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Abstract. The Glimm-Jaffe-Spencer cluster expansion from constructive
quantum field theory is adapted to treat quantum statistical mechanical
systems of particles interacting by finite range potentials. The Hamiltonian
H0 + V need be stable in the extended sense that H0 + 47 + BN ̂  0 for some B.
In this situation, with a mild technical condition on the potentials, the cluster
expansion converges and the infinite volume limit of the correlation functions
exists, at low enough density. These infinite volume correlation functions cluster
exponentially. We define a class of interacting boson and fermion particle
theories with a matter-like potential, 1/r suitably truncated at large distance.
This system would collapse in the absence of the exclusion principle—the
potential is unstable—but the Hamiltonian is stable. This provides an example
of a system for which our method proves existence of the infinite volume
limit, that is not covered by the classic work of Ginibre, which requires stable
potentials.

One key ingredient is a type of Holder inequality for the expectation
values of spatially smeared Euclidean densities, a special interpolation theorem.
We also obtain a result on the absolute value of the fermion measure, it equals
the boson measure.

1. Introduction

In the quantum statistical mechanical theory of matter (positive charged particles
and negative charged identical fermions interacting with a 1/r potential) the most
basic result is the stability, first proved by Dyson and Lenard in [2]. One of the
authors presented a new proof in [3], and recently another proof was given by
Lieb and Thirring in [8]. The second basic result was the proof of the existence
of the thermodynamic functions in the infinite volume, by Lieb and Lebowitz
in [7]. A natural next problem is the existence of the infinite volume correlation
functions, for some range of parameters—an open question.

* This work was supported in part by NSF Grant MPS 75-10751
** Michigan Junior Fellow
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Towards this end, the Glimm-Jaffe-Spencer cluster expansion (see [6]) was
adapted to treat the problem of matter with the 1/r interaction modified to 1/r
(e~ar — e~βr) in [4]. In this situation (with suitable values of α, β, etc.) the cluster
expansion was shown to converge, yielding the existence of the infinite volume
correlation functions. However, the classical methods of Ginibre (see [5]) already
applied to this case, so this was not a new result.

In a later paper we will show that for a matter-like system with 1/r replaced
by e~*r/r the infinite volume limit of the correlation functions exists, (for some
range of parameters). This will be a straight forward extension of the present paper
and [4]. At present we consider a matter-like system with 1/r modified to

with / a non-negative function in CQ. For this system, the Hamiltonian is stable,

for some B, but the potential is not. The system would collapse in the absence
of the exclusion principle. We derive the existence of the infinite volume correla-
tion functions for this system (in some range of parameters).

hi fact our treatment is much more general than just of the aforementioned
matter-like systems. We consider systems of boson and fermion particles inter-
acting via two-body potentials with H = HQ + V. In this paper we assume

a) The potentials are finite range.
b) HQ + 4Vis stable, i.e. there is Br such that

c) The potentials are in L3/2 .
Our main result will be that for such a system at any temperature, if μ, the

chemical potential, is large enough negative the infinite volume limit of the correla-
tion functions exists. We do not detail the need for condition c) in this paper, a
technical condition to justify some of the basic manipulations.

Section 2 presents the cluster expansion we use. Familiarity with [6] is assumed.
Section 3 contains a statement of our basic results. The key steps in the proof of
convergence are given in Section 4. Appendix A contains a proof that the absolute
value of the fermion measure equals the boson measure. Appendix B discusses
the stability of our matter-like system. Appendices D and E contain technical
estimates important to the convergence argument.

The key to the efficiency of the present paper is the interpolation estimate
in Appendix C. It gives a very useful analog of the Holder inequality for systems
with fermions, where the natural setting is function spaces over signed measures,
rather than measures as with pure boson theories. We believe it goes a long way
in bridging the gap between techniques available for fermion theories and tech-
niques for boson theories.

The cluster expansion as developed here is purely a geometric analysis of the
paths that realize the traces in path space. The total path space integral is split
into subsets in which paths avoid certain regions and must hit other regions. The
use of barrier potentials as in [4] is bypassed, this is a matter of choice.



The Cluster Expansion in Statistical Mechanics 235

In addition to the generalization to infinite range potentials mentioned above,
that will be the subject of a further paper, it is trivial to include finite range many-
body forces in the present treatment.

