
Communications in
Commun. math. Phys. 49, 247—256 (1976) MsthβΓΠatiCθl

Physics
© by Springer-Verlag 1976

Correlation Inequalities for Multicomponent Rotators

Franςois Dunlop
Institut des Hautes Etudes Scientiίiques, F-91440 Bures-sur-Yvette, France

Abstract. A recent approach to G.H.S. and Lebowitz inequalities is used to
prove Griffiths' second inequality for 3 and 4 component models (e.g. Classical
Heisenberg model, \φ\4 Euclidean fields). Applications include monotonicity
of the mass gap in the external field, and two-sided inequalities between
"parallel" and "transverse" correlations.

1. Introduction

The inequalities proven by Ginibre for ferromagnetic plane rotators are very
powerful [1, 2]. Their proof, however, depends essentially on the commutative
structure of the circle group, through the use of characters. Elementary trigono-
metry and a very special symmetry were also used in [1], but we show in Section 4
that these can be avoided if one is only interested in positive correlations of
vectors, e.g.

<SΓS,>£<S(>.<S,>. (1.1)

Namely, for D-dimensional classical ferromagnets, we reduce (1.1) to a first
Griffiths inequality for a similar system with interactions of the form

(*, U(ΐ)-lU(j)x) + (y, C/Or1 W) (1.2)

where x and y are fixed orthogonal unit vectors in IR1* and [/(/), for each site j,
is to be integrated over the rotation group acting in IRD with the Haar measure.
In the commutative case (D = 2), the functions (1.2) are positive definite on the
product group (over the sites), which is more than what we need. As a by-product
we prove that the parallel mass gap is larger than the transverse mass gap (see 1.3).

We do not know how to deal with non commutative rotations. This article
is mainly devoted to 3 and 4 component models, where each spin may be considered
as a plane rotator plus an Ising (continuous) spin, or as two plane rotators, negatively
correlated. Of course we'll never have in this way more than two components on
the same footing in the correlations, and therefore no scalar product, but all the
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inequalities known for plane rotators will be generalized to any two among the
three or four components.

The necessary tools come from the clarification work of Mehta, Schrader [3],
and Ellis, Monroe, Newman [4], around G.H.S. and Lebowitz inequalities.
They are described in Section 2 together with our general theorem.

Section 3 contains the applications. In particular, if S'j and Sj- are components
of the /th spin respectively parallel and perpendicular to the external field, then

<SX> ̂  <SJSί> - <S;> <S£> , (1.3)

<5^>2^<^>2-<Sp2 <SJ>2 (1.4)

<sχs;'>-<sj-sί><sί'>^o (1.5)
(1.3) is new also for plane rotators, and is proven again for that case in Section 4
as an application of the formalism outlined at the beginning of this introduction.

Positive correlations between scalar products, such as

<SrSj)(Sfc.S!)>^<SrSj><Sk.S,> (1.6)

seem to be a difficult and open problem for D>2 (except for Gaussian spins:
see the end of Section 4). Fortunately these inequalities can now be bypassed in
proving the infinite volume limit for general couplings, provided the Lee-Yang
theorem and a large external field expansion hold [5]. Therefore our inequalities
apply to the infinite volume Classical Heisenberg and 3-component (\φ\4)2 and
(\φ\4)3 theories, in the presence of an external field.

Finally we remark that (1.3)-(1.5) for general D would be a consequence
of (1.6) type inequalities for [D/2] and [(D +1)/2] components.

2. The General Result

{Sj = (Sj... S4):j=l, ...9N} will be a family of random vectors in R4. In order
to combine the newly discovered [6, 7], and clarified [3, 4], negative correlations
with plane rotators, we shall use the following variables:

Sj = Qj COS ψj Sj = Ty COS ψj

7 = 1,..,N (2.1)

S2 = QJ sin ψj S^ = τ j sin ψj

with

ρ/e[0, oo)

(/>;e[0,2π) or ...,

τjE [0, co)

ψj€[Q9 2π) or ψjE{2πl/qj:l = 0, ...,^ -l}.

The measure at each site will be of the form

dμ^Sj) = dvj{ρj9 τ^dψjdψj (2.3)
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where dφp dipj are the invariant measures on the /th configuration groups (circle
or cyclic group Zpj9 Zqj)9 and dvj is a finite positive measure on [0, oo) x [0, oo),
satisfying the

1Hypothesis of negative correlation 1 :

f Π (Λfe) ± /pίβ') (ΛM ± Λ(Φfy(ρ, τ)dv/ρ', τ') ̂  0 (2.4)
peP
qεQ

for any finite family {fn:nePuQ} of positive increasing bounded functions
on [0, oo) and for any sequence of plus or minus signs.

