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Abstract. The classical concept of K-flow is generalized to cover situations
encountered in non-equilibrium quantum statistical mechanics. The ergodic
properties of generalized X-flows are discussed. Several non-isomorphic
examples are constructed, which differ already in the type (II 1? IΠA, and lll^
of the factor on which they are defined. In particular, generalized factor
K-ίlows with dynamical entropy either zero (singular K-flows) or infinite
(special non-abelian K-fίows) are constructed.

Introduction

The motivation for this paper stems from the following schematic description of
the purpose of non-equilibrium statistical mechanics.

Given a dissipative, thermodynamical system {9ΐs, φs, y(IR+)}, devise: (i) a
thermal bath [yiR, ή^\ and (ii) an interaction between 9ls and 9ΐ^, in such a
manner that the following conditions be satisfied. Firstly, the composite dynamical
system {91 = 9ls(x)9ΐκ, φ = φs®φR, α(IR)} should be conservative, and under-
standable from the laws of hamiltonian mechanics. Secondly, y(IR+) should appear
as the restriction, to the system $ls of interest, of the total evolution α(R); namely,
for every (normal) state ψ on 9ίs, every observable N in 3ls, and all positive
times ί, one should have:

<φ(8)^;α(ί)[N®/]> = <φ;y(ί)[N]>. (1)

To be specific, we shall assume that φs and φR are thermal equilibrium states,
respectively for the von Neumann algebras $ls and 91Λ. In line with the ideas of
non-equilibrium thermodynamics, we shall further assume that y(IR+) is a semi-
group of positive, linear maps of 9ls into itself such that φs°y(t) = φs f°r every
£eIR+, and that <φ; y(ί)[ΛΓ|) approaches <</>5; N> when t tends to + oo, for every
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(normal) state ψ on 9ls, and every observable N in 9ts; we also assume y(ί)[/] =/
for all ίeR+ and y(0) —id; in particular we note that the adjoint y(ί)* transforms
states into states. Finally, in line with the ideas of non-equilibrium statistical
mechanics, we shall require that ά(IR) is a group of automorphisms of 91 with
φoύ(ή = φ for every ίeR We admit that several limiting procedures might be
necessary to pass from ordinary hamiltonian mechanics to the automorphism
group α(lR). Amongst these we are quite willing to accept the "thermodynamical"
and the "long-time, weak-coupling" limits, provided that these limits be
mathematically controlled.

In agreement with [26] we will, throughout this paper, mean by "thermal
equilibrium" state φs (resp. φR or φ) a faithful normal state on 9ΐs (resp. 91R or 91).
We denote by σs(R) and σΛ(IR) the modular automorphism groups corresponding
respectively (via [24]) to φR and φs. We note that φ then satisfies the Kubo-
Martin-Schwinger boundary condition with respect to the automorphism group
σ(IR) defined on 91 by σ(t) = σs(i) ® σR(t). We will refer to σ(IR) as the evolution of
the composite system when the interaction between 9ΪS and yiR is switched off.
An interpretation of the fact that φ should indeed satisfy the KMS condition with
respect to the "free" evolution σ(IR) Φ ά(IR) is proposed in our discussion of the
concrete model of Example III.2 below.

We next remark that the understanding of the mechanism of the passage
from the conservative evolution ά(IR) to the dissipative evolution y(IR+) only
involves the restriction α(R) of ά(IR) to the ά(lR)-stable von Neumann algebra:

5R={ά(ί)[ΛΓ||ίelR,JVe9l5r. (2)

Since σ(IR) commutes with α(IR) and since 9ls is σ(IR)-stable, 91 is σ(lR)-stable as
well. Upon defining φ and σ(IR) as the respective restrictions of φ and σ(IR) to 91,
we see that φ is an equilibrium state on 9Ϊ, satisfying the KMS condition w.r.t.
σ(IR). Furthermore, there exist then conditional expectations <f0 from 91 onto
91, δ from 91 onto 9ls, and δ from 91 onto 9is with δ = δ°δ& determined
uniquely by the conditions:

φoδQ = φ\ φ°i = φ;φ°£ = φ. (3)

Our condition (1) can thus be rewritten as:

δ°ά(t)°i = y(t)°g for all ίeIR+ (4)

or if we restrict our attention to 91, as:

δ°a(t)°δ = y(t)°δ for all ίelR+. (5)

The relations (4) or (5) precisely express, in the von Neumann algebraic language,
that the reduced evolution y(IR+) is obtained from the conservative evolutions
ά(IR) or α(IR) by a "projection technique". As a consequence of (4) it is easily seen
that y(t) are not only positive, as we explicitely assumed in the beginning but are
in fact completely positive, faithful maps. This implies that one can actually
reconstruct canonically from {9ls, y(IR+)}: a von Neumann algebra 91, a group
α(IR) of automorphisms of 91, and a conditional expectation $ from 91 onto 915

such that (5) and (2) are satisfied.
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We finally remark that the "backward trajectory"

of yis in 91 is σ(R)-stable, increasing in ί, and that {j/JίeIR} generates 91.
These remarks motivate the principal aim of this paper, namely: to isolate

those properties which extend to the aggregate {91, φ, α(IR), jtft} the essential
features encountered in the classical theory of K-flows. These properties, once
identified, will be verified to hold in physical situations of relevance for non-
equilibrium statistical mechanics. We shall show that this extension carries over
to the quantum mechanical realm, the ergo die and other spectral properties of
classical K-flows.

In Section I we give the basic definitions for what we call generalized K-flows
we then prove, in that section, some of their general ergodic and hereditary
properties. Section II is devoted to the study of some consequences of an additional
assumption which we term "weak-reversibility". Non-isomorphic examples of
generalized K-ίlows are constructed in Section III, showing explicitly that this
concept leads to a genuine generalization of the classical K-flow theory. We also
indicate in this section how one of these examples is intimately linked with a
statistical mechanical description of the thermo dynamical system corresponding
to the diffusion of a quantum particle in a harmonic well. In Section IV we discuss
a generalization of the concept of dynamical entropy; we show that the resulting
entropy is strictly positive on every non-singular generalized K-flow; we compute
it for various special non-abelian factor K-flows where it happens to be infinite;
as in the case of the classical K-flow associated to Brownian motion, the proof
proceeds by embedding Bernoulli shifts of arbitrary large entropy in the quantum
K-flows considered.

We might finally mention to close this "introduction" that some of the ideas
to be developed in the following pages have been approached with lesser generality,
in previous publications [9] most of the proofs then presented are now superseded
by those given in the present paper which is self-contained, and can thus be read
independently of [9].

I. Generalized AΓ-Flows

1. Definition. A generalized K-flow is an aggregate {91, φ, α(IR), j/} where 9t is a
von Neumann algebra acting on a separable Hubert space <r>; φ is a faithful normal
state on 91; α(IR) is a group of automorphisms of 91 such that: (a) for each Ne9l
the function ie!RH>a(i)[N]e9l is str.-op. continuous, (b) φ°a(t) = φ for all feR;
and j/ is a von Neumann subalgebra of 91 satisfying the following four conditions:
(i) j/g α(ί)[ĵ ] for ίeR+ ;(ii) the von Neumann algebra generated by {α(ί)|>/]|ίeIR}
coincides with 91; (iii) <C/ is the largest von Neumann algebra contained in all
α(£)[j3/], with t running over IR; (iv) j/ is stable under the modular group
σ(IR) canonically associated to φ.

We recall (for details, see § 13 in [24a]) that, given a faithful normal state φ
on a von Neumann algebra 9ΐ, there exists a unique continuous one-parameter
group σ(R) of automorphisms of 91 with respect to which φ satisfies the Kubo-
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Martin-Schwinger (KMS) boundary condition. It is this group which is called
the modular group canonically associated to φ. The set 9lφ of fixed points of 91
under σ(lR) is a von Neumann subalgebra of 91 which we refer to as the centralizer
of 9Ϊ with respect to φ; this nomenclature is justified by the fact that 9lφ =
{Ne9l\(φ; [N, M]>=0 for all Me9ΐ}. We can assume without loss of generality
that there exists in ξ> a vector Φ cyclic and separating for 9ΐ such that <((/>; N) =
(Φ,NΦ) for all 7Ve9ΐ.

2. Definition. A generalized K-ϊlow {91, φ, α(R), j/} is said to be regular if every
maximal abelian subalgebra of the centralizer $lφ of 9ΐ w.r.t. φ, is already maximal
abelian in 91. At the opposite extreme, {91, φ, α(IR), <$/} is said to be singular if

snφ=c/.
3. Remarks, (i) We will explicitly construct, in Section III, a regular, as well as a
singular generalized X-flow where 91 is a factor of type 11̂  in the classification
of Connes [4], thus proving the existence of non-isomorphic generalized J^-flows.