2. Notation and the Cluster Expansion

We consider / species of particles described by fields φ ̂ (x\ ... , Φι(x) obeying
either fermion or boson statistics. Let

x) (2. 1)
i = l

HO = #oo- ΣMdx&(*W*) (2.2)
i = l

Nt= ^dxφ^φ^x); N=ΣNt (2.3)
i = l

H = H0+V (2.4)

V is constructed from potentials with finite range. To partially fix the length scale
assume the range is less than 2/10. We will assume that Fis sufficiently regular
that Friedrichs extensions HΛ may be defined by extending H off N-particle
wave functions with compact support in an open bounded region (/1)ΛΓCIR3AΓ;
and furthermore that exp ( — βHΛ) admits a path space representation (Feynman-
Kac formula) on Λf-particle subspaces.

1R3 is filled with closed unit cubes {zlj with disjoint interiors. A (the large
box one works in) is the interior of a finite union of such cubes. The cluster ex-
pansion is applied to quantities of the form

p

(AyΛ = TrΛΓ/°H"<τ)Λ4)/Tr>-^) (2.5)

where Tr^ is the trace on the Fock space built on L2(Λ). T is the time-ordering
operator. A has the form

A = a1(t1)...aJiQ (2.6)

where

(2 7)

Thus the tt is dummy, it serves to define the order of the operators in (2.5). For a
given ΐ each ftj is supported in a single cube A for all /'=!,..., /. Each f{j is real,
measurable, and O^/^l, With these conditions our estimates may be taken
to depend on the operator A only through the number of factors, 5.

The expression (2.5) can be represented as a path integral using a signed
measure. Thus

β β
-$HΛ(τ)dτ - $ V ( τ ) d τ

ΊΪΛ(Te o A)=ldμe ° a^t,} ...as(Q (2.8)
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i
dμ may be described in the following laborious way: dμ = Y[ dμu} where dμ(j}

7=1
00

is associated with the jth species. Then dμ(j)= 0 dμ$ where the N particle
N = 0

measure dμ$ is

K*ι ... <*3xK<K.*P(1 ... d/4.- (2.9)

dμβ

xy is the measure on the space of paths f-^elR3 (starting at x at ί = 0 and
ending at y at t = β) associated with the semigroup exp — 1( — μ^ — A). (dμ\j}=l).

P is a permutation of {1,2, ... ,N}. ε7 = I if species j is . I. 5 =

even\
. The integral over x1; ... , XN takes the trace. The Λ on the integral.

odd/
sign in (2.8) means that the integration is over the subset of path space such
that the paths of each particle do not hit Ac in the time interval [0, /?]. V(τ\ α^ )
in (2.8) stand for the obvious functions corresponding to the operators V, a{

evaluated at the positions of the paths for each particle at times, τ, tt. On an
n-particle subspace the n paths describing the particles give a mapping ί— >jR3"
which we call an n-path.

Our description of the cluster expansion imposes the following notation.
{Sa} is the set of all faces of cubes (zlj. Eα is the characteristic function of the
subset of path space consisting of all rc-paths such that no particle hits the "barrier"
^α={xeIR3:dist(x, Sα)^τ^} in the time interval [0, β]. Note that the width of
the barrier is greater than the range of V. XcΛ is a union of cubes At. {AyJeJ}
is a distinguished set of cubes.

The cluster expansion is developed by inserting inside the dμ integral in (2.8)
the identity 1 = J~J (£α + #J where Ha = l-Ea and α runs over faces SΛ in Λ, then

expanding the product. This is followed by factorizing and resumming outside
sets X. Since this is a familiar process from [6], we merely write down the result.

-SV(τ)dτ -ίV(τ)dτ

Ίdμe °
Λ

- ) y (^ατ

\dμe ° flι(ίι)...αs(ίs)/f
A I A

- I V(τ)dτ i - J V(τ)dτ

dμe ° \dμe ° (2.10)
x,r (Λ-xr I Λ

where
β

- S V(τ)dτ

K(X9Γ)= ί dμHΓe
(X-Γ°Γ

αeΓ

(2.12)

If SC A, S = {xeS: dist (x, dS) >-£>}. 8S = (S- Int S)- dΛ. The distinguished sets
have been required to include the supports of all the fijt Γ is a subset of {5α} and
also denotes the corresponding set in IR3. The sum over X, Γ in (2.10) runs over
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all XCΛ such that (J AjC X and, for a given X, all Γ such that (1) (Γn Int X) = Γ
JeJ

(2) each component of X — Γc contains at least one Aj9jeJ. Γc is the set of faces
Sa in X, complementary to Γ, considered as a subset of IR3. (The Sα are closed sets.)

