of
φ~ιφ{C) on the nih copy to the inside oίφ'^-φiQ on the (n + l) t h copy. Ίίφ~1φ(Q
did not divide M into two parts, we will have connected all the copies of M together
to give a covering manifold, M c , of M.

The sphere which joins the (— l) t h copy to the 0th copy will be called C c. The
union of all the positive numbered copies of M will be called Bc. J f c , Vc, and φc

will correspond to Jf, F, and φ.

Theorem 2. Suppose (M, g) is null geodesically complete, and the energy condition
holds for null vectors. Suppose that C is contained in Jf. Then

Outline of Proof. Suppose A(C,3tff) = JK?. Mc, C c , 2tfc satisfy the conditions of
Theorem 1, so A(CC, j f c) is compact. However, it consists of an infinite number
of copies of Jf, all those contained in positive numbered copies of M, and so
cannot be compact. D

We have now established that a uniformly convex sphere in a Cauchy surface
encloses a compact portion of that surface. We can extend the result to general
spacelike hypersurfaces4 using the same covering manifold. For Theorems 3—6
it will be assumed that (M9g) is timelike and null geodesically complete, the
energy condition holds for non-spacelike vectors, and the generic condition [5]
holds.

Theorem 3. Suppose that S is an acausal set containing C, with edge (S)=Q and S
on the inside of C. Then S is compact.

Outline of Proof Let Tc = ί+(CσBc). Because Φc1φc(Cc) separates Mc into two
parts, Tc will be generated by segments of members of K(CC). It will thus be
compact, as will φc{Tc) and j4?cnBc.

Define Sc as the component of the image of S in Mc that contains Cc. To show
that Sc is compact we must show that φc{Sc) = ^cnBc If tfris i s n o t t n e c a s e >
the boundary of φc{Sc) in fflcr\Bc is non-empty. Let y be an integral curve of Vc

that passes through it. To the past it enters D~(Tu(j^cnBc)) and does not leave

See [5] for the relationship between these and partial Cauchy surfaces
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it. By an argument similar to one contained in a theorem of Hawking and Penrose5,
there exists a future trapped set, and thus, by that theorem, we get a contradiction.
Hence φc(Sc) = ̂ fcnBc, and Sc, and hence S, is compact. •

Theorem 4. Suppose C is contained in a partial Cauchy surface S. Then A(C, S) =f= S,
and is compact.

Outline of Proof. A(C9 S)φS by a similar argument to Theorem 2. It is compact
by Theorem 3. D

We now need to define a covering manifold, M#9 of M in which the part of a
partial Cauchy surface enclosed by C#> is simply connected. This is done in the
Appendix. It can be seen that M^ is the universal covering manifold of M.

Theorem 5. Suppose C is contained in a partial Cauchy surface S. Then A(C9 S) is
simply connected.

Outline of Proof . Let S^ be the component of the image of S in M#>, containing C#>.
lϊ A(C, S) were not simply connected, A{C^9 S^) would not be compact. However,
Mjp, Ctf, and S^ satisfy the conditions of Theorem 4, so it is compact. D

Theorems 3 and 5 show that A(C9 S) is simply connected and compact. We
can construct a topological 3-manifold, A+, by joining A(C, S) and B3, the 3-ball,
along their boundaries. It will be compact, as B3 and A(C, S) are compact. It will
be simply connected as B3 and A(C, S) are simply connected and the common
boundary is path connected. A+ is a homotopy 3-sphere, and if the Poincare
conjecture6 is true it is homeomorphic to S3. In that case we can deduce that
A(C, S) is homeomorphic to B3.

The following theorem, concerning the part of space not enclosed by C, can
be proved without the existence of a Cauchy surface.

Theorem 6. Suppose the chronology condition holds on M, and C is contained in a
partial Cauchy surface S. Then S\A(C, S) is non-compact, or empty.

Outline of Proof. Suppose it is compact. Then E+(S\A(C, S)) is contained in
(S\A(C, S))u (J k , which is compact. Hence S\A(C, S) is a future trapped

keK(C)

set. This leads to a contradiction6. D

Conclusions

It has been shown that, in a geodesically complete space-time that has a global
Cauchy surface, a part of a partial Cauchy surface that is bounded by a uniformly
convex sphere is compact and simply connected. If the Poincare conjecture is
true, it is homeomorphic to B3.