(ii) The distinction between α(R) and σ(IR) should be kept in mind throughout
this paper. In line with our motivation, as presented in the introduction, we shall
occasionally refer to α(IR) as the "true evolution" and to σ(IR) as the "free evolution",
although this nomenclature should not be given too much of a metaphysical
meaning. The point however is to distinguish them. Indeed α(ί1) = σ(ί2) for any
ί1? ί 2 φO occurs exactly when 9Ϊ = O, a trivial situation in which we are clearly
not interested. Besides this trivial case, the dimension of the Hubert space ί>
on which 91 acts must be infinite (as will follow immediately from Theorem 5
below). Actually, α(IR) should be regarded as a rather drastic perturbation of
σ(IR) in a sense which we are now going to make precise.

Since φ°a(t) = φ = φ°σ(t) for all ίeIR, both α(IR) and σ(R) are unitarily
implementable; the condition U(t)Φ = Φ=Uσ(t)Φ for all ίeIR determines uniquely
the corresponding unitary groups. Let H and Hσ be their respective generators.
Form now V = H-Hσ and Hλ = Hσ + λV with λeR strictly positive. We further
remark after [24], that the uniqueness of σ(IR), and the fact that φ°a(t) = φ for all
ίeIR, imply that α(IR) and σ(IR) commute. Consequently αλ(IR) defined by αλ(ί) =
a(λt)σ((l—λ)t) is a continuous group of automorphisms of 91 with φ°uλ(t) = φ for
all ίeR The generator of the corresponding unitary group is precisely Hλ. Clearly
the aggregate {91, φ, αλ(R), j/} is again a generalized K-flow, however small
λ >0 might be chosen. Hence the K-flow property is stable under the perturbation
V-+λV(λ>0); which is to say that H [resp. α(IR)] is a drastic perturbation of Hσ

[resp. σ(]R)]. This will be further emphasized, in the case of regular generalized
K-flows by the comparison of the respective ergodic properties of α(IR) and σ(IR).

(iii) The condition that j/ be σ(R)-stable, and the commutativity of α(IR) and
σ(R), clearly imply that j/f = α(ί)[j/] is also σ(R)-stable, for every ίeR This is
known [24] to be equivalent to the existence, for every ίeIR, of a unique faithful
normal conditional expectation St from 91 onto s$t such that φ°$t = φ, a fact
which we shall use repeatedly in the sequel.

(iv) In previous papers [9] we imposed, instead of condition (I.I.iii) above,
the apparently stronger condition P)ί[j/ίΦ] = CΦ, where [j/rΦ] denotes the
closure of the linear manifold j/tΦ = {AΦ\AEjtft}. Since Φ is separating for 91,
this condition clearly implies that (~}tj/t = (CI, which is our present condition
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(I.l.iii). The converse is however also true, as we shall presently see, thus solving
a question left open in [9a, Remark 3.2.i].

4. Lemma. For every generalized K-flow: (r>)ί[j/ίΦ] = CΦ.

We derive this lemma as an immediate consequence of part (iii) of the following
strong-martingale theorem.

Sublemma. Let φ be a faithful normal state on a von Neumann algebra 91; [j/t ίeIR}
be a collection of von Neumann subalgebras of 91 such that: (i) for every ίeIR, s$t

is stable under the modular group σ(IR) canonically associated to φ, and (ii) s^t
implies j/s £<£/,; let further, for each ίeIR, $( . \jtft) be the faithful normal conditional
expectation from 91 onto s$t such that φ°$(.\jtft) = φ. Then: (i) there exists a
unique faithful normal conditional expectation £( . \(~}t£#d from 91 onto (~]t^t such
that φo&(.\f}tj/t) = φ; (ii) for every Nε9l, ^(ΛΓlΠX^s-lim^.^^NI^);
(iii) with Φ denoting the vector in §, cyclic and separating for 91, associated to

Proof. For every s, ίeIR with s^t we have:

Upon denoting by the same symbol a closed subspace of § and the corresponding
orthogonal projection, we have thus:

At fixed N G 91, fixed Φ e §, and fixed ε > 0, we can thus find, since Φ is separating
for 91, an Xe9l' and a TelR such that:

and

\\(Et-EJNΦ\\^ε/3\\X\\ for all

From [24] we know that, for each feIR, $( \£/t) is a projection of norm 1, and
ft)Φ = EtNΦ for all ΛΓe9l. We have thus for all 5, t^ T:

i.e. TV^lim^.^^A^I^) exists strongly on § for every ΛΓe9l. _Since
^s^^t for all s<Ξf, we have that Nεjft for all ίeR and thus ΛΓe(°)tj^t. On the
other hand:

NΦ = s-lim^ _ ̂  EtNΦ = ENΦ ,

so that £9lΦ£(p)ίeβ/f)Φ, and thus, since Φ is cyclic in § for 91:
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which proves (iii). Now our condition {jtft is σ(IR)-stable for every ίeR} implies
that (f^j/ί) is σ(IR)-stable. There exists consequently [24] a unique faithful normal
conditional expectation <$(.\f}t<$/t) from 91 onto (P)Xr) such that φQδ(.\f}tsfϊ) = Φ,
thus proving (i). Furthermore [24] this conditional expectation is determined by
the relation S(N\^]t^t}Φ = FNΦ where F is the projector onto
which, by (iii), is E. We have thus for every Ne9l:

Since Φ is separating for 91 we have thus, see the proof of (iii),

which proves (ii). q.e.d.

Remark. We see that $( . \ jtf-t) is a decreasing martingale in the sense of Arveson
[3] so that, from (i) and the obvious consistency relations between conditional
expectations on a refining collection of σ(IR)-stable von Neumann subalgebras,
(ii) can be obtained as a consequence of Theorem 6.1.7 in [3]. Hence our argument
contains in particular, an alternate proof of Arveson's result, for the special
martingales considered here. This path however would not noticeably shorten
the proof of (iii) (which is the result we are actually interested in).

5. Theorem. Let {9ϊ, φ, α(R), jaf } be a generalized K-flow, and H be the generator
of the strongly continuous, one-parameter, unitary group £/(R) implementing α(R),
with U(t)Φ = Φ for all feR Then: (i) Spd(H)={0}; (ii) fe§ and HΨ = Q imply
ψ = λΦ with Ae(C; (iii) H has homogeneous Lebesgue spectrum on the ortho-
complement S}1 of (CΦ in §.

Proof. By construction of I/(R), HΦ = Q; it is thus sufficient to consider the restric-
tion t/^lR) of 17(R) to S1. For every seR let now Es

1-[j/sΦ]θ<CΦ. One then
checks easily from Definition 1 and Lemma 4, that {U\t), E^\s, ίeR} defines on
§1 a system of imprimitivity based on R Since § (and thus §1) is assumed to be
separable, von Neumann uniqueness theorem [15] is applicable to the situation
considered here (see, for instance, Theorems III. 1.5 and 6 in [8]); we thus have
ξ>

A- = 0 <r)π with ξ>n ί/(R)-stable, and the restriction Un(JR) of 170R) to £n is unitarily
equivalent to F(R) defined on J*?2(R, dx) by (V(t)Ψ)(x)= Ψ(x-t). q.e.d.

Remark. This theorem extends thus to the generalized K-flows of Definition 1 an
important property of classical K-flows proven first by Sinai [22], and already
generalized to some special non-abelian K-flows in [9a]. It should however be
pointed out here that no assertion is made yet on the multiplicity of the absolutely
continuous part of the spectrum of//. As pointed out in [9a], the spectral properties
of H stated in the above theorem already imply strong ergodic properties, which
we now state for generalized K-flows. These are listed below in an order which
make their proof follow immediately from the theorem and from general results
on quantum dynamical systems collected in pp. 181-187 of [8].

Corollary. For every generalized K-flow {91, φ, α(R), j/} we have: (i) φ is extremal
a(K)* -invariant; (ii) φ is strongly mixing i.e. for every N,Mε9l: \im\t^^φι
Λ/α(ί)[M]> = <φ; Ny(φ; M>; (iii) for every invariant mean η on R, any Ψl9Ψ2E^
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and any N ε M : η ( Ψ l 9 c t ( . ) [ N ] Ψ 2 ) = ( Ψ l 9 η [ . N ] Ψ 2 ) with fy[ΛΓ| = <(£;#>/; (iυ)
α(IR) acts in a η-abelian manner on φ, i.e. for every Nl,N2,N^,N4eyiη<φ;
N1[ot(.)[N2], N3~]N4y=Q; (v) φ is the only normal, aQR)* -invariant state on $1,
(vi) the algebra of fixed points of $1 under α(IR) reduces to C/.

Remarks, (i) An asymptotic abelianness property stronger that (iv) above will be
obtained in Section II, under the additional assumption of weak-reversibility.
(ii) Properties (v) and (vi) of the above corollary reinforce our Remarks (I.3.ii)
on the structural differences between the "true evolution" α(R) and the "free
evolution" σ(IR). Indeed, whereas φ is KMS for σ(IR), (v) above implies that 91
admits no faithful normal state with respect to which α(R) would satisfy the KMS
condition. Moreover, even to assume (vi) to hold for σ(lR) as well, amounts exactly
to imposing that the flow be singular; in other words, for any non-singular
generalized K-flow, the perturbation V from σ(IR) to α(R) destroys all the non-
trivial invariants of the "free-motion", and this remains true if V is replaced by
λV, however small one might choose λ>0.