Our constants ca all satisfy

0<cα<oo

and the same notation may mean different constants in different sections if not
obviously related.

3. Results

Proposition 3.1. Let Z(Λ) = ΎrΛ (exp - βHΛ) and let A^CA be open. Then, if
\Z(Λ)\«x>,

Proof. Apply the minimax principle.

Theorem 3.2. If for some B^.0

(3.1)

then for some μ0 (large negative), the duster expansion (2.10), (2.11) converges
uniformly in Λforμί9 ... , μ/^μ0.

Theorem 3.3. Let A, B be quantities of the type (2.6) and let Bξ for ξelR3 denote the
translation in the obvious sense of B by ξ. For some μ0 (large negative), if (3.1)
holds and μi ^ μ0 for ί= 1, . . . , / , then

cμ^_μι\ξ\) (3.2)

uniformly in A, for \ξ\ large. cμiί ...,μ z->oo as μ l 5 ... , μj-> — oo.

Theorem 3.4. There exists μ0 (large negative) such that if μ^μo for z=l , . . . , /
and (3.1) holds then

(1) lim Z((Λ-XΓ)/Z(Λ) exists for all X.
Ml-* oo

(2) lim (AyΛ exists and the limit of (3.2) holds.
Ml -+00

Thus the correlation functions exist and cluster exponentially. \Λ\ represents
the volume of A. The ΛΓs are boxes (rectangular parallepipeds) centered at the
origin whose minimum width goes to infinity, this is understood in the limits in
(l)and(2).

Part (2) of Theorem 3.4 follows from part (1), Proposition 3.1, Theorem 3.2
and Theorem 3.3. Part (1) is not difficult, and is proven in Appendix E. The con-
stants μ0 in Theorem 3.2, Theorem 3.3, and Theorem 3.4 are taken to be the
same, this can be done at the expense of not using the largest possible value in
each theorem.

Parallel to Proposition 5.3, p. 218, in [6] we have
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Proposition 3.5. Under the hypotheses of Theorem 3.2

C2,μί,...,μι^co as /^~> — °° for i = l , . . . , / ,

Proposition 3.5 combined with Proposition 3.1 leads to proofs of Theorems
3.2 and 3.3 by the same argument as in [6], which we do not repeat here.

Our proof of Proposition 3.5 uses an inequality of the following type:

Proposition 3.6. For p> 1, l/p+ l/g= 1

-$HΛ(τ)dτ

ΎrΛ(Te ° A)

This inequality is closely analogous to Holder's inequality in Euclidean Field
Theory. It has the important feature that the fermion statistics, or equivalently,
the signed measure in (2.8) has been preserved for the first factor on the right.
For the absolute value of the measure μ appearing in the other factor on the
right we have:

Proposition 3.7. The absolute value \μ\ of μ is equal to the measure obtained by
changing all fermion species to bosons.

Finally, as an example of a potential V which exploits most of the latitude
(see (a) and (b) below Theorem 3.8) of Theorems 3.2, 3.3 and 3.4, set

V=—$d3xd3y:(φ1φ1-φ2φ2)(x)v(x-y)(φ1φi-φ2φ2)(y): where φl=φ is a

boson field and φ2=ψ is a fermion field. v(x — y) is the truncated Coulomb po-
tential

where / is a non-negative real C2 function on IR3 such that /(χ) = 0 for |x ^ 1/10.
This V satisfies

Theorem 3.8. For £ ̂  0 sufficiently large

This theorem is the equivalent of the Dyson-Lenard theorem for the Coulomb
potential [2, 3, 8] and shares the following features with it (a) V is not stable in
the sense of Ruelle (b) at least one species must obey fermion statistics ((b) is not
supposed to be obvious).

