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Abstract. The conjectured inequality Γ ( 6 )^0 leads to the existence of φ 4 fields
and the scaling (continuum) limit for d-dimensional Ising models. Assuming
Γ ( 6 )^0 and Lorentz covariance of this construction, we show that for d^6
these φ\ fields are free fields unless the field strength renormalization Z " 1

diverges. Let λ be the bare charge and ε the lattice spacing. Under the same
assumptions (Γ ( 6 )^0, Lorentz co variance and d^6) we show that if λε4~d is
bounded as ε->0, then Z " 1 is bounded and the limit field is free.

1. Introduction

Even φ 4 fields in the single phase region describe particles which interact through
repulsive forces. The evidence in support of this statement includes the absence
of even bound states [24, 3,34] the canonical lower bound on critical exponents
[16], the arguments of [19] concerning absence of three-particle bound states
and CDD zeros (which depend on the conjectured inequality Γ ( 6 )^0) and the
scaling and numerical arguments of [22,29] in favor of this Γ(6) inequality for d ̂  3.

The purpose of this note is to extend some of these ideas to lattice φ 4 field
theories and Ising models. There are two reasons for studying lattice (as opposed
to continuum) field theories. The first reason is that all dimensions, including
d^4, are possible, and that the results obtained may be related to the existence
[17,16,1,30,21] and triviality/nontriviality problems in these dimensions, see
also [32, 33]. The second reason is that the lattice φ 4 field theory is an intermediate
link between the continuum φ 4 field theory and the Ising model, and may serve
to clarify the relation between Ising model and field theory critical behavior,
see [20-22,26-27, 31]. Beyond these two reasons, we note that lattice field theories
are at the outset easier because of the absence of ultraviolet problems but ultimately
more difficult because of the absence of the Euclidean rotation symmetry.
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** Supported in part by the National Science Foundation under Grant MPS 75-21212
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Fig. 1. The λφA+σφ2 parameter plane. ε= lattice spacing; σ=σ(λ, ε, m) chosen to give mass m in
single phase region; m held fixed (e.g. m=l). The λ axis represents (continuum) field theory. The ε
axis at A=oo represents Ising models [30]. The e axis at λ=0 represents Gaussian lattice fields. The
curve λ=sd~4' represents constant dimensionless bare charge. Charge renormalization for d^4 may
lead to a reparametrization of the λ axis

As a compensation for the loss of Euclidean invariance and of the resulting
Lehmann spectral formula, we use the momentum space canonical upper bound
[9] on the two point function, as well as the Γ ( 6 )^0 inequality as used in [19].

Our first main result assumes only Γ ( 6 )^0. The conclusion is the existence
of a continuum φ\ field theory with an arbitrary choice of charge renormalization.
Included is the existence of the scaling (continuum) limit for Ising models. The
second main result assumes in addition Lorentz invariance of the continuum
theory, as well as the (finite) charge renormalization, λ:gεd~4,ε being the lattice
spacing. Note that εd~4->0 in the continuum limit ε-»0, for d^5. In this case,
the ε=0 theory is canonical for d^6 (§ 5).

The limits considered here are summarized in Figure 1 above. Coincidence
of the two fixed points seems to correspond to the picture in which nontrivial
φ4 field theories cannot be constructed as a limit of lattice cutoff approximations.
Similarly, it would seem that the Ising model would be governed by the trivial
fixed point only in the case for which a nontrivial fixed point does not occur in
Figure 1.

