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Abstract. The axioms for Euclidean Green’s functions are extended to hyper-
function fields without being supplemented by any condition like the linear
growth condition of Osterwalder and Schrader.

§ 1. Introduction

In a previous paper [1], which will be quoted as NM I, we have formulated the
quantum field theory in terms of Fourier hyperfunctions, successfully in showing
that Wightman’s axioms for tempered fields can be extended to hyperfunction
fields. In particular we have manifested that the support concept of Fourier
hyperfunctions allows us to state the locality axiom, in spite of the disadvantage
that the test function space for hyperfunctions contains no C* functions of compact
support. .

It is quite natural that questions may arise whether the hyperfunction fields
work effectively in the scattering theory, dispersion relations and other provinces
of the quantum field theory relating to local singularity structure or momentum
space analyticity properties of fields. Another interesting question perhaps
concerns the Euclidean formulation of the hyperfunction quantum field theory.
In order to get a reconstruction theorem for tempered fields satisfying the usual
Wightman axioms, Osterwalder and Schrader [2, 3] were compelled to introduce
a technical axiom, what they called the linear growth condition, in formulating
the axioms for Euclidean Green’s functions. When tempered fields are replaced
by hyperfunction fields, which are of a class wider than the former, can the technical
axiom such as the linear growth condition be removed completely? In other
words, one may ask whether we can formulate a set of axioms for Euclidean
Green’s functions which contains neither the linear growth condition nor something
else and is equivalent to a set of axioms for Wightman hyperfunctions set up
in NM L

The last question is answered affirmatively in the present and a subsequent
papers. To this end, however, we find it necessary to make a slight modification
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of the definition of the Fourier hyperfunctions, while preserving all the results
obtained in NM I. This will be done in the following two sections. This modification
is very slight indeed, but will turn out essential for our purpose. The new Fourier
hyperfunction will be called the Fourier hyperfunction of type II in distinction
from the old one, the Fourier hyperfunction of type I, we used in NM I. The
relation between the both types of Fourier hyperfunctions is that the type I is
included in the type II. The presentation is divided into two parts. In the present
paper we will be concerned with the quantum field theory of Fourier hyperfunction
fields of mixed type, a subset of type II fields which contains all of the type I
fields. As for the widest class of Fourier hyperfunction fields, the type 11 fields,
the equivalence of the relativistic and Euclidean quantum field theories will
again be attained in a subsequent paper to be published elsewhere.

In the fourth section we formulate Euclidean Green’s functions for hyper-
function fields by continuing the time variables to the imaginary axis and study
their properties. In the fifth section we set up a set of axioms for Euclidean Green’s
functions, which contains no analytic properties other than a distribution property.
This section is also devoted to the proof of the reconstruction theorem from
Euclidean to relativistic theories, thus establishing the equivalence of the two
theories for hyperfunction fields.

§2. Test Functions

Notatins and conventions are the same as in NM I, otherwise specified explicitly.
Let us first define

Uy, n=1{zeC;|Imz|<1/m}, 2.1)

U, n={zeC; Imz|<(1 +|Rez|)/m}, 2.2)
and put Uy ;,,,=[U,,,J*x[Uy,,]" with I=n—k, namely

Ui im=1{z1, ..., 2)eC"; 2;€U,,,, 1Zi<k and z;eUy,,, k+1=5j<n}. (2.3

Let further ¢7(U, ,.,,) be a Banach space of those functions f(z) which are ho-
lomorphic in U, ,.,, continuous in the closure U, ,.,, of Uy ,.,, and satisfy

1 lim= sup /@)™ <o0. 4
zeUk, i;m

If Il 1;m is the norm of the Banach space O;'(Uy ;. ). The space of rapidly decreasing
holomorphic functions 2, , is the inductive limit of the Banach spaces {O7(U, ;. ) }:
P =ind, Jim O(U, ,.,). 2, is a DFS-space. It is seen at once that &, , is
nothing but 2, we have defined previously in NM I. We shall sometimes write
Py =Pn o- It is also found that 2, (C 2, ,_,CP, , for 0<k<n.

Let 7™ be a Banach space of those entire functions which satisfy the condition

|f],.= sup | f(z)| exp {|Rez|*/m—m|Imz|*} < 0, (2.5)
zeC”
where
Rezl*= Y |Rez)* and |Imz|*= ) [Imzj*.
=1 j=1

J
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| fl is the norm of the Banach space ™. The inductive limit of Banach spaces
{7™} is one of the spaces ¥# of Gel'fand and Shilov having the indices a =1/4
and f=3/4 (see [4], p. 220).

/4

Lemma 2.1. #3/3C2, , and the original topology of &34 is stronger than that
induced by 2.

Proof. If ze Uy ,,,(m=2) we have a series of inequalities

[Re z|*/m—m|Imz|*

v

1 1 1
<— - —3) Rez|*— — (k+4|Rez|+ 6|Rez|* +4|Rez|’)
m o m m

Z(Rez|+[Imz|)/m—cz|z|/m—c
for some constant c. Hence || f|; 1., <€l f,, for every feZ ™. Therefore
T"CONUy, i m)
and consequently &3/4C %, ,, and the topology of #1/3 induced by 2, , is weaker
than its original topology.
Proposition 2.2. #1/; is dense in 2, .

The proof of this proposition is somewhat lengthy, so that we shall leave it
to the appendix. From this proposition follows immediately
Proposition 2.3. 2, is dense in 2, ;, in particular in 2.

In the Euclidean theory we need some classes of distributions, whose test
function spaces are related to the spaces &, ,(IR") of C functions satisfying
the condition'?