Example ί. Percus system

dv/ρ, τ) = (δ(ρ)δ(τ -l) + δ(ρ~ l)δ(τ))dρdτ . (2.5)

This is a duplicated Ising spin, introduced by Percus [8] to extend some second
Griffiths inequalities to arbitrary signs of the magnetic field.

Example 2. Plane Rotator

<pj€{Q,n}

φ;e{0,π} (2.6)

Example 3. Classical Heisenberg spin

φ,.e[0,2π)

,π} (2.7)

Example 4. \Φ\4 lattice euclidean field

dv/ρ, τ) = exp [ - a(ρ2 + τ2)2 + b(ρ2 + τ2)]ραdρταdτ (2.8)

where α > 0, and α, 8̂ depend on the choice of φ, φ groups.

To prove (2.4) for this last case, we write

exp - 2α(ρ2τ2 + ρ/ 2τ/ 2) - exp - a(ρ2 + ρ/2) (τ2 + τ'2)

expφ2-ρ'2)(τ'2-τ2) (2.9)

and expand the second factor. The rest of the measure is completely symmetric
under ρ<-»ρ' and τ<-»τ'.

Example 5. Duplicated 1-conιponent φ4 field.

exp ( - φ4 - φ/4) - exp [ - (ρ4 + τ4)/8 - 6ρ2τ2/8] (2.10)

where

= \φ-φ'\.

This hypothesis has now been fully investigated by Ellis and Newman
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Next we specify the interaction between sites: it should be ferromagnetic
in the system of φ-rotators or t/ -rotators, but not mix the two. More precisely
let Q! be the multiplicative positive cone generated by the real parts of the char-
acters on the product of φ-configuration groups, together with the positive
increasing functions of one variable ρ7 :y=l, ..., N. Define Q2 similarly with
respect to (τ, ψ). Then the interaction should be

-(Ai + Λ2)e -(61 + 62) •

Rather than impose bounds on our functions, we decide to perform integrals
first over angles, possibly using uniform convergence (on a compact) and then
over the modules, possibly using monotone convergence:

Lemma.Le£ h^eQ^ h2eQ2 and {dμj\j=i, ...,N} be as (2.3), (2.4) above and such
that

Z= J expίΛi + Λ2) Π dμj(Sj) < oo . (2.1 1)
j = ι

Then

</> = Z~ * ί Π dvj(ρp τj) J Π dφjdipjf exp^ + Λ2) (2.12)
J = l 7=1

is well defined for f^Q^. Q2 and satisfies the first Griffiths inequality

0^</>^oo. (2.13)

Proof. The series expansion of the exponential converges uniformly in φ, ψ.
The angle integral is then a series in positive functions of ρ, τ, because characters
have positive integrals. Therefore term by term integration in ρ, τ is allowed by
the monotone convergence theorem.

Theorem 1. Let { S j ' . j = l , ...,N} be a family of random vectors in IR4 with joint
probability distribution

N

eκp(h1+h2)Yl
j=ι

as in the lemma. Then

(2.14)

Proof. We introduce an identically distributed system, denote it by primes, and
recall the identities

xy + X'y' = i [(* + x') (y + y') +(χ- *) (y - /)] n Λ ,.(z.loj

(2.17)
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The arbitrariness in the factorization (2.16) is raised by looking at the in-
equalities to be proven:

(2.18)

and at the hypothesis of negative correlation (2.4): We are led to make different
choices in (2.16) for the functions from Qί and for those from Q2

By iteration, hί + h'1 will be written as a finite multinomial, with positive
coefficients, in sums and differences:

X,({φ})±χ({φ'})'X the real part of a character .

αfej) ± α(ρ}) :j = 1, . . ., N. α positive increasing .

Similarly h2 + h'2 will give rise to

κ({ψf})±κ({ψ}):κ the real part of a character ,

β(τ'j) ± β(tj) 'j = l j 5 N. β positive increasing .

Applying the same procedure to ft and gi9 and expanding the exponential,
we obtain a series in such multinomials, converging uniformly in the angles
(φ, φ) and pointwise in the modules (ρ, τ).

The angle integrals are positive, as shown by Ginibre ([1] or Section 4). Every
term in the resulting series then has a positive ρ, τ integral, by the hypothesis (2.4).
If the bigger side of the inequality is infinite, there is nothing to prove (by convention
+ oo ̂  + oo). If not, it's angle average is an absolutely integrable series which
can be subtracted to the other side. Indeed a positive series plus (or minus) an
absolutely integrable series is term by term integrable in any order.

Remark. For a two-component system, or duplicated one component system,
Theorem 1 and it's proof are essentially contained in [3, 4]2. Special cases were
first proven by Lebowitz [6], using F.K.G. inequalities, and by Monroe [7],
using Gaussian integrals.