Suppose space did have some topological peculiarity. If it were on a scale
smaller than that of the whole universe, and the space-time around it were not
too curved, it could be "enclosed by" a uniformly convex sphere7. From Theorem 1,

5 Theorem 2, Chapter 8.2, of Reference [5]
6 See, for example, Reference [6]
7 It is interesting to ask whether any homotopy class of spheres contains a uniformly convex one
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we might expect that at least one of the ingoing null geodesies orthogonal to it
would not be extensible past its conjugate point. Thus we might expect singularities
to appear in space within a time of the same order as the diameter of C 8 .

I am very grateful to Dr. C.T. J.Dodson and Dr. L.W.Flinn for many useful discussions.

Appendix

The Construction of the C Covering Manifold. Suppose (M, g) has a uniformly
convex sphere C. Choose aeC, and let:

M'={(y, y) yeM, and y is a curve in M from y to a}.

Let n(y) be the number of times the curve φ °y crosses from φ{C) to its outside,
minus the number of crossings to φ(C) from its outside. Let:

0 Ί > T I H C O ^ Ί i ) \ffy\=yi and n(y1) = n(y2)

~ c is an equivalence relation on M'. It can be used [2, 5, 8] to define a covering
manifold, M c , of M, which is a space-time locally isometric to M. Let pc:Mc^M
be the covering map.

The set of points of Mc that are equivalence classes of points (y, y) of M such
that:

(1) n(y)^0 we will call Bc

(2) ye^f we will call J^ c

(3) ye C, n(y) = 0 we will call Cc.
Let Vc be the vector field induced by V. Jfc is a Cauchy surface for M c , as if a

is an inextensible timelike curve in M c , pc°α is inextensible and timelike in M,
so meets Jf, and thus α meets Jfc. Let φc\Mc^^fc be the map induced by Vc.
Clearly φc(Bc) C Bo and by a straightforward application of the definition of the
topology on Mc we can show that dBc = φc1φc(Cc).

The Construction of the ̂  Covering Manifold. Suppose (M, g) has a uniformly
convex sphere C. Choose aeC and define M' as before. Define the covering
manifold M^ by the equivalence relation:

(3>i> ?i)~.tf(3>2> 72) # y i = y i and φ{y^ is homotopic to φ{y2) in 2/e.

The set of points of Mπ that are equivalence classes of points (y9 y) of M'
such that:

(1) n(y)^0 we will call B^
(2) yejf we will call Jf^
(3) yeC; and y(ί) = y,yit we will call C^.
As C is simply connected, Cπ consists of just one copy of C. φ^φ^C^) = dB^

and φj?(B^)CB^ as before. J^f^ is a Cauchy surface for M#>. It is homeomorphic
to the universal covering manifold of ̂ , hence simply connected.

8 The Kruskal extension of the Schwarzschild solution [7] has uniformly convex spheres, on Cauchy
surfaces, whose interiors are non-compact (for instance, the spheres υ = Q, r = constant > 2M, on the
Cauchy surfaces v = 0). A singularity occurs at time πM after υ = 0



162 C. W. Lee

References

1. Geroch,R.P.: Space-time structure from a global view point. In: General Relativity and Cos-
mology, Proceedings of International School in Physics "Enrico Fermi", Course XLV ll(ed.
R.K.Sachs), pp. 71—103. New York: Academic Press 1971

2. Geroch,R.P.: J. Math. Phys. 8, 782—786 (1967)
3. Yodzis,P.: Commun. math. Phys. 26, 39—52 (1972)
4. Yodzis,P.: Gen. Rel. Grav. 4, 299—307 (1973)
5. Hawking,S.W., Ellis,G.F.R.: The large scale structure of space-time. Cambridge: University

Press 1973
6. Bing,R.H.: Ann. Math. 68, 17—37 (1958)
7. Kruskal,M.D.: Phys. Rev. 119, 1743—1745 (1960)
8. Hocking,J.G., Young,G.S.: Topology: Reading, Mass.: Addison-Wesley Publishing Company,

Inc. 1961

Communicated by J. Ehlers

Received December 12, 1975; in revised form May 5, 1976