1Sl ,=  sup [D'f(x)lem 1P <o, (2.6)
P xern, |l <p

where p=2, 3, .... The topology of ¥, ,(IR") is given by a countable set of norms

{””m,p 1010=2'
Let x,=(x;,...,x,)eR* and x;=(x}, x)eR* We introduce subspaces of

S 1. w(R*) as follows:
CoR™) ={f e WR*"); f(x,)=0 if

Ix) —x9|<1/m for some i}, 2.7
ErR™={feS R™; f(x,)=0 unless x{>1/m

and x9,,—x)>1/m for 1<j<n—1}, (2.8)
CLR™={feS (R*); f(x,)=0 unless x9>1/m for 1<j<n}. (29)

Each of these sets equipped with the induced topology of & ,, is a closed subspace
of & o If m<m/, then €5 C%Yy, €% C6~ and 6"t C¥"Y. We denote by %, €«
and %, the inductive limit of spaces {#§}, {¢™} and {&" }, respectively.

' We write &, ,, instead of &, ,, A=m/e, the latter being the notation used in Gel’fand and Shilov

[4] and also in NM I
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§ 3. Fourier Hyperfunctions of Mixed Type

We let C¥x R}, k+I=n, be identified with R"** and denote its compactification
by D*! ie., D&'=R"**IS"**~! The topology of ID*'is given by a way similar
to ID"=ID%", the compactification of IR” we have considered in NM L It is evident
that the closure of IR" in D*! is identical with ID". We write Q*'=D"!x iR/,
which is a generalization of @"=Q%" we have met in NM 1.

Definition 3.1. (The sheaf of slowly increasing holomorphic functions.) Let Q be
an open s set in Q*. We denote by @, «.1 the sheaf determined by a presheaf {0 (%)%
where (Ok () is the set of all holomorphic functions (e )(2NC") such that
sup |f(z)le ! <o for any £>0 and any compact set K in €.
zeKnC®
Definition 3.2. (' The sheaf of rapidly decreasing holomorphic functions.) We denote
by ¢, the sheaf determined by a presheaf {¢, ,(£2)}, where Q is an open set in
Q"' and 0O, (Q) is the set of all holomorphic functions (€ O(Q2NC") such that
for any compact set K in € there exists some positive constant 6, and the estimate
sup |f(z)|e’1*l < o0 holds.
Definition 3.3. ( Topology of 0, (K).) Let K be a compact set in ID". We give ¢, (K)
the inductive limit topology ind, lim @7(V,,), where {V,,} is a fundamental system
of neighbourhoods of K in Q*/, satisfying V,,>V,,,, and O7(V,) is the Banach
space of all holomorphic functions f(z) (eO(V,,~nC")) that are continuous in
V,,AC" and for which |f(z)]<Ce "™ holds for some constant C (depending
on f). The norm of ¢™(V,) is defined by ||f|,,= sup [f(z)le!?™ With this

2eV ,, NC"

topology ¢, (K) is a DFS-space.

Remark 1. We have used the symbol V,, DV, ., to denote that ¥, ; has a compact
neighbourhood in ¥V, with respect to the topology of Q%

Remark 2. For K=1ID" we may construct ¥, as given by U, ;.,wC,, where C, is
the point at infinity of U, ,.,. Therefore we have 2, ;= (0, (ID").

Remark 3. The introduction of the new neighbourhood U,.,, (2.2), and the re-
placement of Q"=ID"xiR" by Q"' are the only essential alteration we have
made in comparison with NM L.

Definition 3.4. Let Q be an open set in ID". We choose an open set ¥ in Q! which
contains 2 as a relatively closed set and defines 2, (), the space of Fourier
hyperfunctions of mixed type over Q, by the cohomology H{(Y, @k )- They are
called Fourier hyperfunctions of type 1 or 11 according as (k,l)=(0,n) or (n,0).

Theorem 3.5. A presheaf {2, ()} with &, (Q)=HK?Y, (5,‘, ) is a flabby sheaf.

Theorem 3.6. When K is a compact set in D", we have Hy(V, (ﬁk,,);((Ok,,(K))’,
in particular R, (D")=(2,,) .

The proof of these theorems is akin to that of similar theorems for Fourier
hyperfunctions of type I and we have no novel remarks to add particularly (see
Kawai [5]). Since the Fourier transformation of 2, , is a topological isomorphism,
its dual defines the Fourier transformation of %, ,(ID").
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Remark. Tt follows from Proposition 2.3 that the space of Fourier hyperfunctions
of type I or of mixed type is included in the space of Fourier hyperfunctions
of type 11

Proposition 3.7. 2, | @\, ., is dense in Py, 1, 1, +1,-

Proof. Mityagin [6] has shown that #7/3(R")®.%7/3(IR™) is dense in & 7/Z(R" "),
By Lemma 2.1, #}iR* "M@ IR2T2)C2,, @2, ,, and the topology
of #}/4(R*"") induced by 2, , is weaker than its original topology, and &3 /3(IR**")
is dense in 2, by Proposition 2.2. Therefore 2, | ® 2, ;,isdensein 2, .y, 1, 41,

n
Lemma 3.8. A separately continuous multilinear form M on [[ 2, ,, is jointly
v=1

continuous, where (k,, 1)) takes on either (1,0) or (0, 1) for each v.

Proof. Since 2, , for every k and [ is a DFS-space, it is a strong dual of a reflexive
Fréchet space. We have the lemma by the help of a multilinear version of Theorem
41.1 of Treves [7].

n
Proposition 3.9. Let M be a continuous multilinear form on || 2, . Let further

. v=1
for z,teC and ¢>0
he(t)=[2mi(t —z)]~* coshez/coshet (3.1)
and put
Oz oz =M(K,, .. B . (3.2)

Then ¢%(zy, ..., z,) is an e-increasing holomorphic function on (C—1IR)", of type 1
or I with respect to z, according as (k,,1,)=(0, 1) or (1,0). Here by “c-increasing”
it is meant that the function ¢*z,, ...,z,) has the estimate |¢%(z, ...,z,)| < Ce’?.