4. Proof of Proposition 3.5

We use the three lines lemma, thus set
β

- 2z 5 V(τ)dτ

K(X,Γ,z)= J dμHΓe ° ΓK
Xi ί
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where Xί=(X — Γc}~. To make this analytic in z we temporarily assume that
j only integrates over the subset of path space representing less that ηpj=l,2,...J

particles of species j, and furthermore that V is bounded above and below on
this subset. We obtain bounds uniform with respect to these assumptions which
can be removed by taking limits at the end of the proof. By the three lines lemma,

£ sup
\Rez = 0

sup

R e z = l

(4.2)

By taking absolute values inside the \dμ integral and then using the Cauchy
Schwartz estimate:

sup \K(X9Γ,z)\\u2Z( j φ|HΓV/V| (4.3)
tz=0 I \Xι I \Xι i

Therefore, to prove Proposition 3.5 we derive the following three estimates,

j d\μ\ Y[ af(t^c'^ec^χ][ (4.4)

J

sup
R e z = l

(4.5)

(4.6)

To prove (4.4), combine Proposition 3.7 with the easy estimate a^lN. The proof
of (4.5) is deferred to Appendix D.

Proof of (4.6). Unravel HΓ by expanding HΓ= Π ί1 ~E«)

sup |]φr,Γ,z)|g
R e z = l

where X(Γ^ = (X — (Γ\

sup
R e z = l

J dμe
- 2z J V(τ)dτ

^2 sup sup f dμe °
- 2z J V(τ)dτ

Thus the proof of (4.6) will be completed by

sup J dμe
-2z$V(τ)dτ

uniformly in Y C X open. The left hand side of (4.9) may be rewritten as

sup
R e z = l

Tr, Te °

(4.7)

(4.8)

(4.9)

(4.10)

We refer to the proof of Proposition 3.6 in Appendix C to show that (4.10) is less
than

(4.11)
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This is in fact the main point in the proof of Proposition 3.6. It exploits properties
of the trace and exponential. By the minimax theorem or equivalently Proposi-
tion 3.1, (4.11) is less than

(4.12)

and this may be estimated by ecjlxl by splitting H0 + 2V into 1/2H0,1/2#0

and using the well known fact,

Ίr(e-A)^Ύr(e-B) (4.13)

if A^B, along with the hypothesis (3.1).

Appendix A. |Fermion Measure] = Boson Measure

Let (x1 , . . . , XN) and (yί , . . . , yN) be two sets of distinct points in R3. We denote a
single particle path space measure for paths from x to y in time a^t^b by

The path is described by z(ί). We construct the boson and fermion measures as
follows :

(ΰ\ /even\
where S(P) is I if the permutation is 1 I and ε = 1 for bosons, giving μB,\l; \odd/
and ε= — 1 for fermions, giving μF. Let Ξ be the space whose points are sets of
N points in R3; Tbe the space of mappings of [α, fr] into Ξ. The set z^ί), . . . , zN(t)eΞ
identifies the rc-paths in (A.I) with points in T, and μF and μB are defined (at
last) as measures on T. The image in T of continuous paths that never intersect
each other we call T'. T— T is a set of measure zero. The sum in (A.I) realizes
μF and μB as a sum of measures with disjoint supports in T. Thus \μF\ = μB.

Appendix B. The Truncated Coulomb Interaction and Its Stability

We consider

H = HOF + HOB + g2/2$:(yιp-φφ)v(ψιp-φφ): (B.I)

with

(B.2)

v is our truncated 1/r potential given by

v(x-y)=ld*zf(x-z)\x-y\-if(y-z) (B.3)
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We assume / is a non-negative real C2 function on R3 satisfying

) = 0 if |x|>l/10 (B.4)

We also define auxiliary potentials vn

Vn(x-y)=^d3zf(x--z)\x-yΓ1e-^'^f(y-z) (B.5)

v and vn satisfy the following properties:

P.O V = VQ (B.6)

P.I t;π(x) = 0 if |x|^2/10 (B.7)

KMI^IxΓV^I (B.8)

P.2 There are c2 > 0 and c3 > 0 such that

υn(x)^c2\x\-ie'n^ if c^\x\ (B.9)

and um(x)^0for all x.

P.3 There is c4 such that

υn * υn(x)^cA(r-1e-m) * (r'le-nr) (B.10)

P.4 If n>m then

t>m-^0 (B.ll)

as an operator and numerically.

