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Abstract. We demonstrate the existence of a solution of the nonlinear pion-
pion equations that incorporate crossing symmetry, unitarity and /-plane
meromorphy. In particular, we show how to guarantee the boundedness of
the partial waves as s->oo, even when some Regge trajectories rise beyond
unity.

1. Introduction

In previous papers of this series [1, 2], nonlinear equations for the partial-wave
amplitudes were set up to guarantee unitarity and analyticity in the right half
of the angular momentum plane. The treatment in Ref. [1] contained only a direct
channel, as in potential theory; but that of Ref. [2] allowed for full three-channel
crossing symmetry. The potential case was considered also in a later paper [3],
in which improved bounds for the Legendre functions allowed contact to be
made with ordinary energy-independent potential scattering. In all this work,
no singularities were allowed in the right half of the angular momentum plane.

The present work is devoted to setting up the corresponding Sommerfeld-
Watson equations when there are Regge poles for Re/>0 [4]. For simplicity
in notation, we write down only one Regge pole; but there is no difficulty in
handling any finite number of them. The equations of the present paper should
be regarded as a representation for a valid crossing-symmetric Regge amplitude,
rather than as a dynamical scheme for its calculation. Thus, given the Regge pole
position, α(s), and residue, β(s), and the central inelastic double spectral function,
v(s, t\ we write down equations that the amplitude must satisfy. No attempt is
made to calculate α and β from v, in the way that the Regge parameters are
calculable in a potential theory. In a relativistic theory, where one does not have
the constraint implied by the existence of a given potential, one would not expect
(χ(s) and β(s) to be determined uniquely by v(s, t). Nevertheless, elastic unitarity
may serve to restrict the allowed functions, oc(s) and β(s\ once v(s,ή is given.
Our treatment of the equations as a nonlinear mapping indicates that this may be
true, since it turns out that unitarity is not satisfied by fixed points of the system,
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unless a certain subsidiary condition is satisfied, and this connects φ ) and β(s)
to φ , t). Indeed, a more thorough-going semi-dynamical treatment [5], involving
the inelastic N/D equations and based on the representation of this paper, in which
unitarity is built in from the start, allows one to specify only φ , t): the Regge pole
then arises "dynamically" as a zero of Dt(s\ with a calculable residue. However,
as usual one has the CDD ambiguity, which is not removed by the requirement of
/-plane meromorphy.

Perhaps the most interesting consequence of our treatment, and actually
the reason that we considered /-plane analyticity in the context of the crossing-
symmetric, unitary equations in the first place, is the fact that we can demonstrate
the boundedness of the physical partial-wave amplitudes, despite the bad
behaviour of the integrand in the Froissart-Gribov representation. Another result,
perhaps more surprising, is that we do not need any /-plane cuts, even though
we have full crossing symmetry. Thus the limited inelasticity implied by elastic
unitarity plus crossing symmetry does not seem to require the existence of cuts.

The general appearance of this paper is rather different from that of Refs.
[1] and [2], since we are less interested here in the details of setting up a Banach
space in which a fixed-point theorem can be applied, but rather in the resolution
of the formal difficulties involved in writing a Sommerfeld-Watson representation
when one wants to make a continuation in both Mandelstam variables. In the
usual Regge theory, one replaces the partial-wave expansion

A(s,t)=

where

by the Sommerfeld-Watson form,

J ϋ ^ f J L ) (1.3)
/. sinπJ \ s-A) zv ' smπφ) α ( s ) \ s-A

where

, - o o < y < o o } , (1.4)

where φ ) is the position of the Regge pole, and where

(1.5)

β(s) being the residue at the Regge pole. It should be noted that α(4) may not be
greater than two, and that the amplitude has no pole at the point at which φ ) = 1,
because of the signature factor. However, if α(4) > 0, we must kill the ghost pole
that would occur at s = s0, where φ o ) = 0. This is easily done by requiring that
β(so) = 0. The representation (1.3) effects the continuation of (1.1) into the entire
cut ί-plane. It is however quite unsuited for direct continuation into the complex
5-plane away from the real half-line 5 > 4. It is the primary purpose of Section 2 to
show how we can combine unitarity and the Sommerfeld-Watson trick to find
a representation that allows a simultaneous continuation in both variables.
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We obtain eventually a Mandelstam representation in which all subtraction
and single-spectral functions are explicitly given in terms of the Regge parameters.
We note the preliminary work of Kupsch [6], in which a Khuri representation is
used instead of a Regge representation. The difficulties with analyticity are less
severe when one deals with Khuri poles; but unitarity is harder to implement.