Proof. For type I variables we consider U, ,,, given by (2.1), and its complement
Ui, n=1{zeC;|Imz|>1/m}. If ze US,,,,, m>m’'>0 and m>1/e, we have

sup |coshez/(t—z) coshet| el < C, e¥l7!

teUi;m
for all m. Thus it is found that h;(f) belongs to 2, ;. A similar estimate holds
for type II variables. Therefore we have

%215 . 2| =IM(KZ,, ..., B2)]
=C H 11 1 im = C'e7 (3.3)
v=1

It is easy to see that ¢(zy, ..., z,) is separately holomorphic and consequently
holomorphic by Hartogs’ theorem on holomorphy [8]. Thus ¢z, ..., z,) is an
e-increasing holomorphic function on (€ —R)".

Proposition 3.10. Let ¢%(zy,...,z,) be as in the preceding proposition. Then for
any set of g, ONU,, ;.. mh m<1/e and 1 <v=n, we have

I s 2)g4(20). g(z)dzy . dz, = M(gy, ... g,), (34

I'yx...xI'y
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where I', is the path in the z, complex plane given in Figure 1 or 2 according as
the z, is a variable of type I or 1L In the figures 6 <1/m and tan0=1/m.

This proposition is obviously true by Cauchy’s integral formula.

Proposition 3.11. A separately continuous multilinear form M on || 2, ,, uniquely
1

defines an element F of (), k=Y k, and 1= 1, such ti:;t Mgy, ....9,)=
Flg,x...xg,) for g.€?;, 1, 1<v=n.

Proof. M can be considered as a continuous multilinear form on [[ 2, ...
v=1

By Proposition 3.9, the form M defines an g-increasing holomorphic function
¢(z4s ..., z,). It is clear that the integral

Fi(g)= o . n 209z, s 2)d2y . dz, (3.5)

I'ix...xI'y

for every ge (U, ) with m<1/e defines an element of (¢7(Uy,,,,)). From
Proposition 3.10 follows M(g,, ...,g,)=F%g; x ... xg,). The family {F¢},.,
determines an element F of (2, ), since ¢ can be taken as small as one likes.
The uniqueness of F is evident from the fact that ® Pr..1, 18 dense in 2 .

Remark. 1t is by this proposition that we can develop the quantum field theory
in terms of hyperfunctions of type II in a way completely parallel to NM I, where
it was formulated by means of hyperfunctions of type 1.

Proposition 3.12. If F(z) is an infra-exponential holomorphic function of type 11
defined in {zeC"; Imz >0}, then there exists a Fourier hyperfunction y of type 1I
with supp u CIR", such that

WF )= [ F)f(@)dz, [eP (3.6)

where R", = {xeR"; x;>0 for all j=1,...,n}. F stands for the Fourier transform
and y is the upper branch of the integration path I of type 1I sketched in Figure 2.

Proof. It is obvious that the integral on the right hand side of (3.6) defines a Fourier
hyperfunction of type II. Since the Fourier transformation is an isomorphism
in 2, there exists a Fourier hyperfunction y of type II satisfying (3.6). We have
only to show that the support of u is contained in R”,. Without loss of generality
we may assume n=1. Let hf(p) be a function given by (3.1), then it suffices to
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demonstrate that u(hi(p)) is analytic in € —R.,. We have

u(hi(p) = (T F h(p))
=(Q2n)~ ! j(F z) [ e *Phi(p)dp)dz . (3.7

Now let us define two functions f(z, {) and g(z, {) by

o0

[z )=@2n)" I e “Thi(p)dp

and
-5
gz, )=2m)~! J e #Phi(p)dp ,

respectively. If { belongs to € —[ -4, o), the function f(z, {)e 2, , and is analytic
there with respect to {. The function g(z,{) is analytic in {Imz>0, {eC—IR}
and satisfies there the estimate |g(z, {)| < Ce™°"™2 for some constant C depending
only on {. Equation (3.7) then is expressed as

uhip) = [ F(2) f (2, {)dz + [ F(2)g(z, ()dz

= GO+ H(©).

G({) is analytic in €—[—9, c0). By introducing the path y*={z;z—iwey} we
obtain

H()= lim fw F(2)g(z, ()dz =

because F(z) is infra-exponential and ¢g(z, {) is restrained by the above estimate.
Since § can be chosen arbitrarily small, we conclude that u(hi(p)) is analytic in
C—[0, o). This completes the proof of the proposition.

Proposition 3.13. Let F(z) and F ,(z) be two infra-exponential holomorphic functions,
as given in the preceding proposition, and suppose that

| FA@)f @)dz= | Fy(a)f @iz (38)

is valid for every f(z)e 2, then F((z)=F,(2) in {zeC"; Imz>0}.

Proof. For simplicity we again assume n=1 as above. Let us take a point {={,
on the upper half of the complex {-plane, then we can describe two paths y
and 7 so that y® is more distant from the real axis and not less inclined than y*
and the point {, is found between the two paths. Consider the integrals
Gi()= | FAo)hi(z)dz, r,s=1 and 2,
y(s)

then Gj({) are holomorphic at {={,. It follows from (3.8) that G{({,)=G3(,)
and G2({)=G3(0) if Im{ <0. Since G({), r=1, 2, are holomorphic if { is not on y®),
the equality GZ(C*) G3(L,) holds. From F,((,)=G:(,)—GX(,), r=1,2, we get
at once F({,)=F,((,). Thus, since F,(z) are holomorphic in Imz >0, the required
equality holds there.
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Proposition 3.14. Let M be a separately continuous form on O, o(RE) x 0o (D),
then there uniquely exists a Fourier hyperfunction F of mixed type whose support is

contained inRY, x IR, such that M(f, g)=F(f x g), where f € 0, o(R%) and ge 0, (ID').