6. Theorem. Let {91, φ, α(IR), j/} be a generalized K-flow, and Hσ be the generator
of the strongly continuous, one-parameter, unitary group [/σ(IR) implementing σ(IR),
with Vσ(f)Φ=Φ for all ίeR Then: (i) Spd(Hσ) is a subgroup of the additive group
IR; (ii) the following conditions are equivalent: (a) 0 is a non-degenerate eigenvalue
of Hσ, (b) {51, φ, α(R), */} is singular, (c) $pd(Hσ)= {0} with multiplicity 1, (d) φ is
extremal σ(IR)* -invariant, (e) 91 is a factor and σ(IR) acts in a η-abelian manner on φ;
(iii) if dim §^2, any of the above conditions (a)— (e) implies Sp(Hff) = IR and 91 is a
type lll^factor; (iv) if 0 is an isolated point in Sp(ίF), then {91, φ, α(IR), jtf} is
regular; (v) if Sp(£P) is discrete, then {91, φ, α(IR), sέ} is regular.

Proof. φ°a(t) = φ for all ίeIR implies that σ(K) commutes with α(K) and thus
(7σ(IR) commutes with t/(IR), the unitary group implementing α(R). From part
(vi) of the corollary to Theorem 5 above, we see that all the conditions of Theorem
3.2 in [12] now hold for every generalized K-flow, so that (i) is thus established.
To prove (ii), we form ξ>λ={Ψeξ>\Uσ(t)Ψ = Q*p(-iλt)Ψ for all ίeIR} and 5Rλ =
{Λ/r65R|σ(ί)[ΛΓ] = exp(-ίλί)N for all ίeR}. From [10] we know that Sλ = [5RAΦ]
and thus in particular f>o = [yiφΦ']. Since Φ is separating for 91, this proves the
equivalence of (a) and (b). Let us now see that these conditions imply (c). Let
;„ e Spd (Hσ) and X E 5Rλ. We have then X* e 91 _ λ and X*X, XX* e 9lφ. Our condition
(b) now implies X*X = x2I and XX* = y2! with x, yeIR+. From \\X*X\\ = \\XX*\\
we conclude that x = y and thus, in particular, <(/>; X*Xy = (φ;XX*y. On the
other hand φ KMS w.r.t. σ(IR) and Xe$lλ imply {φ;XNy=e~\φ',NXy for
every Neil. These two equalities together give (1 — e~λ)(φ;X*Xy = Q, i.e. either
λ = 0, or \\XΦ\\ -0 for all Ze9lλ and thus §; , = [5RAΦ] = {0} which is to say that
Spd(Hσ)={0}. The multiplicity statement in (c) follows then from (a). Conversely
(c) trivially implies (a). We now remark (see for instance Theorem Π.2.8 in [8])
that (a) implies (d); and (see for instance Corollary 2 pp. 206-207 in [8]) that (d)
is equivalent to (e). Furthermore (see again Theorem II.2.8 in [8]) (e) and (d)
imply (a). This concludes the proof of (ii). To prove (iii) we use Corollary 3.2.3 and
Corollary 3.2.7 in [4] to see that Sp(Hσ) is either {0}, ωZ or IR. The first case
would imply 9lφ = 9l which is ruled out by the conjunction of (b) and



198 G. G. Emch

If the second case were realized, part (vi) of the corollary to Theorem 5 would
imply that φ is homogeneous and periodic in the sense of Takesaki [25] whose
Proposition 1.7 would in turn imply that {9t, φ, α(R), j/} is regular; this again is
ruled out by the conjunction of (b) and dim§ ^> 2. Hence (b) only allows Sp(/fσ) = R
Again from Corollary 3.2.7 of [4], we conclude that S(ϊl) = [0, oo[, i.e. 9t is of
Type ΠI^ Part (iii) is thus proven. Part (iv) follows immediately from Lemma 4.2.3
in [4]. Part (v) follows finally from the remark that if one replaces in [25] the
average over one period of σ(IR) by an arbitrary invariant mean over IR itself,
then Takesaki's proof of his Proposition 1.7 extends from the case σ(R) periodic
to the case σ(R) almost periodic i.e. Sp(jF/σ) discrete, which is the assumption
in (v). q.e.d.

Remark. We shall construct, in Section III, a regular generalized K-flow with $1
a type Π^ factor, and Spd(Hσ) dense in IR, thus ruling out the possibility of proving
the converse of the implications (iii) and (iv) of the above theorem.

7. Theorem. Let {$1, φ, α(R), <$/} be a generalized K-flow with φ not a trace on %l;
and let H be defined as in Theorem 5. Then H has homogeneous Lebesgue spectrum
with infinite multiplicity on the orthocomplement §1 of CΦ in §.

Proof. From Theorem 5, we already know the "homogeneous Lebesgue spectrum"
part of the present theorem; we thus only have to prove infinite multiplicity.
Let W be the von Neumann algebra generated on §1 by the system of imprimitivity
{U\t\ E$\s, ίeR} defined in the proof of Theorem 5. Let further l/σ(R) be defined
as in Theorem 6, and F(R) be its restriction to 5}1. Notice now that F(R) commutes
with (71(R) follows from σ(R) commutes with α(R); the latter property, together
with the condition that ̂  be σ(R)-stable, implies also that α(s)|W] is σ(R)-stable;
this in turn implies that F(R) commutes with E^ for every seR Consequently,
VQStyQW. We now proceed by contradiction. Suppose indeed that H were to
have homogeneous Lebesgue spectrum on §1 with multiplicity n<oo. We could
then write S1 = S0®CΠ with S0=jS?2(R,dx); and OR = B(S0)®C/. F(R)g9JT
would then imply V(t) = I®v(t) with ι;:R-^(C") a finite-dimensional, continuous
unitary representation of R Consequently, ι (IR) and thus F(R) would have
discrete spectrum, with at most finitely many different eigenvalues; so would
then have Hσ. Because of Theorem 6.i, this however would imply that Hσ = 0, and
thus σ(R) = id, that is to say φ would be a trace on 9?. q.e.d.

Remark. This theorem extends the result of Sinai [22] to a large class of generalized
K-flows of possible interest to quantum statistical mechanics (see for instance
Section III).

8. Theorem. Let {91, φ, α(R), sέ} be a generalized K-fiow; ytφ be the centralizer
of 91 with respect to φ; α^(R) (resp. φ) be the restriction of α(R) (resp. φ) to ytφ;
and j3/φ be the von Neumann algebra yiφr\s/. Then {9lφ, φ, #φ(R), ^φ} is a regular
generalized K-flow.

Proof. We first should note that φ°u(t) = φ for all ίeR implies that yiφ is stable
under α(R). Hence α^(IR) is indeed a continuous group of automorphisms of 9lφ

with φ°aφ(t) = φ for all ίeR Furthermore ^f = ̂ φ(t}\_^φ\=<ίlφr\^t and the
following properties are thus immediately inherited from the corresponding
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conditions on {9Ϊ, </>, α(IR), j/}:^gj/f for all ίeIR+ and f)Xf = CJ. Since 3lφ

is the centralizer of 91 w.r.t. φ, the modular group σφQK) of 91̂ , w.r.t. 0 is the identity
map, so that we trivially have jtfφ is σ^(IR)-stable, and (9lφ)φ = 9lφ. The proof of the
theorem will consequently be complete when we get \J tsi^ = 9lφ which we shall
now proceed to prove. Since φ is faithful and normal and φ°σ(t) = φ for all ίeIR,
91 is σ(IR)-fmite in the sense of Kovacs and Szύcs [14]. We therefore know that
the unique normal faithful conditional expectation from 91 onto 9lφ satisfying
φ°δ(.\<$lφ) = φ is given, for every Ne9l, by <f(N\9lφ) = WφnJ(r(N, σ(R)), where
Jf (JV, cr(3R)) intersects $lφ at exactly one point and is defined as the weak closure
of the convex hull of the orbit of N under σ(IR). Our condition that si be σ(R)-
stable thus implies, for every ίeIR, $(jtft\9lφ)£9lφr}£/t:> since on the other hand
rft = &(<tft\yiφ)££(j/t\yiφ\ we have: jaff = <φ/f|9lφ). Our condition 5R = VXί
means that for every JVe 91, there exists {Ate sit with ί e IR} such that N = u.w.-lim^.
In particular for every N^yiφ the u.w.-continuity of the projection S(.\9lφ)
implies: N-^(N|9ί^)-^(u.w.-limylJ9ίφ)-u.w.-lim^(4|9ίφ). Hence for every
Neyiφ there exists {Btes/f with ίeIR} such that JV = u.w.-limJ3f, which is to say

that 9iφ£Vxf; since ^t s^Φ for every ίeIR> we set ^=Vx? q e d

Remarks, (i) This theorem will play a central role in the computation of the
dynamical entropy of generalized K-ίlows (see Section IV); (ii) As a consequence
of this theorem, we see that every non-singular generalized K-flow contains at
least one sub-flow which is a regular generalized K-flow; (iii) The conclusion of
the theorem had already been obtained [9c] under the additional condition that
σ(IR) be periodic. The present extension is motivated by the existence (see Section
III) of regular generalized K-ίlows for which σ(IR) is not periodic, (iv) Except
possibly for the regularity of the resulting J£-flow, the present proof extends
moreover immediately to the case where 9lφ is replaced by 91G, the algebra of
fixed points of 91 under a group G={g} of automorphisms of 91 satisfying the
following conditions: (a) φ°g = φ for all geG, (b) G commutes with α(IR), and
(c) j/ is G-stable; notice, in particular, that condition (a) doesn't need to be imposed
separately in case 91 is a finite factor, (v) The gist of the proof is to show that, for
certain subalgebras X of 9ί, ^(j/Jΐ) is a von Neumann algebra, namely ^nX,
so that the u.w.-continuity of the conditional expectation £( . |3E) can be used to
prove the distributive law Xπ(\/tj/t) = \/t(Xn£/t). (vi) When, however, 9ί is
abelian this distributivity holds unrestrictedly; hence the first part of the proof
of the theorem shows that whenever 91 is abelian, every α(R)-stable subalgebra 3£
of 91 inherits the (regular!) K-flow structure of {91, φ, α(IR), si}. Another type of
hereditary behaviour is exemplified by the following two results.