In Section 3, we study the explicit continuation of the Froissart-Gribov
integral, which only converges if Re/>Reα(s), to the left, since we need to be able
to calculate A^s) for leΓ. In order to do this, we must deform a certain contour
of integration, and it is this same trick that eventually allows us to demonstrate
the boundedness of A^s) for s-»oo, although α(s) may move as far to the right as
one wishes.

In Section 4 and the appendix, we show how the equations in Section 2 and 3
can be used to define a nonlinear mapping, and we demonstrate the existence of a
fixed point in a Banach space that differs only slightly from that of Ref. [2]. We
observe that, although unitarity has been used in deriving the equations, the
solution only satisfies unitarity if a subsidiary equation is satisfied, and this
effectively forces α(s) and β(s) to be functions of φ , ί).

Earlier attempts to show the compatibility of Regge poles with the Mandelstam
representation have been made by Chew, Jones, and Khuri, among others (Ref. [7]).
We note that the Chew-Jones representation is closest in spirit to the representa-
tion of this paper: the advance we have made is to have produced a form with
crossing symmetry and the correct curved support for the Mandelstam double
spectral function. Moreover, we have a representation for the background term
that is valid for all real or complex values of 5 and ί; and we have shown that the
expected Regge behaviour holds as one Mandelstam variable tends to infinity,
while another is held fixed.

2. Crossing-symmetric Regge Representation

We have seen in the introduction that the usual Sommerfeld-Watson trans-
formation provides a satisfactory way of making the analytic continuation in the
momentum-transfer variable, ί; but that it is inadequate to provide the continua-
tion in s. Instead of trying directly to continue the background integral in s,
we shall imagine writing a fixed-ί dispersion relation for the amplitude:

A(s, t)=-]ds> U— + - ! - ) As(s\ t) (2.1)
7Γ 4 yS — S S — UJ

and then we can write a Sommerfeld-Watson representation for As(s\ t) rather
than for A(s, t). In this way we need only consider real values of s', the continuation
in s being made explicit through (2.1).

The difficulties associated with this approach are as follows: in the first place
(2.1) will in general need subtractions; and moreover, although su crossing
symmetry is automatic, si crossing is not (in this connection, note that even if
we ensure Bose symmetry for As(sf, t), this does not imply Bose symmetry for
A(s, t)). In the second place, it is no longer immediate that if the background
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integral for Λs(s', i) is "well-behaved", then A(s, t) has the required Regge asymptotic
behaviour, because of the smearing effect of the s'-integral in (2.1). We solve the first
difficulty by writing in fact a dispersion integral only for what we shall call the
"elastic" part of the amplitude, namely

A%, t) = - J ds> ( V - + - J - ) Af(s\ ί), (2.2)
π i \s -s s -u)

where

A?(s',t)= £ (2l + ί)Pr(ί+ -^kl^(s ' ) l 2 , (23)

with qs= . In fact, for the purposes of the fixed-point proof of Section 4,

we shall redefine qs, and hence the elastic part of the amplitude, by introducing a
cut-off. However, the redefined qs will still be exactly equal to ((s —4)/s)* in the
elastic region; and we can temporarily forget about the cut-off, until we need it in
Section 4. The partial wave projections of Af are just the imaginary parts of the
partial wave amplitudes in the elastic region, because of the elastic unitarity
condition. However, (2.3) remains well-defined for s'>16, although Af is no
longer the imaginary part of the amplitude, due to competition from inelastic
channels. An advantage in considering Ael separately is that we can find amplitudes
for which (2.2) needs no subtractions, even though the dispersion relation (2.1)
for the full amplitude would need subtractions if Regge poles are present. We shall
construct a suitable "inelastic" part of the amplitude, Ain, such that

