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Abstract. We prove analyticity of the correlation functions for classical
lattice systems, including "continuous-spin" systems, at high temperatures
and in strong external fields. For systems whose configuration spaces are
homogeneous spaces for compact groups (e.g. Ising, plane rotator and classical
Heisenberg models), improved estimates on the region of analyticity are
obtained by generalizing an integral equation of Gruber and Merlini. Ex-
ponential cluster properties are also obtained for such systems with a finite-
range interaction.

I. Introduction

Using an equation of the "Kirkwood-Salsburg" type, Gallavotti and Miracle [2]
have shown that the correlation functions and thermodynamic pressure of a
classical lattice gas are analytic in the interaction parameters at high temperature
and low activity. A similar equation can be used to deal with models where the
"spin" at each site can take on any finite number of values, as opposed to the
two values 0 and 1 for the lattice gas. However, this method does not extend to
"continuous-spin" models.

In this paper, we present two models of proving analyticity for more general
classical lattice systems. The first (Section II) works for very general systems,
and is based on a theorem of Dobrushin [1] on uniqueness of measures with given
conditional probabilities. The second method (Section III) requires some additional
structure on the configuration space at each site: it must admit a transitive action
by a compact group of measure-preserving homeomorphisms. We can then
define an integral equation, generalizing one considered by Gruber and Merlini [3]
for the spin —\ model. This involves a "Fourier series" expansion of the correlation
functions; for a classical Heisenberg model, it is an expansion in spherical har-
monics. In Section IV we obtain exponential cluster properties for finite-range
interactions from this equation.
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II. Analyticity for Random Fields

Our "lattice" will be a countable set S of "sites". At each site j there is a "con-
figuration space" Ωp which we assume, for the sake of simplicity, to be a compact
Hausdorff space. For each subset A of S, the Cartesian product ΩΛ= Y[Ωj

JεΛ

(with the product topology) is the configuration space for A. We abbreviate Ωs

as Ω. All "measures" will be complex Borel measures. Jf(Ω J and C(ΩΛ) respectively
will denote the spaces of measures and complex-valued continuous functions
on ΩΛ, with norms denoted by || ||. The number of sites in XcS is denoted by \X\.

A probability measure ρ on Ω is said to have the conditional probabilities
μj(ds\x) for jε S, XG Ω{jY if for all / e C(Ω) and jε S,

ρ(/)= f ρ(dx)l μ j ( d s \ x ) f ( s x x ) .
Ω{jγ Ωj

Some measurability condition must be imposed on μj(ds\x) here; for convenience,
we will assume it is continuous as a function from Ω{j]c to Jί(Ωj) with the weak*-
topology. In statistical mechanics the conditional probabilities are usually given,
and we wish to study probability measures ("Gibbs states") with those conditional
probabilities. Assuming such a measure exist (as it will in the applications to
statistical mechanics; in general some consistency conditions are required), we
ask first whether it is unique. One sufficient condition for this is given by
Dobrushin [1]. Next, if the conditional probabilities are varied analytically,
we ask whether the Gibbs state varies analytically in an appropriate sense. This
leads us to study complex "conditional measures".

Note [10] that we can not expect the expectation ρ(/) of every fεC(Ω) to
vary analytically: by a well-known theorem of Dunford ([7], Theorem 76) this
would imply that ρ varies continuously in the norm topology. On the other htod,
in typical cases the distance between Gibbs states for different values of a param-
eter is always 2. What we actually expect is that ρ(f) should be analytic for / in
a suitable dense subspace of C(Ω\ e.g. the "local" functions: those that depend
only on the configuration at a finite number of sites.

A system of complex "conditional measures" μ3{ds\x) will be assumed to have
the following properties:

(i) For each jεS, x\->μj(ds\x) is a continuous function from Ω[j)c to Jί(Ω^
with the weak* topology.

(ii) For each jεS and xεΩ{j}c, μj(l|x)=l.
An operator τ,-: C(Ω)-> C(ΩU}C) is defined by

?jf(x)= f μj{ds\x)f(s x x) for xεΩ{j}c.
ΩJ

Later we will write μ(f \ds\x\ and correspondingly τf\ depending on a parameter z.
If the μj(ds\x) are probability measures, τ$ is a contraction on C(Ω\ but in the
general case it is more difficult to control. We now introduce a space of functions
with a norm in which τ7 will be a contraction under certain conditions.