Proof. With the function hi(t) given by (3.1) we set ¢*(zy, ..., z,)=M(K,, ..., k).
It is not difficult to extend the proof of Proposition 3.9 to show that ¢(zy, ..., z,)
is an e-increasing holomorphic function in (€ —IR_)* x (C—IR)". Then, for

fer, z(]R’i xR,

a family of formulas

Fi(f)= J Py sz (2 2,)dzy 2, (3.9

rsxrt

defines an element of (¢, (R% xRY)), i.e. a Fourier hyperfunction of mixed type
whose support is contained in IR%. x IR". In (3.9) the path I' is that shown in Figure 1
and the path I'_ is given in Figure 3 above. F(f x g)= M(f, g) follows immediately
as in Proposition 3.10.

Proposition 3.15. Suppose F({|g) for ge P, , be a holomorphic function in { be-
longing to {{eC*; Im{ >0} and satisfy

IFCI9I=C,mllg o1, me™ (3.10)

for any m, e>0 and { in {Iij>é(1 +[Re{|), L £j<k}. Then there exists a unique
Fourier hyperfunction p of mixed type with support R xR such that

e xg)=F(llg). (3.11)
Proof. For fe?, , we have
§ FClg)f(Ddl=u(F f x g)

= | e xg)f()dC,

where the path y is an analogue of that described in Proposition 3.12. Therefore
(3.11) is obtained by Propositions 3.12—14. Uniqueness follows from the fact
that u(e'? x g)=0 for any ge 2, ; implies u=0.

Remark. This proposition becomes crucial when one comes back from the Euclidean
theory to the relativistic theory.

The theory of H-valued Fourier hyperfunctions of type 11 (or mixed type) can
be formulated without new difficulties, by starting from the counterpart of Defi-
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nitions 3.1 and 3.2, where |f(z)| should be replaced by | f(z)| g, the norm in a
Hilbert space, of an H-valued holomorphic function f(z), as was done in NM I
for H-valued Fourier hyperfunctions of type I (see also [9]). We will cease to
continue such a translation word for word, but we only mention the following:
Let V,=Q"'and V;={ze Q*';Imz;+0}. Further we put V=n'_, V, Vi=n4, V,,
W={V}i—o and W'={V,;}i_,. Then we have the isomorphisms

H.(Q%L 20, )~ H"(W, W', 20, ) =10, (V)/Y. 0, (V)= L(0, (D), H),
J

where HY(W, W'; H(ON,(, ) is the relative cohomology of covering and L(¢, (ID"), H)
is the space of all continuous linear operators from ¢, ,(ID”) to the Hilbert space H.

In the following we shall state proposition only in the language of scalar-valued
Fourier hyperfunctions, though some of them are applied to H-valued cases.
This is entirely for the sake of convenience, and of course all of them can be
trivially extended to the case of H-valued Fourier hyperfunctions.

§4. Euclidean Green’s Functions for Hyperfunction Fields

First of all let us recollect the convention of variables used in NM I and introduce
some new notations. As for the set of four-vectors, the difference vectors are
Co=xX1, {j=Xx;41—Xx; 1<j<n—1, in coordinate space and correspondingly
Qx=Pr+1+ ...+ P 0Zk=<n—1, in momentum space, so that

n—1

Z Dj-X;= Z G- L
Jj=1 k=0

holds, where p;-x;= pJ J — p;-x; is the Lorentz-invariant inner product of two
four-vectors p;= (p},p]) and x; —(xj, x;). For any four-vector x= (x°, x)eR* it is
meant that Ox =(—x° x) and 1x=(ix°, x). This convention also applies to a set
of four-vectors >_c,,=(x1, .. X,)eR* by writing 0x, and 1x,. On occasion it is
more convenient to rebind x, in the form x,=(x?, x,). Then |x?|, |x,| and |x,| stand

for Z Ix?1, Z Z |x#| and Z Z |x#|, respectively.

=1 j=1pu=1 j=1 #_
We begin with stating the axioms for Wightman functions.

Fourier Hyperfunction Property
(RO) QB0 = 1 > Q:Bn(:)_cn)e('qéln, 0)/ for n g 1

and there is a Lorentz frame in which 93, is a Fourier hyperfunction of type I
for spatial variables. (The Lorentz frame may be different for different 25,, see
the remark below.)

Relativistic Covariance. For each n, 13, is Poincaré invariant:

R1) W,(x,)=W,(Ax,+a),

where A is a proper Lorentz transformation and Ax,+a=(Ax;+a, ..., Ax,+a).
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Remark. The axiom (RO) states that we are considering a set of those Wightman
Fourier hyperfunctions of type II for which 2, (Ax,)=W,(x,)e(Z,, 3,) for some
Lorentz transformation A, where (2, ;,) is the collection of specified Fourier
hyperfunctions of mixed type, namely, type II for n time-variables and type I
for 3n space-variables. To this set belong all of the Wightman functions that are
constructed from type I Fourier hyperfunction fields considered in NM 1. Owing
to the axiom (R1) we are allowed to replace (RO) by the axiom (R0): W, =1
and W (x,)e(2,.3,)s n=1, for all Lorentz systems.