A(s,t) = Ae\s9t) + Ai\s,t) (2.4)

is fully crossing symmetric. In this way we solve the first problem mentioned
above, at the expense of making the question of Regge behaviour more difficult
to handle; we need to show not only that Ael(s, t) has Regge behaviour, but also that
Ain(s, t) does not spoil this result. Fortunately we can solve this problem by an
elegant method of contour deformation and demonstrate that Regge behaviour
is indeed observed.

We now replace (2.3) by a Sommerfeld-Watson transform (we drop the prime

on s'):

sinπα(s+)

It
β(s-)PΓisA-i-

s-4
+ \ , AΛ(S is + , (2.5)

sinπα(s_)
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for those values of s such that Reα(s) > — j + ε. We may write unitarity for general /
in the form

S ] , (2.6)

where /z(s) is the inelastic overlap function, which must be zero for 4 5^
Now At(s+) has a pole at / = α(s+) and At(s_) has one at / = α(s_), so if we make the
assumption that I^s) has no singularities at these points, then it follows easily
from (2.6) that

In fact we shall manage to construct amplitudes for which I^s) has no singularities
for Re/>—\ +ε at any value of s.

We may use (2.7) to simplify the residue terms in (2.5); and moreover we may
write the following dispersion relation for the Legendre function under the back-
ground integral:

2ί

sinπ/ 2πi \f-t ' t'-uj ι\ ' 5-

For the amplitude which we shall eventually construct, we can justify interchanging
the order of the /-integration in (2.5) and the ^-integration in (2.8). Moreover,
we shall be able to demonstrate the existence of the following bound:

^ ' (2.9)

for Re / larger than, say,

1+ sup {Reα(s)}, (2.10)
4 ^ s < oo

where K is a constant; and where

zo = l + 8/(s-4). (2.11)

The bound (2.9) is proved in fact from the Froissart-Gribov representation.
/ 2ί' \

By considering the asymptotic behaviour of Pt 1H -I as Re/-> + oo, we can
\ s — 4 /

easily show that the Γ-contour may be closed to the right in the complex /-plane,
under the ί'-integral, for those values of t for which

where

z/ = l + 2ί7(s-4). (2.13)

For these values of tf we can evaluate the background integral by picking up
— 2πi times the residues of the poles at l = a(s+) and / = α(s_). We may write then

s 9 t ) 9 (2.14)
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where Bf is the contribution from that part of the t'-integral for which (2.23) does
not hold, namely

4), (2.15)

and where Rf contains the remaining terms. We write explicitly

B*s\s, ί)= - J dt' U- + J - ) eg(s, 0 (2.16)
16s/(s-4) \L ~ t t —U

where

ρeg(s, t)= —[ j dl(2l+ \)Pι 1H At(s+)A{(s J) τ (2.17)

and

2ί

5 - 4

[sinπα(5_) α( s \ 5 — 4

16s/(s-4)

It is important to note that (2.16) needs no subtractions, since ρj1 has the behaviour
t'ε~^ as t'-κx), but that we could not write a similar unsubtracted relation for RQ

S\
since this has the Regge behaviour ία(s) for large t. However, we have the representa-
tion (2.18), which shows explicitly that Rf is analytic in the ί-plane, with cuts
[16s/(s — 4), oo) in the variables t und u.