Scholium A. Let {9ί, φ, α(R), j^} be a generalized K-flow with
Then the aggregate {3, αz(IR), φ , ̂ z] is a regular generalized K-flow, where 3 =
9ϊn9ϊ', αz(IR) (resp. φ) is the restriction of α(IR) (resp. φ) to 3? and s$z = s

Proof. For any Ae<$/ and any Ze3 we have
hence ^(3l^/)£^πj//. On the other hand our condition j/nj/'£3 implies

Hence <?(3|.a/) = j^rW. Moreover j3/n32
so that we have j/z = δ (3 1 j/). Since 3 is α(IR)- stable :

= α(ί)[3]2α(ί) \_si r\si'^ — si tr\si'^ and the preceeding reasoning shows as
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well that αz(ί)[j^z] = j^fn3 = <^(3|j^f) Instead of appealing to the u.w.-continuity
of the conditional expectation, as we did in the proof of the preceeding theorem,
we now use the fact that [S( . \ s/t)\ ίeIR} is an increasing martingale with \/tjtft = 9l.
A slight modification of the sublemma to Lemma 4 (or alternatively of Arveson's
Proposition 6.1.9 in [3]) shows that, for every Ne9l, N^s-lim^^N]^^ In
particular every element Zin3 can thus be seen as a s-lim of elements $(Z\jtft) in
αz(ί)[XJ as ί-»oo. Consequently 3 £ Vt^W t ̂ z] ' s^nce ^z£3 we have thus
3 = Vfαz(ί)[J^J The remainder of the scholium follows by the same argument
as that used in the first part of the proof of the theorem, and from the fact that 3
is abelian. q.e.d.

Remark. For any generalized K-flow {91, φ, α(IR), j/}, this scholium confirms
that: stf (resp. j/φ) be a factor implies 91 (resp. 9t0) is' a factor; it is in agreement
with: 3 (resp. 3φ = 9V^9lφ) is either equal to (C/, or is infinite dimensional.

Scholium B. Let {9ΐ, φ, α(IR), j/} be a generalized K-flow; 9ld be the von Neumann
subalgebra of 91 generated by {$lλ\λE$pd(Hσ)} with Vlλ= {ΛΓe9l|σ(ί)[N] =
Qxp(—iλt)N for all ίeR}; αd(IR) (resp. φ) be the restriction of α(R) (resp. φ) to
ytdls/d = yidΓ}£/. Then {9ld, φ, α^IR), j/d} is a regular generalized K-flow.

Proof. α(lR) commutes with σ(IR) implies that each $1 λ, and thus 9ΐd itself, is stable
under α(ϊR); hence αd(IR) is indeed a continuous group of automorphisms of
9ld. j^ being σ(R)-stable we further have ^(9^1 «*/,)£ 9lλrWf and thus <?(9lλ|^f) =
yiλπs/t. From Theorem 6(i) we see that the algebraic sum Σλ$lλ is already u.w.-
dense in 9lrf; hence the u.w.-continuity of $( . \jtft) allows to pass from the above
relation to <ί(9ίld|eδ/f) = 9llin«5?/f = αd(ί)[^J We can therefore appeal, as in
Scholium A, to the fact that {$(. 1 )̂1 ίeIR} is an increasing martingale with
VXί = 5β, and thus conclude that \j tu(t)lstf d~\ = yid. 9low 9ίd is clearly σ(R)-
stable so that the modular automorphism group of 9ld associated to φ is simply
the restriction σd(IR) of σ(IR) to 3ίd; hence ^d is σ^IR)-stable. We further have
Πtα(ί)[^d] = 9 fldΠ(Πt fi/t) = C/, and finally ^d£α(ί)|>/J for all ίeIR+. Hence
{9ίd, φ, αd(IR), ̂ d] is indeed a generalized X-flow. Its regularity follows from
Theorem 6(v) since the restriction of Hσ to [Wd^Φ'] = Σλ[.yiλΦ] has clearly discrete
spectrum, q.e.d.

Remarks, (i) This scholium can be looked upon as a strengthening of Rem (ii)
under Theorem 8. (ii) The above proof would go through as well if one were to
replace 9ld by 9ΐρ where ρ is any subgroup of Spd(Hσ)ι in particular, we could
have taken ρ = {0}, in which case we would have been back in the situation covered
by Theorem 8; or, if Spd(//σ)φ {0}, we could have taken for any λeSpd(Hσ) with
/IΦO, Q = λ7L in which case φ would have been a periodic homogeneous state

II. Weak Reversibility

1. Definition. A generalized K-flow (91, φ, α(IR), stf] is said to be reversible, if there
exists a von Neumann subalgebra j/of 9ϊ such that {91, φ, α(IR), j/} is a generalized
K-flow with ά(IR) defined by α(ί) = α( — t) for every ίeR A generalized K-flow is
said to be weakly reversible if 9ϊ = \/t£/c

t with ̂  =
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Remarks, (i) We shall construct, in Section III, generalized K-flows which are
reversible and weakly reversible, (ii) If 91 is abelian, then the flow is trivially
weakly reversible. The question as to whether these "classical" j£-flows are all
reversible seems to have been a long-standing problem (for some elaboration on
this point see Ex. IΠ.l below), (iii) On the opposite extreme, every weakly reversible
generalized K-flow for which 91 is a factor is also reversible, (iv) This is in particular
true if we replace in (iii) the condition 91 be a factor by the condition si be a
factor (see for instance the remark under Scholium I.8.A). (v) If, in addition to the
condition of remark (iv), we impose that the von Neumann algebra generated
by j/ and s$c be stable under α(IR), then 91 is isomorphic (see [24c]), for each ίelR,
to j2/t(χ) j^f; we shall construct, in Section III, an example of such a flow, whose
structure is very much reminiscent of that of a Bernoulli flow, (vi) Coming back
to the general meaning of the weak reversibility condition, we note that, whereas
\/t<stft = 9l is to be seen as a condition on the "distant future", the condition
ytjtf

c

t=9l appears as one involving the "remote past". In fact, in the same way
as \/ts/t = 9l implies Πfj^gϊlnϊl', the condition \/t^

c

t=9l implies in turn
that P| ίj/ ί£9 ίΐn9 ίΐ/; hence one of our defining conditions for a generalized K-flow,
namely (^\tAt = <CI, actually follows, when 91 (or j/) is a factor from the weak
reversibility condition \Jtjtf

c

t = 9l. This symmetry between the roles of stf and s/c

is further emphasized by the following remark, (vii) The condition that s^ t imply
j^s 2 £0t imposes that j/sn s$'t = $(stfc

t | j/s) for all s ̂  ί. From a martingale argument
similar to that used repeatedly at the end of Section I, we see that j/J =
It is then easily seen that the symmetric relation, namely j/
implies the weak reversibility property \ft^ = 9l.

2. Theorem. Let {91, φ, α(R), j/} be a weakly reversible generalized K-flow;
91 (resp. &) be the C*-subalgebra of 91 generated by {j/r|ίeR} (resp. by {jtfc

t\teJR}).
Then: (i) both 91 and Ct are strongly dense in 91; (ii) for each Aεtyί and each Ce(£:
lim^αJIX α(ί)[C]]||=0; (iii) for every faithful normal state ψ on 91: Sp(/ίp2
Sp(//σ) where Hσ

ψ is the generator of the continuous, one parameter, unitary group
UySK) implementing the modular automorphism group σφ(IR) canonically associated
to ψ.