3. Applications

We leave aside the problem of possible limits as a lattice spacing goes to zero or
a volume to infinity. Statements about mass gaps, for example, are meant to apply
to theories where corresponding unique limits have been or will be controlled
in some way.

For the applications related to examples 1 and 2 of the preceding section,
we refer to the original papers [6,7,3,4], and now turn to examples 3 and 4.
As all the results are already contained in Theorem 1, we shall only describe a
classical Heisenberg model, in the presence of an external field. Results can easily
be translated for 2 or 4 components, or for a lattice field theory.
2 A different proof has been given by Sylvester in the duplicated one component case, and by
Bricmont in the two component case
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Theorem 2. Let {Sj = (Sj,S^ S j ) : j = l , ...,N} be a family of random unit vectors
in R3 with joint probability distribution

/ = l

afSj+ £ JijSrs[ Π da>j

dω7 is the invariant measure on the sphere and Z is the partition function.
Assume

Then

Π c« TT cα\ ^ /TT OίΛ /TT cα\ „ 1 o 1 ίΊ 1 \
M1SΛ = (11SO (11SΛ α = l > 2 , 3 (3.1)

ie/ jeJ / \ ie/ / \jeJ /

< /ΓT Cα\ /TT <v3\ /Ί 1 9 Π 9^> = (11 ^ ϊ ) (11 ύ j } a~~ ' w zJ
jeJ / \ie/ / \jeJ /

->/c 3o3\ /C3\ /C3\ /7—1 9 Π ̂
^ ^ j J ^ O : / — \ i J j / \ j 3 ; / W — -*-5 ^ V. ' *^/

<S?S7«>2 ̂  <535|>2 - <5f>2<53>2 a = 1, 2 (3.4)

Proo/ (3.1) and (3.2) are straightforward applications of Theorems 1, with different
labellings of the components.

(3.3) can be written

which is nothing but (3.2) applied to

Notice that the combination of (3.2) and (3.3) shows that the mass gap in-
creases with the external field.

Finally the proof of (3.4), given Theorem 1, is the same as for plane rotators [2].
Again it can be used to show that the susceptibility is infinite in case of spontaneous
magnetization [9].

The next theorem will generalize this last inequality to higher order correlation
functions.

Theorem 3. Let {Sj'.j= 1, . . ., N} be as in Theorem 2, and S}=Y\ Sf , etc. Then
ie/

(i)

|<SJS5Sfc> - <S?> <S$Sfc>| g 2«S|S5Sl> - <S,3> <S)S|» Vα, b, c , (3.6)

(ii) if the index set J is even

SJ> <S|Si» Vα , (3.7)

(iii) if ί/ze index set J is odd
35l53>2-<Sί

3S3>2<S3Si>2) α = l,2. (3.8)
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The analogous result for D = 2 shows that if the component in the external
field obeys clustering, then all correlations do. When D>2, we don't reach all
the correlations because our method can deal with at most two components
on the same footing.

Proof (i). We take inequalities from Theorems 1 or 2 and reexpress them in the
next line :

SJ> = <S?> <S$> - <S?S5> ̂  0

, 6 = 1,2, (3.9)

2) <(S| + SB (Sj - S?)> * <S7

3 + 5?> <S* - S?>

<s|s5> - <sjχs|> + <s7

3> <s?> - <s|s5>
^<S?S5>-<SJ><S5> α = l ,2. (3.10)

If further / is a translate of J in a translation invariant theory, then

<S3S3>-<S3> <S3>^<S?^>-<S?> <S$> , (3.11)

3) <S?S5(Sj±Si)>^<S?><S5(S*±SB

i)>

<s?> <s5si>-<s?sjsi> = ±«s?s5si>-<s?> <sjsi»
, c=l ,2 . (3.12)

<s|(s3 ± s;)s|> = <s|(sj ± sj)> < Î>
(3.13)

When the index set L is non empty, we apply the same procedure to it and use
the result (3.13).

Proof (in). When J is odd, Sj ± Sj is not expressible in terms of characters. We
introduce an independent copy and apply (ii) to SjS'/ ±SjS'f.

4. A Look at General Multicomponent Rotators

We shall now describe what may be a first step towards Griffiths' inequalities
for classical ferromagnets with any number of components. The method also
sheds some light on plane rotators, and has given our first proof of (1.3) for that case.

Unit rotators and \φ\4 rotators will be considered separately, although each
model is a limit of the other [2].