We may rewrite (2.2) in the form

Λel(5, t) = n-x J ds' (-?— + ~^~) lBf(s\ t) + θ(Λ-s')R?(s\ ί)] (2.19)
4 \S —S S —U/

where we have supposed that Reα(sr)< — i +ε for s' >Λ, so that the pole term no
longer contributes for these values of 5'. We have now to see how to add a term Aιn,
as in (2.4), in such a way that the total amplitude has full crossing symmetry. Let
us write A as a sum of background and Regge contributions

A(s,t) = B(s,t) + R(s,t). (2.20)

In order to make B crossing symmetric, we have clearly to symmetrize the double
spectral function that occurs in (2.16). We thus obtain an unsubtracted Mandel-
stam representation for the background contribution:

B(s, t) = B(s, t) + B(ί, u) + B(u, s), (2.21)
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where

with

ρB(s, t) = θlt- ^ λ ρ$(s9 t) + θ(s- ^ ~ j ρg(ί, s) + β(s- 16)<9(ί- 16)φ, ί).

(2.23)

Here ρj1 was defined in (2.17), and v may be any suitable function that is sym-
metrical under interchange of its arguments. It represents part of the inelastic
effect that arises from other than two pions in the intermediate state in both s-
and ί-channels.

It is not possible to write an unsubtracted Mandelstam representation for the
Regge term; but we must nevertheless succeed in symmetrizing the double dis-
continuity of the final expression. We write

R(s, t) = R(s, t) + R(t, u) + R(u, s), (2.24)

where

R(s,t) = R{s9t) + R(t,s), (2.25)

with

R(s,t) = n'γ\-^-Rs{s\t), (2.26)
4. S ιS

in which Rs is the part of Rf with the ί-channel cut, namely

ί 2 t

4 f v ίsinπα(s+Γα ( s + )\ ^ 4
16s/(

f

s~4) at _ Λ It

π ^ / 2ί

sin πα(s _)

16s/(s - 4) ^ /

i f JO

o ί —ί

In the following sections we shall establish the existence of functions with the
representation given in (2.20)—(2.27).

For partial-wave amplitudes satisfying the above equations, we shall
demonstrate that the corresponding scattering amplitude, A(s, ί), exhibits
full crossing symmetry as well as Regge asymptotic behaviour in all channels.
It is rather remarkable that Regge behaviour is not spoiled by the extra terms that
are required by crossing symmetry, and we have not seen such a representation
in the literature.
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3. Froissart-Gribov Representation for Re / > ε — \

We have succeeded in finding a representation for the total amplitude that
contains no unknown subtraction or single spectral-function terms. Since we
wish to have Λ^s) meromorphic in the right-half /-plane (excluding, in particular,
Kronecker delta terms), we must still see how to continue the Froissart-Gribov
integral,

down to low values of /. We may read off At from the representation (2.20) et seq.:

At(s,t) = Bt(s,t) + Rt(s,t), (3.2)

where

1h{ ^ h (33)

and where

R,{s, ί) = Rt{s, t) + R,(u, t) + Rt(s, t) + R,(u, t), (3.4)

with

4 ds'

4 l / ( t _ 1 6 )

s'-s

2t ' (3.5)

and

Rt(s,t) = θ(A-t)Rs(t,s), (3.6)

where Rs was defined in (2.27). The contributions of Bt and of the crossed terms,
Rt, to (3.1) can be continued without change to all /-values such that Re/> ~4 + ε.
Indeed, the crossed terms only involve finite ί-integrals in (3.1), so there is no
question of divergence. However, the contributions of Rt(s9 ί) and Rt(u, t) give
convergent ί-integrals only if Re/ is large enough. Our task in this section is to
make explicit the analytic continuation of these terms to the whole of the /-plane
to the right of the contour Γ.

As a preparatory step, we must study

— β(s) P (1 + 2t/(s — 4)) (3.7)
2

as a function of the complex variable 5, for ί fixed, real, and positive. We shall
require that α(s) be analytic, with a cut 4^5<oo, since this is what is found in
potential theory (if no Regge trajectories cross). However, At(s) has a kinematic
cut running backwards from 5 = 4, which can be removed by dividing At(s) by
(s — 4)1: this is a well-known result that one obtains by studying the Qι function
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in (3.1). Hence we are led to suppose that

(3.8)

is free from the kinematical cut, and is in fact also analytic in the s-plane, cut
[4, oo). Clearly β(s) has not only this cut, but also a cut (—oo,4] that originates
from the factor (s — 4)α(s). Moreover, at fixed / and t, the function

is analytic in the s-plane, with a cut 4 — t < s < 4. It is clear then that the Function
(3.7) will in general have a cut along the entire real axis from — oo to -I- oo.