A renormalizability curve λ=O(εd~4) of constant dimensionless bare charge
is indicated on this figure. A limit constructed along any such curve is renormaliz-
able. Those limits constructed below this family of curves are superrenormaliz-
able (e.g. the continuum limit with constant λ, d = l,2,3). Theories constructed
above these curves are nonrenormalizable (i.e. λzAr~d-+co as ε->0). The charge
λ has dimension (length)**"4, so that λs4"0 is a dimensionless bare charge.
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2. The Wave Function Renormalization and Proper Self Energy
for Noncritical Lattice Theories

In this chapter, we consider a P(φ) lattice field or Ising model. We suppose that
the infinite volume limit is defined and is invariant under lattice translations,
rotations and reflections. We also assume FKG inequalities [6], a positive mass
m > 0 (i.e. an exponential decay rate for correlations in lattice directions) and a
single phase. These restrictions should be viewed as restrictions on the boundary
conditions and/or coupling constants. In particular they are satisfied for φ*
interactions and the Ising model approaching the critical point from a single
phase direction. Let

G<2>(x)= <φ(x)φ(0)> - <φ)Xφφ)> ^ 0 (2.1)

be the truncated two point function. The Fourier transform

(2.2)

is nonnegative because G(2\x) is positive definite. Using invariance of G(2\x)
under reflections and rotations, G(2h(p) is a symmetric function of the variable
{cospv}^ = 1 . Using the selfadjoint transfer matrix, one shows that

.0,x v,...0) (2.3)

for any v [30]. In particular G ( 2 ) has an exponential decay rate in all directions
and G ( 2 h is analytic for p in a tube τ. By Hartog's theorem, τ is convex and also
using the pv-^—pv symmetry, we see that

p: £ | I m p v | ^ m l c τ c { p : s u p | I m p v | ^ m l . (2.4)
v = l J I v J

The use of Hartog's theorem can be avoided by a Schwarz inequality. For

Thus not only is τ convex, but its border coincides with the singularities of G{2)r{p\
for Rep=0. We have proved the following:

Proposition 2.1. For a lattice field or Ising model as above, G{2)ris analytic in a convex
tube τ, satisfying (2.4).

We distinguish a single lattice direction x, and write x={x2,...,xd},p =
{P2>'-> Pa)- The existence of a self adjoint transfer matrix means that G ( 2 h has an
analytic continuation for px in the half plane p\ Φ neg. real, for p real.

Proposition 2.2. Consider a lattice field or Ising model as above with p real Then
G(2h(p) is Herglotz as a function of the variable 1 — cosp^ For some positive measure
dρ(a, p) depending on p,

d β i a P \ , (2.5)
α
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and

0<J^<oo. (2.6)

Proof. An explicit calculation shows that the Fourier transform of e~μ | n | is

Σ ^ - μ | M | + ί p π = si

Substitution of this formula into the spectral representation for the transfer
matrix establishes (2.5) after the change of variable a= — 1 + coshμ, while the
upper bound in (2.6) follows from

e-^x= G(2)~(0, p) = f-^lϊί ^ £ &2\x)< oo . (2.7)

From (2.5) we see that G(2h(p) is monotone decreasing in each argument pv for
0 ^ p v ^ π . We show that G ( 2 h (π, . . . ,π)φ0 and then it follows from (2.5) and
monotonicity that dρ(a,p) is nonzero for any real p. If G ( 2 h(π,...,π) = 0, then
dρ(a,π) = O by (2.5), and so G ( 2 h (p 1 ,π,. . . ,π) = 0 for all pγ. Interchanging first and
second coordinates, G ( 2 ) ~(π,p 2 ,π,. . . ,π) = 0, and so Gi2y~(pl9p2,π9...,π) = 0 for

arbitrary px and p2. Continuing in this fashion, we conclude that G ( 2 h and G ( 2 )

both vanish, which is a contradiction.

Definition. Γ{2\x) is the convolution inverse to — G(2), so that

The next result is elementary, cf. [19].

Proposition 2.3. Consider a lattice field theory or Ising model as above. Γ(2)~ is
analytic in a convex tube τΓ satisfying

(2.8)

For p real, Γ(2>~ is Herglotz as a function ofί— cos pt, and has a unique representation

Γ<2>~(p)=-α0>)(l-cosP l)

1 a

f -- dv{a,p) (2.9)

with a ̂  0, β real, dv positive and

Remark. For d}±3, there is a constant K depending only on d and G(2>(0)
such that

\ (2.10)

Proof. By [9],

t. | p Γ 2 . (2.11)
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By the Herglotz property, used successively in each coordinate, as in the proof of
Proposition 2.2,

|pvΓ
2G ( 2>~(π,...,π).

v = l

Thus for any r > 0 and for d > 3,

G(2)(0) = (2π)-dίG(2)~(p)dp

^ const./ j |pΓ 2 dp + r-2 dG ( 2 )~(π,...,π)N

l

Here the optimal choice of r is

and so

G(2)(0)2d +1 ^ c o n s t G ( 2 h ( π ? . . . ? π ) ^ const. G(2)~(p).