Positivity. For any finite sequence fy, fi, ..., fy of test functions such that f,eC,
F€2,. 3w 1SN N, there holds

(R2) Y B, (£ % £)20,

where (£ X fiu) (5 Y = i¥(e0) oY) a0d £(x,) = f1%).

Local Commutativity

(R3) Sm,,(xl,...,xj,xj+1,...,x,,)=%n(x1,...,xj+1,xj,...,xn) lf (Xj_Xj+1)2<0.
Cluster Property. For any space-like vectoraand x,e R*, y, _,e R*" ¥ 1 <k<n—1
(R4) )!1—{130 QBn(lcka Xn—k+’1a) Z%k()_ck)%n—k(l)n—k) .

Spectral Condition. By the translation invariance there exist Fourier hyperfunctions
W, 16(Zw-1),3m-1)) such that W,(x,)=W, (£, ) holds. Then

(RS)  supp W, _1(g,-)C VT,

where V2T is the closure of the forward light cone in ID*®~ and W,_, is the
Fourier transform of W,_,

Suppose 2 be a vector space of sequences f =(fo, fi, ...), where foeC, f,e 2, 3,
for 1<n<N and f,=0 if n>N for some finite N. Let (frg)= Z W, (fFE X g,

with f,ge 2. Owing to (R2) this serves as a semi-definite i 1nner product and the
completion of 2/.4", where N ={feZ;(f, f)=0}, defines a Hilbert space /.
Let @ be the natural map of & into #. We set ®,=d(1,0,0,...). If f has only
one nonvanishing component f = f,€%, 3,, we write formally -

D(f)=D,(f,)= [ Pulx) X, - 4.1)

@, is a continuous linear operator from 2, 3, to #. Upon setting @,(x,)=
¥ (x1, &,— 1) we have

(%, &am1)s WX G ) =W i(—=0m1 & =X+ X, &) “.2)

Theorem 4.1. For n=1,2, ..., the support of 'P,,(qo, 4y 1) the Fourier transform
of ¥, is contained in VT, namely, 17 ZEL(O, 3,(VD), #).

Proof. Since ||¥,(f,)| is written in terms of the Fourier hyperfunction Wap— 15
it follows from the spectral condition (RS5) that ¥, is a continuous linear operator
from @, ;,(V) to #. Thus the support of ¥, is contained in V.
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Proposition 4.2. If ue(0, 3,(V])), then F({,)=u(e" ) is holomorphic in the tube
T =R xiV"={(,eC*; Im{,eV}}, and in Euclidean points it satisfies the
condition that

IFG&,) < C eflé! 4.3)
is valid for & >2¢, j=1,...,n, and every ¢>0. Here ((z,()) is the abbreviation of

Y (z;-¢) and Im{,€ V! means that Im{;e V, for each j.

i=1
Proof. 1t is readily seen that -2 for {,eT". belongs to 0, 3,(V7). Hence u(e'“-*")
is defined well and holomorphic there. Let z=x+iy and consider

U,={x"+e>(1—e) (x-x)'% y° <e(l +x°), (y-y) <&},

then U} is a neighbourhood of V2. If &9 >2¢ for each j, we have
[F(E,)| < C, suple!®
=C, Sup exp {—((3, O)—((x° ) +elx, | +ely +elynl}
=G sup exp {zl¢,| — (<O €N +elx,l +e2(1 +IxyD}
< Cseslgjl

which completes the proof. Here we have written ((y, x)) for Y (y;-x ;) and
=1

J
n

((x°,¢%) for 3 x9¢&f9.
j=1
This proposition can easily be extended to the case of J#-valued Fourier
hyperfunctions, particularly yielding
Theorem 4.3.
n—1
7ty )= (o301 Y. Cicaf) (@)
k=0

is an A -valued infra-exponential analytic function in I, and has ¥ (&, &,- 1) as
its boundary value.

Theorem 4.4. Let

n—1
Vo i) = oo (expi T o). @)
k=1
then it is invariant under proper Lorentz transformations and we have
VVn—l(gn—l):(q’sO’ an(Z, gn—l))7 (46)

Wsm—1(—n- 1£_, —-z+7Z, §§n-1)=(‘-”n(29 ﬁn— ) Y,z Qin— ). @.7)
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Proof. Since Wn—1(‘_1_n—1) is Lorentz invariant, so is W,_({,_,), too. It follows
from (4.2) that -

(lj]n(p’ gn— 1)’ lIh}m(p/’ g:n— 1))= I/I’W/n-km— 1(n— 1‘_1’ p +p/’ g;n—- 1)

and hence the theorem can be obtained by using (4.4).

By the relativistic covariance (Theorem 4.4) and the Bargmann-Hall-Wightman
theorem [10], we obtain a single-valued analytic extension of the Wightman
function W,_({,-,) into the extended tube T L ,={(, e C*" " V; AL, eT!
for some AeL,(C)}, where L, (C) is the set of all complex proper Lorentz trans-
formations and {;=z;,; —z;, L £j<n—1. The function 2B,(z,), defined by W, (z,) =
W,_1(,—,), is analytic in o, ={z,eC*";{,_ €T L} and has the Fourier
hyperfunction ,(x,) as its boundary value. Finally using the locality (R3) we
obtain a single-valued analytic extension of 13,(z,) into the set

Oext, perm = {2,€C*"; 2, € 0%y fOr some permutation w},

where z,,)=(Zy1) - Zaw) and (n(1), ..., m(n)) is a permutation of (1,...,n). We
denote this extension again by 2,(z,). It is invariant under the complex Poincaré

n

group and also under permutations of the arguments zy, ..., z,. The set o4y perm
contains the set of Euclidean points (of noncoinciding arguments) E"= {z,e C*";
Rez)=0,Imz,=0 for all k and z;%z; if i+j}.