Let us define the discontinuity across the real axis,

s-4)

(3.9)

with t real and positive. For s > 4, the discontinuity arises because of the cuts of
α and β, and we may drop the suffices ± in the arguments of the Legendre func-
tions. However, for s < 4 these suffices are important, although they may now be
dropped in the argument of α, since this has no cut for s<4. There is still the kine-
matical cut of β; and it is perhaps clearer to work with β instead of β in this region:

β(s±) = e±ίπa{s)(4-s)ac{s)β(s), (3.10)

for s<4.
Consider now the section of the real s-axis defined by 4 — £<s<4. Here the

argument of the Legendre function in (3.7) lies between —1 and — oo. In this
region one can use the standard formula

to show that

(^J 2 ^ ^ j (3.12)

when 4 — ί < s < 4 , where we have used (3.10). For s<4 — t, the argument of the
Legendre function lies between — 1 and + 1 , and there is no cut here. The only
discontinuity comes from the kinematical cut of /?, so we find that

M [ ^ j | ( ) ( ^ J ( 3 . 1 3 )

for s<4 — t.
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Fig. 1. The integration contour of Equation (3.14) in the
variable s'. Reα(s)= — ^ + ε on the complex part of the
contour

Fig. 2. The image of the contour of Figure 1 in the

variable I = α(s)

s=Λ +

s=-Ω

Γ

s=Λ_

t

s=0 7s=4

\

J
We shall now write a Cauchy integral for the analytic Function (3.7), and for

definiteness we set s = s+=x + iη, 4<x<Λ, η>0:

1 +
5 — 4/ M J s' —

2t

7^4
(3.14)

where the integration contour consists of two pieces, as shown in Figure 1. We
have already supposed that Reα(τl) = — i + ε, and we now further assume that a
positive number, Ω, exists such that also α( — Ω) = — \ + ε. Moreover, we require
that

Reα(s)< —i (3.15)

for s< —Ω and for s>Λ. In other words, we suppose that the Regge pole is to
the right of the background contour, Γ, only for — Ω<s<Λ. The complex parts
of the contour in Figure 1, which we designate by y, are defined by the requirement
s'ey=>Reα(s')= — i + ε. In fact the integration contour in the s'-plane is an image
of a contour in the plane of /' = α(s'), as shown in Figure 2. The contour follows
the Regge trajectory α(s+) for real s when the pole is to the right of Γ and it is
closed along a section of Γ itself. Notice that the complex part of the contour in
the s'-plane is uniquely defined if the function oc(s) is schlicht; but in fact we do
not need to impose this restriction, but only that there does exist a bounded,
continuous contour from s = Λtos=—Ωon which Reα(s)= — \ + ε. This contour
need not be unique, but in the event of bifurcations we may for definiteness always
choose the contour that encloses the least area. The analytic and asymptotic
properties that we impose on oc(s) are in fact enough to guarantee the existence of
such a contour.
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We have now completed our study of the Function (3.7), and we can use the
Cauchy integral (3.14) to rewrite (3.5) in the form

^ ^ ^ j ί φ + , t ) , (3.16)

where

4f/(t-16) jf _

( 3 1 7 )

where the sense of the integration direction on the two pieces of the complex
contour y is that given in Figure 1. The purpose of the above manipulations
should be clear: we have isolated the Regge behaviour in the first term on the
right-hand side of (3.16), and in fact we shall show later that the expression (3.17)
can be constrained to be of order t~i+ε for large t. Hence these terms cause no
trouble in the Froissart-Gribov integral. On the other hand, for Re/>Reα, we
have the standard formula

where

Ξiz0 α) = (z% -1) [_Qlz0) Fa{z0) - βί(z0) Fα(z0)] . (3.19)

The right-hand side of (3.18) is well-defined in the entire /-plane, as a meromorphic
function, and we have thus found the analytic continuation of the integral formula
to the left of the line Re/ = Reα.