A uniform upper bound on (2.9) follows. For d = 3, the exponents must be changed
slightly to dominate rlnr in place of r, but a bound on (2.9) in still valid. Linear
combinations of cosp 1 =0, —1 show that β and oc + ̂ (a2 + l)~ίdv(a) are each
bounded. Since α and dv are each nonnegative, the individual terms α and
\{a2 + 1)~ xdv are also bounded, proving (2.10).

We now write x = (x\ x"\ p = (p\ p") for some decomposition

x = (xί 9 ? Xj) •> x — \xj+ 1 ? 9 xd)

of the coordinates, and consider the partial Fourier transform

Γ ( 2 V , p")= Σ e-ip"x"Γ(2\x\ x").

Proposition 2.4. Consider a lattice field or Ising model as above. For q + 0 ,
x2 =... = Xj = 0, p" real, Γ(2)~(x', p") is positive and has an exponential decay rate
m^m. (Notej+0, by assumption.)

Proof. First we consider the case x' = xx and p" = p. The Herglotz representation
(2.9) in xί-space has three terms. The first is nonnegative for x ^ O . The second,
proportional to β, vanishes for x t Φθ. The third is positive for all x l 9 so the proof
is complete in this case. The general case follows from the case just considered,
because integration with respect to p 2 , . . . ,p 7 is equivalent to evaluation at
x2 = ... = X;=0.

Definition. If the measure dρ(a,p = 0) has a ^-function at a= — 1+coshm, then
Z > 0 is the strength of this (5-function. Otherwise by definition Z = 0.

Proposition 2.5. For a pure phase lattice P(φ) field theory or Ising model with
m>0andZ>0,

= α(0)+ J(α-coshm+lΓ2dv(α,0) (2.12)
o



6 J. Glimm and A. Jaffe

Proof. We write

1— cospi + α

— 1 + coshm + ε

where J dρ-^0 as e-»0. Thus as cosp^coshm,
- 1 + cosh m

1 (2.12a)

and the derivative of Γ ( 2 ) can be evaluated as Z " 1 from this inequality.

Remark. We have not assumed an upper mass gap, in contrast to [19].

Definition. CL m o is the free (Gaussian) lattice covariance,

d

- l + c o s h m 0 + 2] ( l- c o s Pv)
v = l

- 1

(2.13a)
v = l

and

Π~{p) = Γ{2y{p) + CZX0 (2.13b)

Proposition 2.6. Consider a lattice field theory with the hypotheses of § 2. Let
P o , Px be projections onto the vacuum Ω( = 1) and the span of(\ — P0)φΩ respectively.
Then

Π(x) = - <P"}δo(x) + <F(x), (1 - P o " Λ W O ) ) (2.14)

if the Wick ordering covariance for P is CL w o .

Proof. As in [19]. The Ising model is excluded because the δ-functions in the single
spin measure prevent integration by parts.

Proposition 2.7. Consider a lattice field theory as above.

Proof. We use the integration by parts representation (2.13-14), and omit

X e~^"x\P{x' = 0, x")(l -Po- PJ

Here x' = xx,..., Xj and x" = xj+ x,..., xd. The omitted quantity is positive because

x"^(P>{x> = 0, x")(\ -Po- PJP'φ)}

is positive definite and hence the Fourier transform of a positive measure.

3. Three Particle Decay for έP(φ)= φ4

In this section we consider λφ4 + σφ2 lattice field theories with σ>σc. Then all
hypotheses of §2 are satisfied. Ising models are excluded because we integrate
by parts.
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Proposition 3.1. Assume Γi6\xxxyyy) ^0 for x—y large. Then the CDD radius
m satisfies m^3m. The analyticity tube τΓfor Γ ( 6 ) satisfies

{p:Σ\Impv\^3m}CτΓ

Proof. As in [19]. See also Proposition 3.2 below.