Let r>0. We define Sr as the space of functions fεC(Ω) which can be written
as /= £ fx (the sum being over finite subsets of S), with fxε C(ΩX) and
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A norm on $r is given by

x||:/ = Σ fx>
X X

Note that ||/||^|||/||U and that Sr is a Banach algebra with pointwise multi-
plication and the norm ||| |||r

Lemma ILL Suppose there are continuous functions y^^μ^(ds\y) from Ωγ to JΊ(Ω^
with the weak* topology, such that

μj(ds\x) = £ μ](ds\x) for xeΩ(j]c and Σ^Γ( |y |"1) sup \\μ*(ds\y)\\^l . (1)
Y C { j } c Y yeΩγ

Then τj is a contraction on $γ.

Proof. If / = £ fx as above,
x

niτ/i i irS Σ III/A + Σ ΣIHKWΛM )iιι
Xφj Xsj Y

^ Σ ̂  I I Λ I I + Σ Σ^ (W+|y |"υ \\\μYj(dS\ )fx(Sχ ) i ι
Xj j XBJ Ύ

£ Σ ̂  I I Λ I I + ίΣ e"uι i l/xlOίΣ^^^'sup !iμj(<%)iι). α

For distinct sites i,jeS, let

In [1], Dobrushin showed that if the μj(ds\x) are probability measures and there
is α<l such that £ = α f°r a^ Je^ Λen there is at most one measure with

conditional probabilities μj{ds\x). This condition is related to the hypotheses of
Lemma II. 1 as follows:

Lemma IL2. Suppose the hypotheses of Lemma I LI hold with (1) replaced by

Σer(W-Vsup\\μ*(ds\y)\\^a<l. (2)
Y yeΩY

Then X ρ^α.
ίe{j}c

Proof. Let aγ=sυp\\μ?(ds\y)\\. Then ρ^rg ̂  αy, so that ]̂ ρ^^^lFjαy. Let
, , yeΩy yai ie{j)c Y

/(ί)= ^eί|y|αy-α^. By assumption /(r)<;0, while /(0)^0 since μ/l|x)-l.
Y

Therefore for some t > 0 we have

Π

In his proof [6] of Dobrushin's result, Lanford uses the space ̂  of functions
/e C(Ω) with ̂  δi(f)< oo, where

ieS

^(/)=sup{|/(x)-/(x')|:x,x'eΩ,xfc=x; for

It is easily seen that our space ^r is contained in 3F .
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Theorem Π.3. Let μ(f\ds\) depend analytically on the parameter z in some open
subset W of <C" (so that for fixed x and j, the J^(Ω ̂ -valued function z^μf \ds\x)
is analytic). Assume that:

(i) For each zeW there are α<l and μYj(ds\y) as in Lemma II A for which (2)
is satisfied.

(ii) VFnlR" is a set of uniqueness for W.
(iii) For ze PFnIR" the μ(f\ds\x) are probability measures, and are the conditional

probabilities for some probability measure ρ(z} (which is unique by Dobrushirfs
result).

Then if fe$r there is an analytic function g(z) on W with \g\^\\\f\\\r and g(z) =
Q(z\f) far ze WnJΆ".

Proof. As shown in ([6], p. 110), for each ze WnIR" and /e J^ there is a sequence
(/„) in S for which

..τJ?/)->0. (3)
ieS

Since

ΣW }/)^Σδi(/) for /eJF and zεWπW
ieS ieS

it is easily seen that given fe ^ and a countable dense subset C of FΓnIR", there
is a sequence (/„) in 5 for which (3) holds for all zeC. Now fix xeΩ, /e<fr, and
consider the sequence of analytic functions oϊ zeW given by

(z) (z)
τjn'"τjl

By Lemma IL1, these are uniformly bounded by |||/|||r For zeC, they converge
to ρ(z)(/) as in Lanford's proof. By Yitali's Theorem, they converge uniformly
on compact subsets of W to an analytic function g(z\ which agrees with Q(z\f)
on C. Note that g(z) is independent of the choice of x, since this is true on the set
of uniqueness C. Therefore, for ze Wr\W we have

ρ<"(/)= Umρ<'>(τ£>...τ£/) = 0(z) . D

The conditional measures in statistical mechanics arise from "interactions".
Let &r be the space of (complex) interactions Φ defined by the following conditions:

(i) For each nonempty finite subset X of S, Φ(X) is a complex-valued function
in C(ΩX).