By using the above results, we can replace (3.1) by the following expression,
which constitutes the analytic continuation of (3.1) to the line Re/= -j + ε:

s + ί

4
1

πys — <+) 4 \ s —

+ Rt(S+,t)+Rt(4-s+-t,t)-]. (3.20)



78 D. Atkinson et al.

The second term here is part of the contribution from Rt{u, ί): it comes from the
expression corresponding to the first term on the right-hand side of (3.16), and it
gives no trouble in (3.20), since the ί-integral is never infinite.

4. Existence of Iterative Solutions

In this section we shall show that the equations of the previous two sections can
be used to define a contraction mapping, if α, /?, and v are specified functions which
satisfy suitable conditions. This implies the existence of a solution, and moreover
one that can be obtained by a convergent iterative process. The contractive
existence proof involves essentially the same techniques as those described in
Refs. [1] and [2], as we shall show in this section.

The sequence of equations that we use to specify the mapping,

Aι(s) = PlA;s9ί]9 (4.1)

is defined by the following: (3.20), (3.3), (2.23), (2.17), together with the formulae
that define the various functions in these equations. The next step then is to
define a suitable Banach space, but before we do that, one remark is in order:
although we have used the unitarity Equation (2.6) in deriving the representation
(3.20), this does not guarantee that a fixed point of the mapping (4.1) will satisfy
(2.7). Consequently, the amplitude would generally not satisfy elastic unitarity
for 4 ^ s ^ 16, and moreover the discontinuities of Bf(s\ t) and Rf (sf, t) might not
cancel, so that ^4el(s, t\ defined by (2.19), would have a logarithmic infinity at
s = Λ. This is unwanted, and in fact such an infinity would spoil the fixed-point
proof. We shall, for the purposes of this paper, make the artificial assumption,
β(Λ) = 0, i.e. that the residue function vanishes at the point at which the Regge
pole crosses the background contour. One might hope that this ad hoc restriction
could be removed by some modification of the mapping; and in fact the difficulty
does not occur in the N/D treatment of Ref. [5], since unitarity is explicit at each
stage there. However, in the N/D approach one only has an implicit definition
of the Regge poles, and one does not know in advance of a numerical computa-
tion whether there are any poles in the right-hand half of the /-plane. Once we have
made the constraint, β(Λ) = 0, the actual fixed-point proof is only a slight generali-
zation of that of Refs. [1] and [2]. Indeed, since the Regge pole term, i.e. the first
term on the right-hand side of (3.20), now vanishes ats = Λ, the complete amplitude,
A(l s), can be kept bounded for all 5^4 and all / on the background contour
Furthermore the mapping, (4.1), differs from those of Refs. [1] and [2] only to
the extent that Regge terms have been added to the inhomogeneous part of the
mapping, V(s, /). Therefore we can employ almost the same Banach space as that
used in Ref. [2], the only difference being that one must allow for the large s
behaviour of the Regge terms, as was anticipated in Section 5 of Ref. [2]. We
give this generalized norm in the appendix: in particular an asymptotic behaviour
at large s of the type sλ is apparently allowed, where λ > 0. However, this un-
bounded behaviour does not occur for physical /-values: we show in the appendix
that the physical partial waves remain bounded, as required by inelastic unitarity.
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There is, however, one complication because of the new norm. We need to
replace the phase-space factor qs in Equations (2.3), (2.5), (2.6), (2.7) and (2.17) by

(4.2)

where h(s) is a Chew-Frautschi cut-off, as in Ref. [2], which we may choose to
satisfy the constraints

h(s)=l, 4 ^ 5 ^ 1 6 ; (4.3a)

(4.3b)

(4.3c)

\h(sί)-h(s2)\^\si-s2\\ 4^s2<Sl^N. (4.3d)