Proof. Denoting by (J the set-theoretical union, we clearly have (Jrs
and (JfJ/fSεSϊl. (Jt^t *s strongly dense in 91 by definition of a generalized
K-flow, and [jt^

c

t is strongly dense in 91 by the condition of weak-reversibility.
This proves (i). To prove (ii), we first note that for arbitrary, but fixed, v4e9I,
Ce(£ and £>0, one can find finite x, yelR and Axe<$/x, Cy£s/c

y such that
[4*,α(ί)[Cy]]=0 for all t^x-y, \\A-Ax\\^ε/4\\C\\9 and ||C-Cy | |^ε/L with
L = 4| |A| |+ε/| |C| | . We have then for every t^x-y. \\_A9 α(ί)[C]] || ̂  \\IA-AX,
α(0[C]]|| + ||[^,α(ί)[C-Cy]]|| + ||[^x,α(ί)[Cy]]|| ^ 2(ε/4||C||) x ||C|| +
2(| |yl | |+ε/4| |C| |)xε/L = ε. Hence for every Ae2I, Ce(£ and ε>0, one can find
a finite TelR such that \\\_A, α(ί)[C]]|| ^ε for all t^T. This proves (ii). To prove
(iii) we draw from (i) and (ii) that α(IR), with 1R equipped with its natural order,
is a net of automorphisms of 91 satisfying the conditions: (a) φ = φ°a,(t) for all
ίelR, with φ faithful normal state on 9ί; and (b) there exists a weakly dense sub*-
algebra of 91, namely (£, which is strongly α(IR)-central, i.e. for every Ce(£ there
exists a weakly total self-adjoint subset of 91, namely 91, such that \_A, α(t)[C]]-»0
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strongly for every v4e2I. The assumptions of Theorem 1 in [1] are thus satisfied,
the conclusion of which is precisely part (iii) of the present theorem. q.e.d.

Remarks. The first two conclusions of the theorem strengthen considerably the
^-abelianness property (iv) of the corollary to Theorem 5. Indeed a statement on
averaged time behaviour, in the weak-operator topology, is now replaced by the
convergence, in the norm topology, of point-wise limits in t. (ii) The third conclusion
of the theorem shows in particular that when 91 is a factor, its type as determined
by Connes' invariant 5f(9ί), can be obtained directly from the spectrum of Hσ

itself (see Corollary 3.2.5.d in [4]).

III. Examples

1. Classical Flow of Brownian Motion

A K-flow is defined, in classical probability theory (see for instance [2]) as an
aggregate (Ω, μ, Γ(1R), ζ) where (Ω, μ) is a non-atomic Lebesgue space (i.e. is
isomorphic to [0,1] with Lebesgue measure); T(IR) is a group of automorphisms
of (Ω, μ) such that for each measurable subset X^Ω, the subset {(ω, t)\T(t)[_ώ]eX}
is measurable in Ω x IR; and ζ is a σ-algebra of measurable subsets of Ω satisfying
the following three conditions: (i) C£T(£)[ζ] for every ίelR+; (ii) the σ-algebra
generated by {T(ί)[£]|£eIR} coincides with the σ-algebra of all measurable
subsets of Ώ; and (iii) {0, Ω} is the largest σ-algebra, of measurable subsets of Ω,
contained in all T(t)[£] with t running over R,

With these ingredients we construct the following objects: ξ>=^2(Ω, μ);
91 the image of jSf °°(Ω, μ) under π :/e JS?°°(fi, μ)ι->π(/)e 93(£) defined by π(f)Ψ(ω) =
f(ω)Ψ(ω) for every <Fe§; ψ:π(/)eSRh><0; π(/)> = /*(/)= J/(ω)dμ(ω)e(C; for
each ίeR, α(ί):π(/)e9ί κ> α(ί)[π(/)] = π(/oΓ(ί))eSR; ^={π(χξ)\ξεζ}" where χξ

denotes the indicator function of the measurable subset ξ.
The aggregate (9ί, φ, α(IR), stf} just constructed is clearly a regular generalized

K-flow. This route can be treaded in the opposite direction starting from any
generalized K-flow {9ΐ, φ, α(IR), jtf] under the necessary and sufficient condition
that j/ be abelian (recall that throughout the paper § is assumed to be separable!);
we therefore refer to these particular dynamical systems as classical K-flows.

With the classical notation in hand, we now want to comment briefly on the
reversibility question for classical X-flows of finite entropy (for the latter concept,
see [2,17] or Section IV below). For an arbitrary, but fixed ί0

e^+? and with
n running over TL, we write T0(n) for T(nt0). From the K-Άow properties of {Ω, μ,
T(IR), ζ} we conclude immediately that: (i) (£ TQ(n)\_ζ\ for every neΊL+ (ii) under
T0(Z), C generates the σ-algebra of μ-measurable subsets of Ω; (iii) {0, Ω} is the
largest σ-algebra of μ-measurable subsets of Ω, contained in all T0(n)[£] with n
running over Z. This is to say that ζ induces on the discrete-time, dynamical
system {Ω, μ, T0(Z)} the structure of a K-system. By Corollary 3 to Theorem 2
in [19] this system is reversible; i.e. there exists a partition ζ, into μ-measurable
subsets of Ω, which induces on {Ω, μ, T0(Z)} the structure of a ^-system, with
f0(n)=T0( — n) for every neZ. We next remark that the properties of the original
K'ϊlow imply that the "reversed" flow {ί2,μ, Γ(1R)}, with f(t)=T(-t) for every
ίeR, is ergodic, measurable and of finite entropy. The combination of the above
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two remarks with the results recently proven in [20] (see in particular Section IV
there; some statements to the same end-effect were announced, without proof,
in [18], see in particular Theorem 2 and Corollary to Theorem 3 there) points
to the existence of a partition ζ into μ-measurable subsets of Ω such that {Ω, μ,
T(R), ζ} becomes a X-flow; this supports thus the conjecture that every classical
K-fίow of finite entropy is reversible. The finiteness of the entropy actually is not
necessary for reversibility, as can be seen, for instance from the following example.
The question of whether there might still exist classical K-flows, with infinite
entropy, which are not reversible is however not yet settled.

An inspiring example of a classical K-flow is provided by the flow of Brownian
motion [11]. Let indeed Ω = ̂ (R)* be the dual of the Schwartz space (̂R) of
real-valued, rapidely decreasing functions on IR; Z be the σ-algebra of subsets
of Ω generated by the cylinder sets ξ ( f l 9 ...,/B;β)={ωeΩ|«ω;/1>,..., <ω;/π»
e£}, where n runs over 2£+, {/15 ...,/„} runs over the collection of n-tuples of
elements /f.e^(R), and B runs over the Borel subsets of Rn. Let further C:/e^(R)
h->exp{ — <9||/||2/4}eR be the characteristic function of Brownian motion,
where Θ is an arbitrary, but fixed, element of R, with 0^1, and ||.|| denotes the
J2f2-norm on (̂R). From Bochner-Minlos' theorem, we know that {C(/) =
Jβexp( —z'<ω;/»dμ(ω)|/e^(R)} defines a unique measure μ on (Ω, Z). We next
define, for every feR, the mapping S(ί):«^(R)->^(R) by: S(t)lfl(x) = f(x-t);
and from this the group T(R) of automorphisms of (Ω,μ) by: <T(f)[ω]; /> =
<ω;S(ί)[/]>. We finally define ^0 = {/e^(R)|supp[/]C(-oo, 0]}, and ζ the
σ-subalgebra of Z generated by the cylinder sets £(/l5 ...,/„\B) with /;e^0.
It is then easy to check that {Ω, μ, T(R), ζ} is a K-flow, and the corresponding
classical K-flow is reversible, and evidently weakly reversible. From our point of
view, one of the most stricking interests of this classical example is that so much
of its essential structure persists, mutatis mutandis, in the next examples, where 91
will be the "opposite" of an abelian von Neumann algebra, namely a factor.

2. Regular Generalized K-Flows, with 91 Type IIIλ-Factors

For every Λ,e]0,1[, we now construct a regular generalized K-flow {91, φ9 α(R),«*/}
for which 91 is a factor of type ΠIλ. To this effect, we consider the functional
φ:/e^h>exp{-6)||/||2/4}eR where #- = &%(&, dx) and θ=(l+λ)/(l-λ). We
know (see for instance Theorem III. 1.7 in [8]) that φ determines uniquely, up to
unitary equivalence: (a) a separable Hubert space <r>; (b) a mapping FF:/e^K>
W(/)eΦ(S) with W(/)W(flf)=W(/+fif)exp{Πm(/,flf)/2} and ^(A/) weakly
continuous in AeR for every/e^; (c) a vector Φe§ such that φ(f) = (Φ, W(f)Φ)
for all /e^" and Span{^(/)|/e^Γ} dense in §. Let 91 be the von Neumann
algebra on § generated by {W(f)\fe^}, and φ be the state on 91 defined by:
(φ;Ny=(Φ,NΦ) for all Ne9l. We next introduce the group α(R) of automorphisms
of 91 by defining, for each ίeIR, α(ί) as the extension to 91 of α(ί)[W(/)] - ί^(Mt/)
with MJ e ̂ (̂ ") defined by (wί/)(x) = exp (— ixt)f(x) for every / e &~. For an arbitrary,
but fixed αeR+, we single out the vector faE^:fa(x) = a1/2 [(α2 + x2)π]~1/2; we
finally define ^0=C/. SpanK/J5^0} and <tf={W(f)\fe&'0}". To check
that {91, φ, α(R), j</} is a generalized K-flow, and to obtain easily the special
properties of this aggregate, it is convenient to remark that an explicite realization



204 G. G. Emch

can be obtained as follows. Let {§F, WF, ΦF} be the (irreducible!) Fock representa-
tion of the CCR on 3~\ and introduce ξ+ = [!/(! -λ)~] 1/2, ξ_ = [/l/(l-/ί)]1/2. We
can now identify § with §F®§F, Φ with ΦF®ΦF and W(/) with J^F(£ + /)(x) WF

(£_/*) where/* is defined by /*(&)=/(&)* (/standing for the Fourier transform
o f f in f).