Definition 4.5. The restriction of the Wightman function 2,(z,) to E" is called
the n-point Euclidean Green’s function or the Schwinger function.

We set S,=W,=1 and

Glxn) =1,(1x,,) (4.8)

Sn—l(én—l)zm—l(lén—1)=6n(—l€n)a (49)

where x,€ Q"= {x,eR*"; x;%x; if i+;}. Then we have

Theorem 4.6. ( Distribution property)
So=1 and G,e(@,(R*) foreach nx=1.

Proof. Let
Q£={§,,_1€IR4(”_1);§?>8,1§j§n—l}. (4.10)
Since sup |S,_ (&, )l e @&t < oo for all e>0 by Proposition 4.2, it is evident

én ~1€Q¢
that S,_,e(@.(R*"~ 1)y, With the aid of a geometrical argument as made by
Osterwalder and Schrader [2] we have the theorem.
From the invariance properties of Wightman functions immediately follows

Theorem 4.7. (Covariance and symmetry.) The Schwinger functions S,(x,) are
invariant under the inhomogeneous Euclidean group iSO, and under the permutation
of the arguments X1, ..., X,
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We define real analytic #-valued functions ¥r(x,,¢,_;) by P,(1xy,1&,- 1)
for x{>0 and &)>0, 1<k<n—1, and put @%(x,)= P (x,, &, ). Then by virtue
of Theorem 4.4 it is easy to see the following lemma:

Lemma 4.8. Suppose x9, &9, x7, &P be all positive, then

(@x 1, & 1)y Pulx, & 1)) =G (00, X7, -

This lemma yields the positivity property of the Schwinger functions.
Proposition 4.9. ( Positivity property.) For all finite sequences fy, f1, ..., fx, Where
foeC and f,e® (R*), 1=<n<N, there holds Y. S, ,(Of¥x f,) =0, in which
0 f(x,) = 1(0x,).

Proof. For f,e €_(R*") the integral

Pi(f)= | Pulx) fulx)dx,

is well defined and

(PECS ) PG = [ S m(06:X): X0 Fu(x)0(X0 ), 0,
= j‘ 6n+m(~)_cn7 ~)_C;n)f;(g(n)_c))gm()_c:n)dEndX;n
= 6n+m(@f;:< X gm) .

Thus we obtain

LG nlOfF % f)=

n,m

;cpf(f;,)”z >0. (.11)

Proposition 4.10. If f €% _(R*"), ge € .(R*™) and a=(0, a)e R*, we have
llgg@ n+m(@f* X gla)=€n(@f*)6m(g) H
where g,, is defined by g,,(x,) = g(x, — 1a).

Proof. Let U(a,1) be a unitary operator defined by U(a, 1)®,(f)=o,(f.)
for aeR* and fe2, 3, where f(x,)=f(x,—a). If a is a space vector, as in the
proposition, it is clear that U(a, 1)®%(x,) = ®%(x,+a) and hence U(a, 1)®E(g)=
@E(g,) for ge € (R*). The cluster property (R4) implies that for any two vectors @
and ¥ in s, and a space vector g, there holds }Lngo (@, U(Aa, )P)=(D, D) (D, P).

Upon substituting @ = PE(f) and ¥ = PE(g) we obtain the proposition.

Proposition 4.11. The correspondence from Wightman functions (Fourier hyper-
functions) to Schwinger functions (distributions) is one to one.

Proof. Suppose that
§ W (Ey-Dg(éu-)dE,— =0 forall ge® ,(R*" D),

then W,_,(i£,_,)=0 for & >0, k=1, ...,n—1. Since W,_,(1£,_,) is a real analytic
function, W,_,(¢,-{)=0 if Im{,_,eV?™ % By the uniqueness of Fourier trans-
formation of Fourier hyperfunctions we have W,_, =0.
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§5. Axioms for Euclidean Field Theory and the Reconstruction
of Relativistic Fields

In the preceding section, from a given set of Wightman Fourier hyperfunctions
satisfying the axioms (RO)~RS), we have constructed a set of Schwinger functions
having the following properties:

Distribution Property
(E0) S,=1 and G&,(x,)e(@,(R*™)Y foreach nx1.

Euclidean Covariance

(ED) S,(x)=CS,Rx,+a)

for each n=1 and all (a, R)€iSO,.
Positivity

(E2) 26n+m(@f;l*xfm);0

for all finite sequences fq, fi, ..., fy of test functions f,eC and f,e % .(R*"), n=>1.
Here O f,(x,)= f,(0x,) and Ox =(—x°, x).

Symmetry
(E3) 6n(~lcn):erx(2-c1't(n))
for all permutations n:(1, ..., n)—>(n(1), ..., n(n)).

Cluster Property
(E4) }Lrg 6n +m(@f* X g/la)z 6,;(@f*) 6m(g) .

As for (E0) it is worthy to remark that @ (IR*") is stable against iSO, in contrast
to 2, 3, which is not stable under Lorentz transformations.

Conversely we can prove the following theorem.

Theorem 5.1. (Reconstruction of the relativistic theory.) To a given sequence of
Euclidean Green’s functions satisfying (EQ)—(E4) there corresponds uniquely a
sequence of Wightman Fourier hyperfunctions having the properties (RO}~(RS)
and whose Schwinger functions coincide with the Euclidean Green’s functions
given initially.