This cut-off effectively civilizes the large s behaviour of the elastic part of the
amplitude. Physically, one may argue that such a cut-off is reasonable, in order
to prevent "double counting" in the interior part of the double spectral function,
which would presumably occur if v were absent in (2.23) and if there were no
cut-off. Of course, since we do not envisage setting ί; = 0, the introduction of the
cut-off merely implies a redefinition of v(s, t\ and a re-identification of It(s) in (2.6)
as a pseudo-overlap function. The true overlap function is then

(4.4)

As already mentioned, these solutions will not in general satisfy (2.7), and so
the elastic unitarity condition will not in general be satisfied in the region 4 ̂  s ̂  16.
However, for fixed α and β, the central inelastic double spectral function, φ , £),
can be varied to give different solutions of (4.1); and so we can consider the fixed-
point of (4.1) to be an implicit function of υ. Thus one might hope that a suitable
choice for φ , ί), at least for some a and /?, could be made such that the corre-
sponding contribution to the Froissart-Gribov representation, V(s, /), is still in
the contractive domain of the mapping, and such that the corresponding fixed
point of the mapping satisfies

A{υ;l = φ±),sτ)=^=±-, (4.5)

where we have made the dependence of A on v explicit. This then would ensure
that the amplitude satisfies elastic unitarity in the elastic region.
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Appendix A

We work in a Banach space of doubly Holder-continuous functions, f(s9y),
specified by the following norm

\L(si,yi)-js(S2>.Vl

Sχ-s2

Sl

) - -fs(si ,y2)+fs(s2>y2)\

yi-yi

yι+i

Q

where fs is the partial derivative of / with respect to 5, and where the suprema
have to be taken over all s1 >s2^4 and \yt\ > \y2\9 yx and y2 real. The constraints
upon the indices μ, v, and ρ are those of Ref. [2], namely

0<μ<min(ε, | ) , (A.I)

(A.2)

-μ-Q, (A3)

where 0 < ε < \ determines the position of the background contour, / = — \ + ε -f iy,
— co<y< oo. The index λ is chosen such that

A>supReα(s) (A.4)

for reasons that we shall explain in a moment. Notice that we need the single
Holder differences in the variable y in the norm, just because λ is positive, but
that we have dispensed with single Holder differences in s, since these are implied
by the double Holder term. As mentioned in Section 3, we assume α(s) and β(s\
where

4)~α(s) (A.5)
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to be real-analytic functions with a branch point at s = 4 and a cut running from
s = 4 to s= + 00.

Now we notice that the Regge terms involve only finite integrations with respect
to the arguments of α and β, even in the case where a contour deformation has been
performed. Thus we do not need to make assumptions about the asymptotic
behaviours as s—•oo, except that α(s) is such that Reα(s)^ — -j + ε for s^.Λ. It is
necessary to impose only the following conditions, that have to do with Holder
continuity, threshold behaviour, and the artificial restrictions at the point s = Λ,
to which we alluded in Section 4:

(A.6)

(A.7)

(A.8)

\βin\s)\ S Φ(s) - a(Λ)\ 3~n(A- s)δ, (A.9)

where K is a generic constant that may change from line to line, where δ is a small
positive number, and where α(n)(s) and β{n\s), n = 0,1,2, are the position and residue
of the Regge pole and their first and second derivatives with respect to s. It readily
follows, by the techniques of Refs. [1] and [2], that the Regge terms are elements
of the Banach space specified by the norm given above. Note that Theorem III
of Ref. [2] contains an error. On the right-hand side of Equation (B.ll) of Ref. [2],
the first term should be multiplied by ((s2 — 4)/s2)

μ and the second by ((s2 — 4)/s2)
μ+α.