Upon noticing now that φ satisfies the KMS condition w.r.t. the group σ(IR)
of automorphisms of $1 defined by σ(t)[W(f)'] = W(λ + itf\ we conclude that
{$1, φ, α(R), ̂ } is a generalized K-flow, that 5ft is a factor and that Sp(Hσ) = (\nλ)Z.
One further checks easily that ^c={W(f)\fe3~Q}", that j^ is a factor, that 5ft
can be seen as j/t®j^£, and that 5ft = \/ta(i)[j^c]. From Remark (iii) under
Definition Π.l, one has thus that {5ft, φ, α(IR), stf} is not only weakly-reversible,
but also is reversible. By Remark (ii) under Theorem 11.2, we have S(5ft) =
{λn\neTL}~ , i.e. 5ft is a type IΠrfactor. Consequently φ is periodic and homogeneous
(see Corollary under Theorem 1.5) in the sense of Takesaki, so that (see Proposition
1.7 in [25]) every maximal abelian von Neumann subalgebra of the centralizer
5ft^ of 5ft (w.r.t. φ) is already maximal abelian in 5ft. Hence the generalized K-flow
just constructed is regular.

From a mathematical point of view, this example shows first of all that the
concept of generalized K-flows covers more than classical K-flows. This example
was already noticed in [9b] what is new here is that we now have noted its weak-
reversibility, proved its reversibility, determined its factor type, and shown its
regularity. This example thus establishes explicitly that the additional conditions
of weak-reversibility, reversibility and regularity can be superimposed without
contradictions to the structure of generalized K-Άows, even when 5ft is a factor
(i.e. the opposite of an abelian von Neumann algebra !).

From a physical point of view, the interest of this example is that it brings
into contact the general scheme for non-equilibrium statistical mechanics outlined
in the introduction and the theory of generalized 7£-ίlows. Specifically, let 5fts =
{WWJIzeC}" and 9 l R = { W ( f ) \ ( f , f J = Q}". Then 5ft^5fts®5ft* and φ = φs®φR

with φs (resp. φR) the restriction of φ to 5fts (resp. 5ftκ). Furthermore 5ft =
{α(£)[5fts]|ίeIR}". Finally, with δ denoting the unique faithful, normal conditional
expectation from 5ft onto 5fts with φ°$ = φ:£>a(f)£>=:γ(t)£>, ίeIR+, defines a contin-
uous semi-group y(IR+) of completely positive, faithful maps from 5fts into itself
with φ°γ(i) = φ for all £eIR+. To be completely specific, for each ίeIR+, y(ί) is
determined by:

y(t)[W(zfJ] = W(e~atzfa} exp { - Θ\z\\l - e~2at)/4} .

One thus sees that, at fixed ze(C, each one of the abelian von Neumann subalgebras
5ftz-{P1/(/lz/f l)|AeIR}//c5fts is stable under y(IR+). Transposing then y(IR+) to the
predual (91̂  of 5ftz, one finally checks that y(lR+)#, restricted to (9^)*, is the
integral solution of a diffusion equation in a harmonic well:

with \pz(.,t)e^\^dξ) defined by:
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and

(In these expressions Plank's constant h/2π and the natural temperature β=ί/kT
have been normalized to 1 for notational convenience.)

Hence {9ls, φs, y(IR+)} is a bona fide dissipative thermodynamical system the
evolution of which is governed by recognizable transport equations. (91̂ , φR}
serves as a thermal bath for this thermodynamical system, in the sense described
in the introduction.

Since all the details necessary to a complete physical interpretation of this
model can be found in [7, 9b,f], let it only be said here that {91, φ, oc(IR)} is obtained,
in the interaction picture, as the thermodynamical limit, followed by the long-time
weak-coupling limit of an infinite chain TL of one-dimensional harmonic oscillators;
9ls corresponds to a single harmonic oscillator in the chain, the remainder of
which corresponding to yiR. More specifically, one starts from a finite assembly
of harmonic oscillators interacting through a translation invariant Hamiltonian.
The first of the above-mentioned limits extrapolates from the Hamiltonian
mechanics of this finite system to that of the chain TL. The reason for this limit is
to remove to infinity the recurrences proper to finite systems. The second limit
consists in taking the combined limits A->0, τ— »oo, with λ2τ = t fixed. It is in this
rescaled time t that our evolution α(lR) is expressed. The reason for this limit is to
compress to ί = 0 the intermediary regimes developing on the microscopic time-
scale; and thus to isolate the asymptotic character of the thermodynamical
equations, in a time-scale adjusted to the coupling constant λ. Consequently, the
resulting α(IR) contains the cumulative long-time effects of the evolution, and it is
thus different from the free evolution σ(IR). Consistency requires that the same
limiting procedure be simultaneously applied to the equilibrium state φλ of the
system; this state evidently only feels the "Λ,->0" part of this limit. This explains
why φ happens indeed to be KMS with respect to the free evolution σ(IR) φ α(lR).

3. A Regular Generalized K-Flow, with 91 a Type 11ΓF actor

Let {91, φ, α(IR), j/} be any one of the reversible regular generalized K-Άow
constructed in (2) above. Since 91 is a type IΠλ factor, and since the flow is regular,
the centralizer 9lφ of 91, with respect to φ, is non-trivial. From the physical point
of view, we recall that 9lφ is the algebra of the constants of the motion under the
"free" evolution σ(IR). Let α^(IR) (resp. φ) be the restriction of α(IR) (resp. φ) to 91 φ,
and j/φ be the von Neumann algebra ^r^9lφ. From Theorem 1.8 we know that
{9lφ, φ, a^(IR), s#φ} is a regular generalized K-flow. From Theorem 1.5, we conclude
that the Hubert space [9ΐφΦ] is infinite-dimensional. From Theorem Π.2.iii, we
next conclude (via Corollary 12 in [5] or Theorems 2.4.1 or 4.2.6 in [4], or
Takesaki's analysis [25]) that 9lφ is a factor, of type llί since φ is a faithful normal
finite trace on 91̂ , and [910Φ] is infinite dimensional. We have thus indeed obtained
a regular generalized K-flow with 91 a type II1 -factor. We furthermore remark
that {9lφ, φ, α^(R), jtfφ} inherits, from our initial flow {91, φ, α(R), jtf}, the property
of being weakly reversible and thus of being reversible since 9L is a factor.
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4. Regular Generalized K- Flows, with 91 Type IIIΓFactors

For every ωeR+ irrational we construct a regular generalized K-flow with $1
a type IΠ^factor, depending on ω. To this effect, let {9ΐί? φiy a£(R), j/ f} (i=l, 2)
be two regular generalized X-fΊow of the type constructed in (2) above, with
ωt = — In/I; (z = l, 2) and ωjω2 = ω. Form now the von Neumann algebra 9^ =
9^(8)9^2 acting on the separable Hubert space ξ> = f)ι®ξ>2. Since 9^ (z=l, 2)
are factors, so is 91. Let φ be the faithful normal state φ1(S)φ2on9l corresponding
to the cyclic and separating vector Φ = Φl® Φ2> Let further α(R) be the continuous
group of automorphisms of 91 defined by a,(t) = oιί(t)®(x,2(t)ι clearly φ°a(t) = φ
for all ίeR Let finally ^/ = s/l (x) j/2. From the weak reversibility of the compo-

nent K-flows, we have: VfαW[^Ί = ̂  = VfαWD<l and Πία(ί)[«^c] = ̂  =
P|rα(ί)[^]. Notice furthermore that σ(IR), defined for each ίeR by σ(t) = σ1(i)®
σ2(t\ is the modular group of automorphisms of 91 for φ. We have thus that
{91, φ, α(R), J3/} is a weakly reversible, generalized K-flow, with 91 a factor. Clearly
Hσ = Hl®I + I®H2 so that #σ is diagonizable, with eigenvalue spectrum
{fc1ω1 + fc2ω2|fcl5 fe2eZ} dense in R since ω is taken to be irrational. Hence
Sp(#σ) = R From Theorem 11.2 S(9l) = R+, which is to say that 9? is of type IIIj.
Moreover, the diagonalizability of Hσ also implies, by Theorem 1.6. v, that the
flow is regular. We have thus indeed constructed a weakly reversible, reversible,
regular generalized K-flow where 91 is a type Π^ factor, depending on ω.

The physical interpretation of this flow follows along the same lines as in (2)
above.