For the proof of this theorem we need some preparatory propositions. First
let % . be a vector space of sequences f =(fy, fi» ...), where fyeC, f,e% _(R*") for
ISn<N and f,=0if n>N for some finite N. Let <f, g>= )" &,,,(0 £ xg,)

with f, ge% .. Owing to (E2) this serves as a semi-definite inner product and
the completion of €./ A", where N ={fe¥.; {f, f>=0}, defines a Hilbert
space A . Let ®F be the natural map of €. into #". We obtain (P f), d*(g))=
{f 9> Weset &= d%(1,0,0, ...). For f % . and a=(0, a)e R* we define U (a) f by
(U(@) f)ux,) = f,(x,—a). We can extend it to a unitary operator Uya) in # by
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(E1) (see Osterwalder-Schrader [2]). If f/ has only one nonvanishing component
[ = f,e€ (R*), we write formally

PE(f)=(f)= | Prlx,) flx,)dx, (5.1
Let us define ¥¥(x,, &, 1)=®k(x,), then it is a vector-valued distribution over
% . (IR*") and we have by (E2)

('Pf(xl’_fn— s ‘Pﬁ(X’p_Ein- D=8 sm—1(— 00,18 —0x; +x1, &, 1)

=Gn +m(9nl€’ Z;n) . (52)

Lemma 5.2. For t >0 we define T,:4 . ~% by (f;f),,(gc,,) = f(x,— 1), where t=(t, 0).

Then 1, induces a continuous one-parameter semigroup of self-adjoint contraction
operators on A .

Proof. By (E1) we have <, T,g>=<T,f,g> for f,ge®% . and obviously TT=T.,
Since in virtue of (2.6)

”@f;l* X ’Tt’gmnl/e,p

1
= sup (DO £ )nm 1) exp{a(l—;)(%ﬂ_ymn}

xy|ll<p

1
<sup DY £ (x.)g(r) exp{s(l— ;) (Izcnl+|yml+WI|tl)}

= “@_f;l* X gm“l/a, pe(s't| ’ (53)

where d=em(1—1/p), we get [{f, T,f Y| < Cse’™ for any positive 6 and some
constant C; We can improve this estimate by a repeated application of the
Schwarz inequality:

KL TOISULTITL =100 T f >
S L1E0 2L Ty 52
S| f [0 C3 e, (54)

where we have written ¢ f, >/ as || f||. Since the right hand side of (5.4) converges
to || f]|? ¢ as n—oo, and & can be taken arbitrarily small, we obtain

KA TOISILIR.

~

Thus 71, is a contraction operator, and it induces a continuous one-parameter
semigroup of self-adjoint contraction operators {T;}. This completes the proof.
Let — H be the infinitesimal generator of T,, then

e PN, Em )= PRx 1.4 ) - (5.5)

We define for fe %, ;,and ge 2, 3,

Prx®, &l )= [P, o ) f (3, &, )dxdE, (5.6)
and

Sutm- 1(n—1§07 x%+x°, _é;r?—' f9)
=CPEC, 0410, X', & 119)) (5.7
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where ¥E(x, &, ;) has already been given next to (5.1). Let €, ={zeC;Rez>0}
and write C¥ =(C,)~

Remark. If one starts from Fourier hyperfunction fields of type II, the spatial
integrals (5.6) and (5.7) cannot exist, because then one has to take the functions f
and g from 2, , instead of 2, ;,. This technical difficulty in the reconstruction
of the relativistic theory for type II fields will be resolved in another paper.

Proposition 5.3. For fixed f; g, the distribution S, ., (9. ,,— 1|/ g) is the restriction
to the product of positive real half-axes, R"*™ ™1, of a function analytic in €™ 1.
There exists a vector-valued function WE(z°, (0_ | f) analytic in C". such that

Sym—10n— 150 -0+Z,0,£ f9)

= PR Gl ), 2% - 1lg)) - (5.8)
Furthermore S,,+m_1(§f+m_1|fg) satisfies for >0 and {,,— €I’
1S sme 1 Cim— il SIS C,y r 1 f 1M, 1=l (5.9)

for all p, where the norm || -, on (% is given by (2.2) and I is a closed convex cone
which is strictly-contained in €™~ 1.

Proof. We use the holomorphic semigroup e "™, Ret >0, to construct the analytic
continuation in the time variable of Schwinger functions. Following Osterwalder
and Schrader [3, 11], S,(£9|h) and PE(x?, £v_ | f) can be analytically continued
to €. In order to get the estimate (5.9), we first derive it for the imaginary time,
namely we show that if &) >¢>0, j=1, ...,k then

IS(EAMI C, I, e

for any p and ¢>0 and some constant C,,,» This task can be carried out in the
same way as Osterwalder-Schrader [3] with an obvious modification due to
the difference of the seminorm of test function spaces. Then, by the use of the
maximum principle, we obtain the following estimate:

If e CM, j=1,..., k, then
ISue + UM< CM ), el + &
for any p and £>0 and some constant C{), where C{¥ is the envelope of holo-
morphy of
k
V= U (oo XX 42,00 ) (x0,L0 )eDW Y,
( ﬁ;co ])EDk J+1,Z€(I:+}
and
DM ={(x%9-1); x>0, (;- L% 2x°, 0 )e C)_ 3.

Since ¢+ C{V is a cone contained in C* and tends increasingly to C* as N— oo
and ¢—0, the estimate (5.9) follows. For more details see Osterwalder-Schrader
[3, 11].
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By this proposition and Proposition 3.15, we conclude that there exist Fourier
hyperfunctions W,_, with support in R%™ ! x IR3" =D guch that

I W1 (= ORE,- )dEs -1 =S, 1(E3-11h) . (5.10)

where W, _, is the Fourier transform of W, _, and he g, 34-1) From the Euclidean
covariance (E1) follows the relativistic invariance of W,_, and the support of
W,_, contained in V7~

Remark. In Equation (5.10) h can be taken from & (IR*"~ ") instead of 2, 3,
by virtue of the distribution property of S,_1(¢,-1). This corresponds to (RS5).
In fact the Fourier transform fxgof fxg fe?,_ ;. o and ges, (R3"~ 1), is an
element of ¢, _; 3, 1)( ~1), and hence W,_,(f x g) is well defined.