(ii) The norm in ar is | |Φ||Γ= sup Σ er(|x|"1) ||Φ(X)||<oo. The space of real
jeS XBJ^

interactions in &γ is denoted ̂ r For Φe^r we define "conditional Hamiltonians"

xeΩ[j}c (4)
^3J

and the corresponding conditional measures

HΦ(sΊJ ( {x)vj(ds)
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where Vj is a fixed "a priori" probability measure on Ωp and the denominator
in (5) is assumed to be nonzero.

It will be convenient to modify the algebra Sγ and its norm by giving special
treatment to a fixed site j, leaving it out of the exponential factor in the norm.
Thus we define

\\fx\\-f =
X

and £r's={feC(Ω):\\\f\\\rj<cx)}. This is clearly still a Banach algebra.
The following theorem shows that at "high temperature" Theorem II.3 is

applicable.

Theorem Π.4. Let Φ= Ψ + Φe$„ where Ψ is real with Ψ(X) = Q for \X\>1, while
| |Φ||r< ln(2/(l+e~r)). Then there are α<l and μj(ds\y) for which condition (2)
is satisfied. If W is the set of Φ as above, then the Gibbs state ρφ is unique for
ΦeWrΛ$r, and for feSr the function Φ-^ρφ(f) extends to a function #/(Φ) on W
which is analytic on W r\Jf for each finite-dimensional complex linear subspace

Proof. We can ignore Ψ, since its only effect is to change Vj(ds) to a new probability
measure

Therefore we will take *F —0. Let

e-Hf(s\x)

hj(s\x)= r g-fl/(s'|»)v(<fey

We need to estimate lil/^|||rj. It is clear that

Moreover

| | j l _ J e-W^vtfs1) = J (l-e-H?^^vj(dsr

If the latter is less than 1, J e H*(s'''}Vj(ds') is invertible and
ΩJ

\\r,J

JlΦllr

Thus we obtain |||ΛJΓf^ 2_e\\Φ\\r <?

if
2

The rest follows directly from Theorem II.3. D



250 R. B. Israel

Theorem II.4 was independent of the one-body ("chemical potential" or
"external magnetic field") terms. Next we will show how analyticity can be ob-
tained by adding to a given interaction a sufficiently strong one-body term
favoring one configuration. Although it is possible to obtain somewhat greater
generality, it is convenient to formulate this result in a "translation-invariant"
context (to ensure that certain estimates are uniform on S}. Thus we assume that S
is a group, and that all the Ωj are copies of each other, with the same "a priori"
measure v7 . Thus we have a group of "translations" α,- on C(Ω\ with αJ{C(Ωyl)) =
C(Ωj.Λ) and vj.i°aj = vi. The interaction Φ is said to be translation-invariant if

Φ(j'X) = oίJ{Φ(X)) for all jeS and XcS finite.

Spaces of translation-invariant interactions will be denoted by $1 and ̂ .

Theorem Π.5. Let ΦE^ and Ψε@l with Ψ(X) = 0 for \X\>ί, such that Ψ({j})
attains its minimum at exactly one point s0, which is in the support of v7 . Then for
£>0 sufficiently large, there is a neighborhood W of Φ + tΨ in £%r in which the
conclusions of Theorem II A are valid.

Proof. As before, the effect of Ψ is to change v7 . We let

V .( flS) =
•A } $

ΩJ

and

e-Hf>(s*x)

ht

j(sxx)=

Given δ > 0, there is a neighborhood U of s0 such that

Σ er(W-l}\Φ(X)(sxx)-Φ(X}(s0xx)\<δ for set/,
Xsj

For t sufficiently large, vt

j(U)>ί — δ. We then have

r,j

Thus we can write /ιj = ^ hγ with /2κe C(ί2r) and

y

while

γ(sx Oll^α-eί'Mll^^'^^^'^^α-fi)"^3 for set/
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Taking μ1j(ds\y) = hγ<j(j}(s x y)v](ds\ we have

Σ^ |γ| sup \\μγ

j(ds\y)\\^(l-εΓί(eδ + δe2W\ή<er

Y yeΩγ

if δ is chosen sufficiently small. D

If S = ZV there is a continuous convex function P on @ίl

r traditionally called
the "pressure", and the translation-invariant Gibbs states are obtained from
functionals tangent to its graph (see [6]). Whenever the invariant Gibbs state
for Φ is unique,

where

A - v φ'(x)
φ'~h~W

Therefore we have.