5. A Singular Generalized K-Flow, with 91 a Type II I \-Factor

Let ^~=j5f2(R2, dxίdx2\ and let ^(R) (i= 1, 2) be the continuous, one-parameter
groups of unitary operators on &~ defined respectively by u 1 ( t ) f ( x ί ί x2)=f(^ι — t,
x2) and u2(i)f(xι, x2)=f(xί9 *2-t) for all /e^. One has thus limί_>00(/, Wf(ί)^) = 0
for every f,gε&~, and i= 1, 2. With h{ denoting the generator of /^(R) we clearly
have:

Let now 21 be the C*-algebra of the canonical anticommutation relations on
3~\ αf(R) be the continuous group of automorphisms of ίt defined by αf(ί)[α(/)] =
a(ui(t)f)l in tne sequel we will write σ(R) for α^R), and α(R) for α2(R). Let further
φ be the state on 21 defined by <0;/> = l and:

where A is the n xn matrix Aij = (fί, kvg^.
This is a particular case of the situation studied in [10], and we thus have:

φ is a gauge-invariant, generalized free state on 2ί 91 = πφ(2ϊ)" is a factor; σ(R)
is the modular automorphism of 91 associated to φ\ the centralizer 9lφ of 91 is
trivial; for ΐ = l , 2, every φe^I* and every A, 5e2Ϊ, lim ί_>00<ιp; [αf(ί)[^]5^]) = 0;
and φ°&(t) = φ for all ίeR.

In order to get a flow involving an algebra of observables rather than fields,
we introduce τeAut(2ί) defined by τ [«(/)] = ωα(/)5 ωe(C1? for all /e^. Let then
9I = {yle9I|τ|X] = 4}. Since τ commute with α;(R),93ΪΞ K(2I)};/ is α^KJ-stable.
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This implies:
(i) there exists a unique faithful normal conditional expectation / from 91

onto 9JI such that φ = φ°/; (ii) the restriction of α^IR) to W is again a continuous
automorphism group of this algebra. Let now 9ΐ be the restriction of $1 to § =
pJίΦ] we denote by α(IR) [resp. σ(R) and φ~] the restriction of α(IR) [resp. σ(R)
and </>] to 91. Clearly </> is KMS on 91 w.r.t σ(IR), and φ°α(f) = φ for all feIR; more-
over 91̂  = 0 implies 9lφ = C/, and thus $1 is a factor. A straightforward computa-
tion shows that 91 = <LI would imply fc1=05 so that 91 is non-trivial.

To show that {91, φ, α(IR)} supports a generalized K-Row, we still have to
identify the refining subalgebra jtf. To this effect we define &~0 as the closure
in 2Γ of ^0-{/Ey(IR2)|supp[/]ClRx(-oo,0]}; and 9Ϊ0 the C*-subalgebra
of 91 generated by M/)|/e5~0}; wejhen form W0 = πφ(&JnW = S)(πφ(&J'\W}
and we define j/ as the restriction of $R0 to §. Clearly ̂  is σ(IR)-stable, j/ £ α(f)[<£/]
for all ίeIR+, and VXOM^

We still have to prove that P)tα(ί)[j/] = O. This is done as follows. Let ̂
be the set of all regions of R2 of the form Ώ = ]Rx Ώ t with ί^ClR compact; 3F
becomes a directed set under the usual inclusion. For every Ω<E^ we now form
the CAR C*-algebra 9I(Ω) on ^2(Ω, dx1dx2)C^; and the local algebra of
observables 2I(Ω) = 2Ϊ(Ω)n2l. Clearly 91 is the C*-inductive limit of
We next consider, for every

where the union (J is taken over all Ω'Έ^ disjoint from Ω. Define now 93(Ω) =

π49I(Ω'))Ίθ, and

Clearly Qία^C^lSSSSlnSl', the second inclusion steming directly from the
local commutativity in 91. Since 91 is a factor f) f α(ί)[«^] = <CI. Hence {5l,φ,α(R), j^}
is a generalized K-flow. It is singular, since 9Ϊψ = (C/; and, see for instance Theorem
1.6, 91 is a type IΠ^factor.

We should remark that this K-flow is also weakly reversible; and thus reversible,
since 91 is a factor. Hence this example shows not only that singularity is compatible
with the structure of generalized K-flows, but also that it is compatible with the
additional conditions of weak reversibility and reversibility.

To conclude this section, we note that all the generalized K-flows we
constructed are mutually non-isomorphic.

IV. Dynamical Entropy

1. For a classical system {Ω, μ, T(1R)} the concept of dynamical entropy can be
approached in two ways which are conceptually different but nevertheless
mathematically equivalent. Whereas in both approaches the dynamical entropy
H(T) is defined as the sup of H(T, ζ) over all finite measurable partitions ζ of Ω,
the difference comes in the definition of H(T, ζ), the entropy of the partition ζ
under the flow T(IR).
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In the first approach, one defines:

H(T, 0 = \imn^H(ζ\/ T[C] V - - - V Tnlζ])/(n + 1)

where T is Γ(l); ζ\/ . . .\/ Tn[ζ] is the smallest measurable partition of Ω which
refines all Tk\_ζ\ (0^ fcrgn); and for any finite partition ζ of Ω into mutually disjoint
measurable subsets ξh H(ζ) = ̂ khlμ(ξkJ] where h is the continuous function
/z:xe[0, l]κ>-χlogxelR+.

In the second approach, one defines:

where //(CJ^) is tne conditional entropy of Ci with respect to ζ2. Since one can
prove (see for instance [2, 17]) that both definitions give the same value for
H(T, ζ\ it is only a matter of taste as to which definition one prefers, as long as
one deals with a classical dynamical system. Notice also (see for instance [17])
that one can replace in the definition of H(T) the sup over all finite measurable
partitions by the sup over all countable measurable partitions ζ with H(ζ)<co.

When it comes to generalize the concept of dynamical entropy to a quantum
dynamical system {5R, φ, α(IR)] two difficulties have to be mastered.

The first difficulty is that if ζ denotes an arbitrary (finite) partition of the
identity into mutually orthogonal projectors Fkε9l, then the measurement of ζ
can perturb the state φ, thus introducing a stochastic element which does not
pertain to the time evolution. This effect will be eliminated by restricting the
class of admissible partitions ζ, so that the non-vanishing of H(a) will indeed
reflect a stochastic behaviour in α(IR) itself.

The second difficulty is that ζ and α(ί)[£] might not commute, so that the
question comes as to what object should take the place of \/, the refinement which
appears in the above two definitions of H(T, ζ). Connes and St0rmer [6] succeeded
in extending the first definition in such a manner that it becomes useful for the
classification of Bernoulli shifts on the hyperfinite II ί -factor. In [9c] we were
concerned with extending the second definition of H(T, ζ\ which we also consider
here as giving a more intuitive feeling of what kind of stochastic behaviour is
involved when a quantum dynamical system has strictly positive entropy. We
shall compute this entropy for some generalized K-flows at the end of this section.

2. Let 91 be a von Neumann algebra acting on a separable Hubert space §;
φ be a normal state on 9ΐ; and ζ be a partition of the identity on § into mutually
orthogonal projectors Ffceϊl. Following von Neumann [16], we describe the
effect of the measurement of ζ as changing φ into the state ζ\_φ~\=^^kFkφFk,
where for every XeWl we denote by XφX the positive linear mapping XφX:
Ne9l\-*(φ',X*NXye<C. Ifφ is faithful, we write λk = (φ;Fky and φk = λk

lFkφFk>
we note then that λk>Q, Σkλk=l, and φk can be considered as either a normal
state on 91, or as a faithful normal state on the reduced von Neumann algebra
FkyiFk = yik acting on Fkξ>. The effect of the measurement of ζ thus appears as a
"channeling" operation which changes φ into the mixture ζ,\_φ~\ = ̂ kλkφk. Clearly
in the classical case, where 9ϊ is abelian, ζ[_φ~\ = φ for all ζ. In the non-commutative
case, we still have the following easy result which we record here for future reference
in the sequel.
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Lemma. Let {91, φ, α(IR)} be a dynamical system where: 91 is a von Neumann algebra
acting on a separable Hilbert space §; φ is a faithful normal state on 91; and α(IR)
is a group of automorphisms of 91 such that φ°a(t} = φ for all £eR Let further ζ
be a partition of the identity on § into mutually orthogonal projections FkE 91. Let
finally 91 φ be the von Neumann algebra of fixed points of 91 under the modular
group σ(IR) canonically associated to φ. Then the following four conditions are
equivalent: (i) ζ[_φ] = φ; (ii) ζc9lφ; (iii) α(ί) [C] C 9lφ for every ίeR; (iv) {α(ί)K]l*e

Proof. Upon feeding NFk and FkN into (i), one checks that (i) implies
<^;[]Y,FJ> = 0? i.e. Fke9lφ, which is (ii). Since φ°a(t) = φ for every ίeIR, α(lR)
commutes with σ(R) and thus 9lφ is α(IR)-stable; hence (ii) implies (iii). Clearly (iii)
and (iv) are equivalent, and (iii) implies (ii) as a particular case. Since Fke9lφ

implies <F feφF fc;]V>-<φ;F fc]V> for all JVe9l, (ii) implies (i). q.e.d.