P.5 There is a c5 such that

P.6 Let {χt} be translates over a lattice of a real function in CQ, then there is a
c6 > 0 (c6 depending on χ.) such that

as an operator inequality.
These properties are immediate except for P.6. It is proved below.

Theorem. If to v(x) may be associated a set of potentials vn(x) satisfying P.O through
P.6 then H as given in (B.I) is stable.

A proof of this theorem may be constructed by examining the proof in [3]
and verifying these properties are sufficient to provide stability. In the absence
of the exclusion principle — that is if ψ were a boson field instead of a fermion
field — the Hamiltonian is unstable. By examining [1] one can deduce if

then y ̂ 7/5.

Proof of P. 6. We wish to prove P. 6, that for χt translates over a lattice of a real
function in C2,
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Basically we proceed via a few reductions. Assume {φίy} are real functions, {α}
a finite indexing set, and for fixed a the φiΛ are translates over a lattice of each
other; then if

it follows that (B.14) is implied by

This is the first reduction. It follows from the inequality

ΦiocΦiβ + ΦiβΦia ̂  ΦiaΦix + ΦiβΦiβ (B.I 7)

upon expanding

The next reduction is to observe that (B.I 6) follows from the relationship

l~ "

\χ~y\
for ze£/α, the [7α non-empty open sets; ί fixed. This can be seen by noting that
the integral in (B.I 6) then contains positive contributions to dominate the terms
on the right hand side (which may be picked coming from disjoint portions of the
integral).

We look at an equivalent form of (B.18) again for ze C/α,

\X-y\ =

From the proof of Fact 5 in [3] we get (B. 19) provided— - - φiol(x) is in CQ,
j ( z — x)

with derivative estimates uniform in z, for ze l/α. The φία are easily constructed as a
finite CQ partition of χt satisfying

Supp (φia(x))C {x\f(x-z)>ε} (B.20)

for some ε > 0 and z.

Appendix C. Proof of Proposition 3.6

As in Section 4, the three lines lemma implies (the comments below (4.1) are in
force)

ΎτΛ\Te

^ sup
\ R e z = l

(C.I)



The Cluster Expansion in Statistical Mechanics 243

where l/p+l/q=l,p>l9 [9]. To complete the proof we need to show that the
first factor on the right of (C.I) is less than

/ β \\ι/P
-$[Ho + pV](τ)dτ\\

ΎrΛ\e o )) . (C.2)

The principle involved is contained in the following lemma.

Lemma. Let A, B be hermitian matrices with ^4^0. Let s 1 } . . . ,5 n ^0 with
n

Σ Sf = l and let w l 5 ... , w n _ ι be unitary matrices, then

^Tre~A. (C.3)

Proof. It is sufficient to prove it when s l 5 ... ,sw are rational fractions with N0

their common denominator. Apply the Trotter product formula in the form

e-sk(A+iB)_ jjm / e-(l/lN 0)iBg-(l/Wo)ΛytfoSk

/->oo

for fc= 1, 2, . . . , n so that the left hand side of (C.3) is

l imTr Π (fy?~(1/w°M) (C.4)
l^oo \j=l I

Where Vj is a unitary operator (either e~
(1/lNo)iB or uke~(ί/lNo)iB for some k). By

Holder's inequality for trace norms [9], the absolute value of (C.4) is less than

/NO
lim Π (Tr|7/"(1^o)A|Wo)1/Wo

i->oo j = l

/NO
-lim Π (Tr|e-(1/Wo)X|Wo)1/Wo

Λ) (C.5)

which concludes the proof of the lemma. We do not discuss the technicalities
involved in extending the inequality (C.3) to allow A = H0+pV, B = p(Imz)V,
and Mi = apm(1"zn«, thereby obtaining (C.2).

Appendix D. A Path Space Estimate Incorporating Conditions that Paths

Must Hit Barriers

We study

l=ldμHΓ (D.I)

We restrict our notation to the situation where a single boson species is described
by the measure, this is a trivial simplification. Without the function Hr this
would be the integral over n-paths in X that realizes the trace of e~βlf°. The
inclusion of HΓ restricts the integral to n-paths with the property that each barrier
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in Γ is hit by some path (different barriers may be hit by different paths or the
same path).