This result leads to the existence of φ\ field theories and the scaling limit for
Ising models, see §4. In order to establish the triviality of some of these field
theories, we need to assume canonical upper bounds for the two point decay
rate (as would follow from the Lehmann spectral formula in the continuum case).
Explicitly, we assume

κ^x\ e , |x |sm

This bound is always satisfied for fixed σ, λ, but eventually we will consider the
postulate that Kx is independent of σ and/or λ, which is not known.

Proposition 3.2. Assume (3.1) and Γi6)(xxxyyy)^0 for a λφ* + σφ2 lattice field
theory with σ>σc. Then for

where K2 is a universal constant and Kί is defined by (3.1),

-3m\Xl\ for ..

(3.2)

Proof. As in [19], we expand Π in terms of connected and one particle irreducible
subdiagrams. Negative terms, including Γ ( 6 ) can be omitted, yielding the bound

Π(Xl, p = 0) ̂  Σ χ l J6G(2)(x)3 - 36 Σ G(4)(xx0z)Γ(2)(z - z')G(4)(zΌ0x)l. (3.3)
x I z,z' J

By Lebowitz' inequality, G 4 ^ 0 . Let Pj be the momentum variable conjugate
to Zj—z'j. By Proposition 2.4, applied with p// = (P2> ?Pd)=:0> the terms with
zί—z'ίή=0 may be omitted. Having done so, we apply Proposition 2.4 again with
zί—z'1=0,p" = (p3,...,pd) = 0; we omit terms with z 2Φz' 2 . Continuing in this
fashion we have

where Proposition 2.7 provides the lower bound on Γ(2)(0). Lebowitz' inequality
bounds the G ( 4 ) factors above, so that

+ ί44(2d-1 + <F'»G ( 2 )(x) 2(G ( 2 ) * G(2))(x)}. (3.4)

Substitution of (3.1) yields (3.2).
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4. Existence of Continuum φ\ Fields and the Ising Scaling Limit

The original existence, regularity and Lorentz covariance theorems for φ% fields
were given in [10-12,15, 2]. A survey of this work, including the contributions
of Nelson, Segal and others may be found in [13,14]. The remaining two
Wigthman axioms — uniqueness of the vacuum and its in variance under Lorentz
rotations — were verified in [23] for weak coupling, and in [8] for arbitrary
coupling. The completion of the φ\ existence program has recently been achieved,
see [4,28] for weak coupling and [5, 7] for arbitrary coupling. The original
nonuniqueness proof for relativistic fields was given in [25].

In this section we consider the continuum limit of lattice φ\ fields.

Theorem4.1. Assume Γ{6\xxxyyy)^0 for all σ>σc(λ) and all λ for λφ^ + σφ2

lattice fields. Choose a mass ra>0, and for each choice of lattice spacing ε>0, choose
a bare charge λ(ε). Then the limit ε—>0 defines (through convergent subsequences)
a continuum field theory limit of the λ(ε)φ2 + σφ2 ε-lattίce theories. This limit has
mass m>0 and satisfies the Wightman-OsterwalderSchrader axioms with the
possible exception of Lorentz ίnvariance.

Proof. By [1, 30], there is a σ = σ(ε)>σc(λ(ε)) which gives mass m > 0 to the ε-lattice
field theory. By [17], existence of the limit (through subsequences) follows from
a uniform bound on the two point function. As in [19], the bound on the CDD
radius gives the required bound on the wave function renormalized two point
function. Because of the wave function renormalization, the limit theory has a
mass m. This completes the proof.

A portion of this proof extends to Ising models.

Proposition 4.2. Assume m (the CDD radius) ^ ( l + <5)m,<5>0, for T>TC in the
d-dimensίonal Ising model Then the"scaling limit exists and defines afield theory
in the sense specified in Theorem 4.1.