Let {Sj :j=l, ...,N} be a family of random unit vectors in IRD(D^2) with
joint probability distribution

£«;.«,.+ Σ JyS. Sj) Π do, (4.1)
= l i , 7 = l / 7 = 1
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where Z is the normalization factor and daij is the invariant measure on the
unit sphere in 1RD. We duplicate the system, and define the Percus variables

f.= S +S'.
3 ' ' 7=1, . . ,AT. (4.2)

9j = Sj-Sj

They satisfy

'<+<'-2 ,4.3,
V«;=0

or

t= cosα (44)

where α7 e [0, 2π), x and y are fixed orthogonal vectors, and U(j) is a rotation
in IR0. We shall integrate at each site over the product of a circle group and a
rotation group in 1R° with the Haar measure. Indeed the original measure on the
spheres were rotation invariant, and α,- is half the angle between Sj and S} (modulo
π). Of course this description is redundant: the configuration space at each site
is covered twice when D = 2, four times when D = 3, infinitely many times when
D>3.

The joint probability distribution of the duplicated system can then be written

N

£ cosα/α,,
J = l

+ i (Σ/«C
} N

H-sino^ sinα/j), Lf(0~1E/(/)j>)]| Π doίjdΩj (4.5)
J 7=1

where dΩy is the Haar measure on the rotation group acting in 1RD.
Assuming

α, = αJc, α, >θγ/

J > O V i * (46)

the simplest correlation to investigate is

<St Sj) — <Sj> <S;> = I <sin αf sin α/j), C/(z)~* U(j)y)y . (4.7)

We conjecture that every term in the expansion of (4.5) in (4.7) gives a positive
contribution to the average.

The commutative case belongs to example 2 of Ginibre [1]: only then U(ί)~11/(/)
is a representation of the product group (product over the sites) and therefore
(ξ, U(ϊ)~ίU(j)ξ) is a positive definite function for any fixed vector ξ. This property
is stable under multiplication and implies that the integral of the function is
positive.

Thus the above conjecture holds when D = 2, and more generally, we have the
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Theorem 4. Let {SJ = (Sj,S?):</=l, ..., A/"} be a system of plane rotators with joint
probability distribution (4.1). Then, introducing a duplicate system

+S1) Π {(sl+yt

1)(sj+s'J
1)±(sf+s't

2)(Sj+sf)}
(U)eK

• Π {(sf-s'ΛίsJ-^iίsί-sHtsj-s^Λ^o
(i,7)e£ '

any rndex sefs /, K, L and any sequence of plus or minus signs. In particular

To recover Ginibre's inequalities, one must then use the symmetry between α7

and Ωj = βj. Indeed (4.5) becomes

Z- VZ' - 1 exp j £ aj cos α, cos £,- + i £ Jy cos fa - α</) cos (ft - j»

so that

</({«})/({jS})>£θv/.
We now turn to \φ\4 rotators, for which the individual measures dωj in (4.1)

are replaced by

exp(-\S\4)dDS.

The shape of the potential will really depend on the sign of Jw irrelevant here.
As for the Percus variables, now unrestricted, we set

(4>8)

where t j and qj are positive, U(j) is a general rotation in 1RD, UQ(ψj) is a rotation
in the (ί, y) plane, and x and y will again be chosen orthogonal, because tj and qj
tend to be that way:

exp(— \Sj\4 — \S'j\4 = exp( — (\t \2+ \q \2 — i ( f / <f/)2)/8

= exp [ - (ή + 6ή - q] + q4)β + | t]q] cos2φJ . (4.9)

The duplicated joint probability distribution is now

ί ^ N

Z XZ' 1exp< Σ α/j(^' ^(/)*)+ Σ i^j^ί*' UQ(ψj)x)2

N

+ ^ί^XP> ^o(Vi)"X ^(0 ~ 1W) ̂ o(ψj)J)l

• Π dψjdΩjdvJtj, qj) (4.10)
j = ι

where dvj is a positive measure on [0, oo).
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At this point we could make the same conjecture as for unit rotators, and
prove it as well as Theorem 4 in the commutative case. We simply remark that
all this becomes trivial in the case of Gaussian spins, where the Percus variables
tj and qj are independent.

Acknowledgement. The author has benefitted from discussions with many visitors at I.H.E.S.. He
wishes to thank Prof. Louis Michel and Prof. David Ruelle for the hospitality extended to him at
the Institute.

Note. After sending the present article for publication, we received a reprint
of an announcement [10] by Kunz, Pfϊster, Vuillermot, onto which the referee
also kindly draws our attention. The announced theorem is a version of our
Theorem 1 in the compact case, and corollaries include (3.1) and (3.2) of our
Theorem 2. The proof must be different, as the authors appeal to F.K.G.-Preston
inequalities (note however that their Lemma 3, an F.K.G. condition on partial
normalization factors, can be proved by our methods without F.K.G. conditions
on the couplings J(A)).
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