Corollary II.6. If S — Zv and W C 3d\ is an open starshaped set in which the conclusions
of Theorem II A are valid, then the pressure P extends from Wr\&l to a function
on W which is analytic on W r\Ji for each finite-dimensional complex linear subspace

Proof. Consider gAφ,(Φ) as a holomorphic differential 1-form on W', on
it is the derivative of the pressure, so by analytic continuation it is a closed form,
and we can integrate it. D

III. An Integral Equation

With additional structure on the configuration space, we can replace $r by a
Banach algebra of absolutely converging Fourier series, and obtain a linear
equation in the dual of this algebra which the Gibbs state must satisfy. This will
give us a "high temperature" result for a somewhat different space of interactions:
the exponential factor in the norm is no longer needed, but the uniform norm
of Φ(X) is replaced by the f1 norm of its Fourier series. In most cases the bounds
on critical temperatures obtained by this method are much better than those
given by Theorem II.4.

For simplicity, we first consider the case where the configuration spaces Ωt,
and thus also the product Ω, are compact abelian groups, with normalized Haar
measure denoted ds. A character of Ω is either 1 or of the form yx = yil®...®yin

where X = {z\,..., in} is a finite subset of S and ytj Φ1 is a character of Ω f/ The dual
groups of Ω and Ωt will be denoted by Γ and Γt respectively. Let A(Ω) be the space
of complex functions / on Ω with absolutely convergent Fourier series, i.e.
f=Σaγy with |||/|||= £ |αy |<oo. The dual A(Ω)* of A(Ω) is naturally identified

•yeΓ yeΓ

with the space /°°(Γ) of bounded sequences indexed by Γ, with the uniform norm.
It is well known that A(Ω) is a Banach algebra under pointwise operations.
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Consider a system of conditional measures μj(ds\x) as in Section II, and
suppose each μj(yj\'}eA(Ω) with sup \\\μj(yj\ ) l l l < oo. Then ij is a bounded operator

yjeΓj
on A(Ω) with norm sup ||| μ (y.\. ) |||. Let S be ordered so that each finite subset X

ΎjεΓj
is given a first element. Then we can define a linear operator K on A(Ω) by

yz = τftx where 7 is the first element of X
(6)

It is clear that K has norm at most sup sup |||μ/(y/| )|||. Our "integral equation" is
JeS y j Φ l

K*φ + δ = φ (7)

where δ(l) = l and δ(yx) = 0 for all other characters. If the μj(ds\x) are probability
measures, any Gibbs state must satisfy (7). This is the equation studied by Gruber
and Merlini [3] for the spin — \ case (Ωj = %2)' Iϊ l — K* is invertible, the unique
solution of (7) is given by φ = (l—K*)~1δ. If in addition the conditional measures
depend analytically on a parameter zeVFcC", then the operator K(z) is also
analytic in z, and in the open set where 1— K(z) is invertible, φ(z) = (l — K(z)*)~1δ
is also analytic.

We define new spaces $A and 38 A of real and complex interactions respectively,
by requiring Φ(X)εA(Ωx) with the norm

JeS XBJ

The conditional Hamiltonians and conditional measures are as in (4) and (5),
but we require Vj{ds) to be Haar measure ds.

Theorem IΠ.l. Suppose Φε$A with |||Φ|||<ln|. Then the operator K(Φ) of (6)
has norm less than 1. For fεA(Ω) the function φφ(f) is analytic on the intersection
of the set W of such Φ with any finite-dimensional complex linear subspace of $A

(where φφ is the unique solution of the equation K(Φ)*φ + δ = φ).