Theorem 4.3. Assume Γ(6\xxxyyy)^0 for λφ4 + σφ2 fields with mass m fixed,
positive and λ sufficiently large (σ > σc). Then the Ising model scale limit exists.

Proof. By [30], the Schwinger functions of the lattice field theory converge,
as Λ-»oo to the Schwinger functions of the Ising model. Thus G{2)r{p) and Γ(2)~(p)
converge for real p. In fact from (2.3), (2.7) and m > 0 we have a uniform bound
on Jdρ(α, p)/a which implies pointwise convergence of G(2h(p) for real p. As in the
proof of Proposition 2.2, G(2)~(p) is bounded away from zero, so F(2)~(p) converges
pointwise and is bounded also. However the remark following Proposition 2.3
yields bounds on α, \β\ and jdv/(l + α2), which by Propositions 2.3 and 3.1 imply
that Γ ( 2 h(p 1 ?0) is analytic up to |Imp 1 |<3m, and bounded uniformly in λ. Hence
the same is true for the Γ ( 2 h of the Ising model. Thus m^3m. This statement is
uniform in m, and existence of the scaling limit follows from Proposition 4.2.

5. Critical φ4 Lattice Theories, d^6

Theorem 5.1. Consider a λφ^ + σφ2 lattice field theory with σ>σc(λ) and
Γ6(xxxyyy)^0. Then ZφO. For d^6, the bound on Z " 1 is independent ofσ>σc(λ)
and λfor λ and m bounded.
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Proof. Z > 0 because Γ ( 6 ) ^0 implies an upper mass gap. To establish the uniform
bound on Z " 1 for d^β, we use (2.12). By the remark following Proposition 2.3,
it is sufficient to estimate the small a behavior of the dv integral, which we do
using (2.11), [9] and (3.4). From (2,12),

00 dv
Z " 1 = const. + f - ;—r~ ^const. + const. \a'2dv

(α+l-coshmr

= c HH^F n p ) i *4
(Note in general d/dpD+id/dpJ2). By (2.13)-(2.14),

and by (3.4)

Z " 1 ^ const. ( l +

^const.f 1+ ^x?(G (2)(x)3 + G(2)(x)2G{2) * G{2\x))] (5.1)

Sconst, [l - (/") V ( 2 h * G(2)~* j |

The point to these manipulations is to replace a derivative of Γ by a derivative
of the upper bound on Γ. By the Herglotz property, we are again able to transfer
derivatives to the upper bound (2.11) as follows. For simplicity, we consider only
the final (and worst) term above. It is

x dρ(a)dρ(b)dρ(c)dρ(e)dkdldq\p = 0 .

Without loss of generality, we restrict all dρ{a)... dρ(e) integrations to the interval
[0,1]. By (2.11), it follows that

and so we may replace the dρ integrations by sup. This supremum is evaluated
a,b,c,e

&sθ = a=b = c = e. Thus we have accomplished our goal. The derivative is placed
on the upper bound, in this case the zero mass free lattice field. It is convenient
to return to x-space, where we find

The theorem follows from this bound.

Theorem 5.2. Under the hypothesis of Theorem 5.1, and the construction of Theorem
4.1, the two point function is free (Π = 0) at momentum p = 0, in the limit β-»0.
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Remark. If λ = λ(ε) is the bare charge (ε = lattice spacing) then λ(s)^8d~4 in the
above case.

Corollary 5.3. Suppose in addition that the limit ε->0 above is Euclidean invariant.
Then it is a free scalar field of mass m.

Proof The two point function is free by the theorem, and the theory as a whole
is free by [35, p. 163].

Proof of Theorem 5.2. Let ΓJ m ε (p) be the inverse propagator for the theory with
bare charge λ, mass m and lattice spacing ε. By scaling,

Γsd-*λ,s-imJp)=s~2Γλ,m,s(sp). (5.2)

Here we choose ε= 1, s->0, and
1 i.e. m = const. s->0

so that the λ on the right side of (5.2) is bounded, but possibly s-dependent as s->0.
Now Γλ m?ε(Pi,0) has a zero at cosp = coshm and as we have just seen, bounded
first and second derivatives with respect to p1 evaluated at p = 0, pί = 0(m). Further-
more the first derivative vanishes at pί = 0 because of the pί-> — px symmetry. The
same method bounds one more pί derivative, and

as s->0. This completes the proof.