We majorize (D.I) by a sum of terms, one for each partition p of the faces in Γ

p++(pl9...9pj (D.2)

Pi a subset of faces in Γ. To each pt is associated a path integral from xt to y^ the
xt and yt localized in Ajt and z)jV . The paths associated to pt must hit all the barriers
in Pi. With this notation we claim

p jljί i=l\Aj. Δj> pi

)) (D 3)
Realized as rc-paths the trace in (D.3) is greater than / since all the ft-paths in /
are summed over with same numerical weight, but some more than once.

We now note that the expression inside the trace equals

We let a,- be the number of xf localized in AJ9 and βj the number of yt localized in
J.. We recall if T^O then

(D.5)

Our "#" is of the form

i J dy\G(x, yi)e-» Π ΦM Π ̂ >~* (D 6)

Normal ordering and employing Nτ estimates one finds

We have used the fact that the integration regions are of volume one, so that the
sup norm dominates the L2 norm (and other norms arising in the process).

We let hi = h(pi, A^ Af) be the maximum over xf and yt of the path integrals
in parentheses in (D.3). This yields the estimate

ι^ecι^Σ Σ ΓK^ +^^^+^^^Π^ (D 8)
p jiJΊ

We write

hi^hlί h2i h2

3ί

with

hu = c3e-c*d(A^s«\SaePi (D.9)

and

ft2ί = c3g"C4d(^'s-'),Sβ,epί (D.10)

where Sa and Sa> are picked minimizing the distance d. We get that

Sup Σ (α j+l)2^+1^ j+l)2^+1)Π^ι ίΠ^2^^5|Γ| (D.ll)
P JiJi
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by an argument as in Section 10 of [6]. Thus we have the estimate

P

The final result is obtained provided

3^~C6l/Ί P 13)
P

with c6 going to infinity with μ going to minus infinity, and

ΣΠΛ3ί^
|Γ | P 13)'

P

The estimate for hli9 the heart of the matter, is obtained by the same argument
as in Proposition 8.1 of [6]. It is the square root of the measure for paths hitting
all the barriers in pt in time β. (The root is taken so that hu and h2i may be factored
out of the total probability.) The length of such a path must be at least c7|p£| for
\pt large. It is not surprising that one gets

The factorial accomodates different orders of hitting the barriers. By picking μ large
enough one gets (D.I 3) for any c6.

To get (D.I 3)' we observe that to a path that hits barrier i and then barrier)
may be associated a numerical factor e~c'dij, where dtj is the distance between
barrier i and barrier 7, such that £ Π n3ΐ *s overestimated by

αeΓ

Those paths contributing to h3i required to hit barriers 1, 2, ... , fe in order, have

associated to them
fc-l

(c"}k Π
j=ι

Theorem.

where k can be made arbitrarily large, cί fixed, by picking μ large negative.

Appendix E. Proof of Theorem 3.4 (1)

We consider the difference between the ratio of Z's in Theorem 3.4 (1) for two
choices of Λ, Λly and Λ2.

,} - Z((Λ2 - XT)/Z(Λ2) =

= (Z(Λ2)Z((Λ ! -XT) - Z(Λ,}Z((Λ2 - XT )}/Z(Λ,}Z(A2) . (E. 1)

We pick a set {ApjeJ} of distinguished cubes with the property that their union
is inside (Λ — XY for all Λ large enough, and such that this union separates X
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and the component of infinity. This choice depends on X but is independent
of ΛI and Λ2 for Λ± and Λ2 large enough. (U Aj is a collar around A".)

JeJ

We view each product of Z's in the numerator of the right term in (E.I) as a
single partition function for a doubled system, each subsystem with the same
interactions as the original system, but with no mutual interactions. The boundary
data of the two subsystems are different to yield the indicated products. We
expand each product of Z's in the (E.I) numerator in a single cluster expansion
for the doubled systems, using the distinguished cubes defined above.

Pairs (A", Γ) arising in the two cluster expansions cancel until X hits either
8Λ1 or dΛ2. Thus the difference in (E.I) goes to zero exponentially with the mini-
mum width of Λ± or Λ2 whichever is smaller, provided μ0 is large enough negative.

This proof is similar to the proof of clustering in [6], Section 4, which also
uses a doubled system.
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