Proof. For y7 Φ 1 we have

f
o,

and

In many cases we can obtain improved estimates on |||μ*(}>j|
is the spin — \ Ising model with interaction of the form

D

ll The simplest

Φ(X)= -J(X)σx(J(X)e<C, = sup
jeS
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Letting Uj= £ J(X)σx\j9 we obtain //_/(σ</| ) = tanhMJ.. Now in the Taylor series
X3J

00

tanhz= £ bπz2n+1, the sign of ba is (-1)". Thus
n = 0

00

l l ltanhwjrg £ |fcn||||Mj.|||
2" + 1= jtanh (i«J)= tan|||«J .

n = 0

Thus the conclusions of Theorem III.l hold for this model if

sup|||tιJ( = || |Φ|||)<f.
JeS

On the other hand, the "mean field" value is |||Φ||| = 1 it follows from Dobrushin's
result quoted in Section II that if Φ is a real pair interaction with |||Φ||| < 1 (and in
general if sup ]Γ (\X\ — 1) tanh | J(X)\ < 1) then Φ has a unique Gibbs state.

jeS XBJ

The plane rotator model can be treated in a similar fashion. Here Ω7 is the
unit circle with characters σ" = emθj. We restrict our attention to the usual pair
interaction, of the form

, θj) = - J(i9 j)σ ! σ2 = - £ J(i, 7) (σ.σj 1 + σf V,) .

For convenience we also take the J(i, j) real. Now if we write

X J(iJ)σί = uj = rew

X3J

we obtain

where Ik is the /c-ί/z order modified Bessel function

00 (r/Ί\2n + k

The Taylor series /k(z)//0(z)= £ bn(k)z2n + k (for fc>0) has coefficients bn(k) of

sign(-l)", so that

00

w = 0 -Όllll^jll!;

where Jk(z) = ίklk( — ίz) is the fc-ί/z order (unmodified) Bessel function. For Orgz^2
this is a decreasing function of |/c|. Numerically solving J0(z) = J1(z), we find
that for this model the conclusions of Theorem III.l hold (in some neighborhood
ofΦ)if

sup ]Γ \J(i,j)\ < 1.4347.
jeS ieS

This compares to a "mean field" value of 2 for this model.
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Another interesting example is a "continuous Ising model" with the interval
[ — 1,1] (with normalized Lebesgue measure) as configuration space at each site,
and an interaction of the form

Φ ( { ί J } ) ( s i , s j ) = - J ( i J ) s i s j .

We can not use the usual Fourier series on the interval, because the interaction
terms do not have absolutely convergent Fourier series. Instead, we use an

00

expansion in Walsh functions: these are essentially the characters of Y[ TL2,
n=l

which is mapped onto [ — 1,1] by the measure-preserving transformation
00

(O1^ Σ 2~VΠ. A similar analysis to that used for the spin — \ model can be
w = l

performed, with the result that the conclusions of Theorem IΠ.l hold if

sup Σ wu)i<f
JeS iΦj

This compares to a mean field value of 3 for this model.
The estimates for these models can be improved still more for interactions

of "nearest-neighbor" type, as was done for the spin — \ model in [3].
Now we go to the non-abelian case. Here Ωj is assumed to admit a transitive

action by a compact group GJ of homeomorphisms preserving the a priori measure
Vji thus it can be identified with Gj/Hj where Hj is the isotropy subgroup of an
arbitrary point, and Vj is the probability measure induced by Haar measure
on GJ (therefore we will write it as ds). Similarly, Ω is identified with G/H, where
G=[\Gj anάH= ["] Hjf To replace the dual group of the abelian case, we have

jeS jeS

the continuous irreducible unitary representations of G. Let Σj be the set of
equivalence classes (for unitary equivalence) of irreducible unitary representations
of GJ. For each creΣj we suppose some member L7(σ) of σ has been chosen. The
equivalence classes of irreducible unitary representations of G are given by
sequences σ=(σj)jeS where all but finitely many <7j = l (the trivial representation),
σ denoting the equivalence class of the representation (X) U(σj} = U(σ} ([4],

j
Theorem 27'.43). The set of such equivalence classes is denoted Σ.

The space A(G) of functions on G with absolutely converging Fourier series
consists of functions of the form

AσU^) with

where Aσ is an operator in the representation space J^σ, and \\A || ± is the trace-class
norm Tr \A\. See [4], §34, or [5]. The space A(Ω) of absolutely converging Fourier
series on Ω consists of functions / on Ω such that f°qeA(G\ where q:G^Ω is
the quotient map. The norm on A(Ω) is |||/||| = |||/°g|||. An equivalent formulation
is as follows: for each σ, define a function W(σ} from Ω to operators on Jfσ by

W(σ\gH)= f
H
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where P(σ}= J dhU(σ\h) is an orthogonal projection. Then A(Ω) consists of all
H

functions of the form

/=ΣTr(C.W< >) with P(σ}Cσ=Cσ and |||/||| = Σ IICJi<<*>
σ σ

A(G) and A(Ω) are commutative Banach algebras under pointwise operations,
and are dense in C(G) and C(Ω) respectively (see [5]).