To conclude this appendix, we shall consider in detail the f-channel Regge
pole contribution to the Froissart-Gribov integral. In the final form (3.20), the
only terms in the integrand that tend to infinity as s-»αo, for fixed ί, are those
involving jRt(s + 5 t) and Rt(4 — s+ — ί, t). It would appear that the expression

+

 2 l

φ-4)Γ V s-4

2 \sinπα(ί+) α(ί + )y t — 4) sinπα(ί_) α(ί ]\ t —

might behave like satmax~ί, where α m a x = supReα(s), and this is the reason why we
have the inequality (A.4): the Banach space contains functions that explode like sA,
but this causes no difficulty with the fixed point proof, because of the cut-off.
Nevertheless, we must show that, for physical /, the term (A. 10) is actually bounded
as s-»oo. This can be done by distorting the ί-integration contour, in the complex
ί-plane, in precisely the same way that we distorted the s'-integration contour
of (3.5) (see Fig. 1). There is no Cauchy pole in the present case, and so we can
replace (A. 10) by a corresponding integral around the rest of the contour of
Figure 1. It will however be clearer if we write the two components of P^v separately:

(A.11)
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where we need the suffix on s+ (which means s + ίε, εjO) only in the first component
in (A.ll), when ί^4, as it is in (A.10). We use a formula analogous to (3.11) to
re-express (A.ll) as

still for t>4. Hence (A. 10) is equal to

t-4/

where A means the discontinuity across the real ί-axis, divided by 2i, and where
we shall use the identification (A. 12).

It is clear that the contribution from the complex contour, y, cannot be worse
than sε~^ as s->oo, since Reα(ί)= — i + ε for tey. We may concentrate then upon
the integral from -Ω to 4, and so we must calculate the various discontinuities.
In this region, α(ί) has no cut, and that of β(t) comes solely from the kinematical
factor, (ί-4) α ( ί ) , so that

β(t±) = e±iΛit)(4-tT(t)β(t). (A.14)

2s
The function Pa{t) 1H on the right-hand side of (A. 12) has a cut 4 - s < t < 4,

\ t — 4)

and since we are interested here only in s-+co, we need consider only s>Ω + 4,
in which case the above cut extends from t=4 backwards to beyond t=— Ω,
and we have

ί±-4

- 2 π

/ 2s \
The function Qα(ί) 1H in (A. 12) has a cut — oo < t < 4, and if s > Ω + 4, then

the argument is less than — 1 for — Ω < t < 4, and here

/ 2ί \
Finally, the function Qz 1H 7 in (A. 13) has a cut - oo <t < 0 , and in this case
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the argument is between - 1 and +1 for - Ω < ί < 0 , so that

s-4/ 2sinπ/\ \ s-4/ ι\ s-

Now we must combine (A.14)-{A.17) together to evaluate the integral from — Ω

to 4 in (A. 13). For 0 < ί < 4 , Q, lH -I has no discontinuity, and so this piece

of the integral is equal to

which has an asymptotic behaviour s~α(0)~2<s~ε~^, to within logarithms, and
so is completely unimportant. The remainder of the integral, between — Ω, and 0,

is more complicated because here β/ίlH τ | has a discontinuity, as can be

seen from (A. 17). We find this piece of the integral to be equal to

4 °

s-4 4

(A. 19)

where

It
( 1 +
\

(A.20)

s, t)= - . U

 tM + e-ίπ^) Pι4sinπα(ί)
. tM + e ) Pι (l +4sinπα(ί) \ s-

The dominant asymptotic behaviour is given by the contribution from the Pα

term, which yields s^0*"1, as we promised. Thus we need only α(0)^l in order to
keep the partial-wave amplitudes bounded, the extreme value α(0) = l being
allowed.

We see then that the partial-wave amplitude is actually bounded as s->oo,
if α(0) ̂  1, despite the fact that the norm tolerates a behaviour s\ In this connection,
it should be noted that it is not a good idea to make the contour distortion to
obtain (A.ll) for complex /, for when z is not real and greater than unity, Qt(z)
blows up exponentially as |Z|->oo, either in the upper or the lower half-plane,
but not in the special case of real, positive /. This behaviour would ruin the fixed
point proof; and this is the reason that we make no distortion of the ί-contour in
(A. 10) for the proof: we treat At(s) as if a behaviour tf*****'1 were possible. Only
for physical (or more generally for real) / do we have a bound sα(0)~ ι that is uniform
with respect to Z.
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