Proof of Theorem 5.1. Define W (x,)=W,_,(¢,—,). The hyperfunction property
(RO) is obvious. The positivity condition (R2) follows from Proposition 5.3 and
the fact that the Wightman function W,_(¢,_) can be obtained as a boundary
value of the analytic continuation of the Schwinger function S,_;. (E4) shows
that for any vector @, Ye" we have }Lm D, U(Aa)P)=(D, Do) (D, V>,

which implies the cluster property (R4). The relativistic covariance (R1) and the
local commutativity (R3) are proved by the same arguments as used by Oster-
walder and Schrader [2]. (R5) has already been mentioned after the proof of
Proposition 5.3. Equation (5.10) implies that the corresponding Schwinger
functions coincide with the Euclidean Green’s functions given initially. Uniqueness
follows from Proposition 4.11. The proof of Theorem 5.1 is thus completed.

Appendix. Proof of Proposition 2.2
Let & be a set of those entire functions f(z) which satisfy

j |f(2)* exp {|Rez|*/3—8| Imz|*}dV < 0, (A1)
where dV =dxdy with z=x+iy, and dx= H dx;and dy= ]_[ dy; then it is

ji=1
clear that &C.%7/;. Next, for positive ¢ and an open set QCQ* I we define three
sets o5 4(Q), @(Q) and L %) in succession. .o/%, %(Q) is the set of all those

holomorphic functions in €*NQ which satisfy

[ 1f@))?eldV <o forevery K. (A.2)

C"nK

%(Q) is the set of all those holomorphic functions in €"nQ which satisfy
[ If@PF e dVv<co forevery K. (A.3)

C"nK
LZ7%(Q) is the set of all those measurable functions in €"NQ which satisfy
| 1f@P e dV <o forevery K. (A.4)

CrnK

In (A.2)(A.4), K stands for a compact set such that K € Q. We denote by 4 %)
the closure of #(Q) in L%, Q).
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If we choose ¢ so as to satisfy &<, then .o/, °(Q) is contained in & ~¥(Q).
To prove this it is sufficient to verify that #/(Q) is dense in ./ %(Q). Suppose u
belong to (%, %)) and be orthogonal to #(£2). We are going to prove that
such a u vanishes. We use the Hahn-Banach theorem to find a certain u whose

support is compact in Q and for which [ |u|? e™°¥I dV < o0 and
q:n

(w,v)= [ awdV forevery vesly; Q). (A.5)
q:n

If ¢(z) belongs to 2,7 %Q), then ¢(z) e > for any n>0 belongs to #(Q) when

loc
the condition sup [Imz;*/(1+|Rez?)<1/2 is satisfied. Therefore we have
zeNC"

0=(1, p(z) e > M= [ iip(z)e ="dV— [ ad(z)dV as n—oo

[ cn

by Lebesgue’s theorem. Thus we have proved that .72, %(€) is contained in 2 ~%(€).
Because of 2, ;= ind lim /% %(U, ;). in order to prove the denseness of

loc

F3l4 in 2, it suffices to ascertain the validity of the following statement: If an
element p of (X (U, 1., is orthogonal to &, then p is zero. From here on we
fix ¢ and m=2. By the Hahn-Banach theorem there exists some u whose support is
contained in U, ..+, and for which | |u* %"l dV <0 and

on

(wv)= [ wwdV forevery veZ (U ).

cn

We define
Z= ) {ve LAC", Jp* +¢), 0v=0},
A>0

where ¢ and y are strictly plurisubharmonic functions defined by
P(z)= Y {lImz)|*+6[Imz|*Rez)|*>—[Rez]*} +log(1+ Y |z*)
J J

and

W(z)=0(z)%0,+¢ log(1 + Z z%),

where
o(z)=max {(m*+x)Imz|*—|Rez* 1<j<k, (m* +x)Imz)|* k+1<j<k+1}

and g, is a mollifier in IR*". Further y*(z)=max {0, y(z)}, and x and ¢>0 are
so chosen that Uy ;. ,,+52{z; ¥(z2)=0} Dsupp u holds for some 6> 0. Since

—x*/3+8y*— {—x*+6x?y* + y*+y* +log(L + x>+ y*)}
=(x%/)/2=1/6y*? +x*/6+ y* — y* —log(1 + x> +)?),

which is not less than some constant depending on 4, & is contained in &. Since u
is zero on & and suppuC U, .., u belongs to LA(C", — ¢) and (u, v)=0 for any v
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in 2. Moreover u=0 wherever > 0. By the Proposition 2.3.2 of Hérmander [12]
we have some f which satisfies the following conditions:

@) 9f=u,
(i) supp S CUk ym+s>
(i) feL{, (T —¢),
where § is the dual of the Cauchy-Riemann operator 0. With this f we can easily
verify a sequence of equalities

0= [ (Bv)fdv= [ u§f)dV = | vadV =(u, v)
cn cn (g

valid for any ve® (U, ;.,,). Thus we have proved that u is zero on a dense subset

of U, ., Hence we conclude that u is vanishing.
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Note Added in Proof. Results of the quantum field theory in terms of pure second type Fourier hyper-
functions are summarized in our short note which will soon appear in Lett. math. Phys.; a full paper
will be published in Publ. RIMS Kyoto Univ. 12 Suppl.
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