Suppose our conditional measures μj{ds\x) are of the form g}{s x x) ds with
gjEA(Ω). Then TJ is an operator on A(Ω) of norm at most |||^j|||. A linear operator K
on A(Ω) is defined by

(8)
ια=o
Kfx = τjfx where j is the first element of X

and fx = Ύr(CσW^\ X = {ieS:σiή^l}. This has norm at most sup|||^|||. Again we
j*&

have an "integral equation" as in (7), and Banach spaces 3SA and 3S A of interactions
mthΦ(X)εA(Ωx).

Theorem III.2. The results of Theorem III.l hold also for the non-abelian case
as formulated above.

Proof. Suppose fx=Ύτ(CσW^)eA(Ω) with X^^
element of X. Then J fx(s x )ds = Q, so that

, and j is the first

ί(l-< )ds

f

-e~H?\\\

As in Theorem III.l, for |||Φ||| <lnf we obtain

|||l-e-^|||^β1!lφ|ll-l<i so that ||X(Φ)||<1.

An important example is the classical Heisenberg model, where Ωj = §2 =
SO(3,IR)/SO(2,1R). Here the "Fourier series" is an expansion in spherical harmonics;
if/(*)=Σ«.mΠ

I, m j

Here we are taking Yl normalized so J ds\Yl(s)\2 = l (with ds normalized to 1,
s2

not 4π); the factor (2/ + l)1/2 arises because the matrix elements of (7(/) have L2

norm (2/+l)"1/2 by the Schur orthogonality relations. The verification that
is recommended as an exercise in Clebsch-Gordan coefficients.

IV. Cluster Properties

The methods of Section III can be used to yield cluster properties for the correlation
functions φφ(f) where feA(Ω). The results of this section deal with a slight
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generalization of finite-range interactions. We conjecture that results similar to
those of [8] could be obtained for exponentially-decreasing interactions.

Definition. For fixed interaction Φε$A and subsets X, Y of 5, let NΦ(X, Y) be the
least n for which there is a sequence {/'o»Λ> - Jn} ^ $ with Joe^ J«E^ such
that there are sets ZtcS with Φ(Z;)ΦO and 4-ιJ KZ; for ί = 1, ..., n. (If J*fnYφ0

If we are given a metric on S and Φ has range at most R (i.e. Φ(X} = 0 whenever
diam(X)>R), then NΦ(X, Y^R'1 dist(X, Y).

In the following lemma we use for the first time the hypothesis that the selection
of first elements comes for an ordering of S, so that if 7 is the first element of X
and jε Y, then j is the first element of Xr\ Y.

Lemma IV.l. I f f e A ( Ω x ) and geA(Ωγ) with NΦ(X, Y)>n then

Proof. We use induction on n. For n = 0, δ(fg) = δ(f)δ(g) if Xr\ Y=0. Suppose
the lemma is true for n — l. We can assume / and g are of the form Ύr(CσW

(σ))
with σ f Φ l for ΐ e X or Y respectively. If X or Y is empty the result is clear. Now
K(Φ)(fg) is either fτj(g) = fK(Φ)g or gτj(f) = gK(Φ)f, depending on whether
the first element; of XuY is in Y or X respectively. Suppose je Y. Then τ$£A(ΩΎ)
with JVΦ(Z, Y')^NΦ(X9 Y)- 1, so by the induction hypothesis

δ(K(Φ)»(fg)) = δ(K(Φr-i(fK(Φ)g))= X δ(K(Φ)kf)δ(K(Φr-k9)
k=0

where the fc = n term is zero since <%) = 0. D

Theorem IV.2. L ί̂ Φ e ̂  wzίΛ || K(Φ) || < 1,/ε ̂ (ί2x) and g ε A(ΩY) with NΦ(X, Y) = N.
Then

Proof. Using Lemma IV.l and the series expansion

we obtain

Ψφ(fd)-Ψφ(f)ψφ(d)= Σ δ(K(Φ)"(fg))- X δ(K(Φff)δ(K(Φγ-k9)

SO

n=N
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