Remark. The vanishing of Γ on the mass shell gives a cancellation which formally
allows d ̂  5 in place of d ̂  6 above.

6. Upper Bounds on Critical Exponents

We give upper bounds on certain critical exponents in a single phase φ4 + σφ2

(lattice) quantum field model. In particular we study the anomalous dimension η,
the exponent ζ for the field strength renormalization constant Z and the exponent
v for the physical mass. We choose σ>σc (the single phase region) and consider
the limit σ^σc.

In this section we assume Γ ( 6 ) ^ 0 , as well as the x-space upper bound

G ( 2 ) ( x , σ ) ^ K ( m i n { M , m - 1 } ) - ( d - 2 + ^ - w W (6.1)

with K uniform in the allowed x, σ. We expect (6.1) to hold for lattice field theories.
We then show η = O = ζ for d ^ 5 , complementing the results of §5.

Proposition 6.1. For a pure phase λφ4 + σφ2 (lattice) field theory with m>0, Z > 0
and satisfying (6.1), we have

(6.2)

If in addition Γ ( 6 ) ^ 0 , then

(6.3)
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Here ζ is the exponent for the field strength renormalization constant and v
is the exponent for the mass. Thus Z~mζlv as m->0.

Proof. Using (2.12a) evaluated at p1 = 0 gives

m~2 Sconst. Z ^ G ^ O , * ) .

We bound G2~(0, σ) by integrating (6.1) to obtain

m" 2 ^const. Z~1mη~2 .

Thus

m~ηZ^const.,

or

Since the inequality O^η is known we have established (6.2).
Assuming Γ ( 6 ) ^0, we may use (5.1). Then

m-ζlv

We show ΣΠ(x)^ const., from which we infer

proving ζ/v ̂  2. The summability of Π(x) follows from

ΣΠ(x) = 2Γ(0) = 0(1) + Γ~(0). (6.4)

Consider σ in the interval (σc9σ^ for σx>σc. Since Γ X 0 ) = - G ^ O ) " 1 ^ , we
need only bound F~(0) from below. However G2(x, σ) is decreasing in σ (a conse-
quence of the second Griffiths inequality). Thus for σ>σc

is decreasing in σ and JH(O, σ) is also decreasing in σ. Thus Π(0, σc)Ξg/Ί(0, σ^.

Theorem 6.2. Assume Γ ( 6 ) ^0 and (6.1) m a λφ 4 + σφ2 lattice theory. Then

η = ζ/v==Q for d^5 (6.5)

and for d^4

11.2 d=2 (6.6)

/! We use the bound (5.1) for

m~ ζ / v ~Z~ 1 ^const. / l + ΣxjΠixύ

^const . (ί+ΣxlίGix)3 + G{x)2{G*G)(x)]j. (6.7)
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Substituting (6.1) we find the G3 term in (6.7) sums to

(Km-*'2*-™), (6.8)

while the G2(G*G) term sums to

By Proposition 6.1, 2 —ί/^0 and

(10-2d-4η)-(S-2d-3η)^0.

Thus the G2(G*G) term in (6.7) dominates and by (6.2), (6.3), (6.7),

(6.10)

proving (6.5). For d<>4, (6.10) gives 5η<LlQ-2d, which is (6.6).

Remark. If the upper bound on Π(x) in (3.3) could be improved to show that the
G{4)ΓG{4) term has the same long distance behavior as the (G ( 2 ))3 term, then the
above bounds on η are improved to η^ζ/v^S — 2d — 3η. In this case η = ζ = O for
d ̂  4 (as expected), and for d ̂  4, η ̂  (2 - d/2).

Acknowledgement. We thank T. Spencer and K. Symanzik for helpful conversations.
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