Definition. Let {91, φ, α(lR)} be a dynamical system as in the Lemma. A partition ζ
of the identity on § into mutual orthogonal projectors Ffce9l is said to be
admissible, if it satisfies any, and thus all, of the four conditions of the lemma.
By extension, a von Neumann subalgebra 9)1 £ 91 is said to be admissible if 9K £ 9lφ.
We denote by Z the set of all admissible partitions ζ C 91, and by M the set of all
admissible von Neumann subalgebras of 91.

3. Let now 9JI be a von Neumann algebra acting on a separable Hilbert space §,
and suppose further that 9Ά admits a normalized, faithful normal trace φ. Let ζ
be a partition of the identity on § into mutually orthogonal projectors Fke93l.
To define Hφ(ζ), the entropy of ζ with respect to φ, we can ignore 9JΪ and simply
restrict our attention to the abelian von Neumann algebra ζ" generated by the
Ffc's; we are thus in a classical situation and can therefore appeal to Khinchin's
theorem [13] to conclude that the only reasonable definition of Hφ(ζ) is
Σfc^K^'^fc)] (compare with I V.I above).

Suppose now for an instant that 9JI is moreover finite-dimensional. For any
two partitions ζ1 and (2 of the identity into minimal projectors of 9JI, there exists
U unitary in 3DΪ such that Δdυ[ζL"] = ζ2' Since moreover φ°Adu = φ, we have
Hφ(ζί) = Hφ(ζ2). We can therefore define the entropy of 9JΪ w.r.t. φ as Hφ(9K) = Hφ(ζ)
where ζ is any partition of the identity into minimal projectors in SOΪ. Furthermore,
since every partition ζ of the identity into mutually orthogonal projectors in 9JΪ
can be refined into a partition ζm of the identity into minimal projectors in 9K,
one checks easily that Hφ(9n) = Hφ(ζ) + ̂ kλkHφk(9)lk) with λk,φk and 9Jlk defined
from ζ = {Fk} as in IV.2 above. Hence Xfc^fc^φk(^/c) appears indeed as the residual
entropy of 9JI w.r.t. φ, after the measurement of £ has been performed, i.e. it is the
entropy of 9JΪ conditioned by ζ w.r.t. φ. This remark might serve as a further
motivation for the following definition.

Definition. Let φ be a normalized, faithful normal trace on a finite von Neumann
algebra 9JΪ acting on a separable Hilbert space §. Let ζl = {Fk} be a partition of
the identity on § into mutually orthogonal projectors Fke9Jl\ and let ζ={Gj}
be similarly defined. We call Hφ(ζ\ζ1) = ̂ kλ1flφk(ζ) the entropy of ζ conditioned
by £ι with respect to φ.



210 G. G. Emch

Remarks, (i) This definition does evidently not require that £ and Ci commute.
(ii) Upon noticing that <f(.|£J:MeSIRi^£k<<£k; M>FkeCϊ is the unique faithful
normal conditional expectation from 9Jί onto Cϊ with φ°$(.\ζ1) = φ, we have:

this expression coincides with the conditional entropy Hφ(ζ\ζ'[) introduced in
[9c]. (iii) In particular, Hφ(ζ\ζ1) reduces to the classical expression when ζ and ζ1

do commute, (iv) In [6] a conditional entropy //^(ϊlXJ is defined for •£ and X1

finite-dimensional subalgebras of 9Jί, namely:

where S is the set of all finite families x={xk} of positive elements of SOΐ with
Σkxk=I'> one verifies that one has, in case ζ and ζ1 are finite partitions, Hφ(ζ\ζl) =

Lemma. Let φ be a normalized, faithful normal trace on a finite von Neumann
algebra SOΐ acting on a separable Hubert space §. Let ζ be a partition of the identity
on ξ> into mutually orthogonal projectors jFfceSPΐ; and let £0, Ci, and ζ2 be similarly
defined. Then: (i) Hφ(ζ\ζί)^0; (ii) a necessary and sufficient condition for #^(C|Ci)
to vanish is that C £ C ι > (iii) (SCo implies #φ(C|Cι)^#φ(ColCι); (iv) C 2 £Cι implies

Proof, (i) follows directly from the definition. To prove the sufficiency in (ii),
notice that C£Cι means C"£Cί which implies, for every Fheζ, that S'(Fk\ζl) = Fk

and thus h[(£(Fk\ζJ] = Q; by Rem (ii) above, this indeed implies Hφ(ζ\ζJ = Q.
Conversely 0 = /fφ(£|£1) = £kJ<ψ;Fk>ft[<0k;G j>] implies, since φ is faithful,
that ft[<0k; GJ)] = 0 for every /c, j; consequently <φk; G^> is either 0 or 1. Since φk

is normal and Σfij = I> f°r eacn ^ there exists exactly one j, say j(fc), such that
<φk;G j> = l. This implies <φ; Fk[/-Gj(fc)]Ffc> = 0; since φ is faithful, we thus
have Fk[/ — GJ.(k)]Ffc=0, i.e. FhζGj(k}. Since ζ and (i are partitions of the identity,
this implies indeed (£Cι ? thus proving (ii). To prove (iii), it is sufficient to prove
that, for every normal state ψ on 9Jί, C£Co implies Hψ(ζ)^Hψ(ζ0). Since however
C £ Co and Co abelian, we can restrict ψ to Co and be in a classical situation where
this result is well-known (see for instance [17]) to follow directly from the concavity
of ft, thus establishing (iii). Finally (iv) follows from the classical Jensen's inequality
(see for instance [17]); by Rem (ii) above we have indeed:

This concludes the proof of the lemma.

Remark. The four conclusions of this lemma confirm, if needed, the interpretation
of Hφ(ζ\ζ1) as a conditional entropy which indeed quantifies the information
gained by measuring ζ once ζ1 has been measured.
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4. Keeping in mind that measurements in quantum mechanics are classical
operations, and thus are performed via partitions, we propose the following
definition.

Definition. Let φ be a normalized, faithful normal trace on a finite von Neumann
algebra SOϊ acting on a separable Hubert space §; 91 be a von Neumann subalgebra
of 5DΪ; and ζ be a partition of the identity on § into mutually orthogonal projectors
in 9JI. We define the entropy of ζ conditioned by 2ί with respect to φ as:

Remarks, (i) The consistency relation Hφ(ζ\ζί) = Hφ(ζ\ζΊ) follows from Lemma
IV.S.iii. (ii) If 9ί is abelian and {CJαeD} is an increasing family of finite partitions
of the identity in 2ί, with {£α|αeD}" = 2l, then a simple increasing martingale
argument shows that \imaHφ(ζ\ζΛ) = Σk(φ;h[_$(Fk\$l)']y. This establishes in
particular the consistency of the present approach with that followed in [9c].
(iii) The operator concavity and continuity of h lead easily to an extension of
Jensen's inequality to the non-commutative case, namely (h°$ — S°h) is a positive
map. This allows to generalize the argument of Lemma IV.3 to give, for a general
von Neumann subalgebra 91 of 501: Hφ(C|9I)^X,<φ;/ι[^(Ffc|9I)]>. (iv) When 91
is a von Neumann algebra acting in a separable Hubert space and admitting a
faithful normal state φ, the above definition extends Hφ from Z x Z to Z x M
with Z and M defined in IV.2. The mapping Hφ:(ζ, 9ί)eZ xMh>#0(C|2I)eIR+

so defined satisfies all the conclusions of Lemma IV.3 where we now replace d
and (2 by arbitrary (i.e. not necessarily abelian!) von Neumann subalgebras 21 1

and 2I2 in M, with C0 and ζ now running over Z.

5. Definition. Let 91 be a von Neumann algebra acting in a separable Hubert
space §; φ be a faithful normal state on 91; α(lR) be a continuous group of auto-
morphisms of yi with φ°a,(t) = φ for all ίeIR; C be a partition of the identity on §
into mutually orthogonal projectors Fk in 91; 9IW(0 be the von Neumann algebra
generated by {α(fe)[C]|keZ, — n^/c<0}. If C is admissible in the sense of Definition
IV.2, we now define the entropy of ζ under α(lR) as :

We further define the entropy of the dynamical system {91, φ, α(IR)} as:

where the sup is taken over all admissible partitions ζ with Hφ(ζ)< oo.

Remarks, (i) By Lemma IV.2, ζ admissible implies that ζ and 9lπ(0 are in 9lφ, the
centralizer of 9ΐ with respect to φ. We can therefore restrict our attention to
y)l = ytφ and φ\9lφ, and thus use the results of IV.3 and 4 above, (ii) In particular
H φ(C|2ϊ«(0) is a positive, monotonically non-increasing function of neZ+, so that
the limit if φ(C, α) indeed exists, (iii) The value + oo is, in principle, allowed by the
definition of JF/^(α); it actually occurs, as we shall see in subsection 7 below, in
quite a number of non-isomorphic examples, (iv) Because of Remark (iii) to
Definition IV. 3, the entropy Hφ(aΐ) reduces to the classical Kolmogorov dynamical
entropy when 91 is abelian. (v) From a rigidly operational point of view, one might



212 G. G. Emch

object that 9IW(0 may perhaps contain partitions which are out of reach of labora-
tory procedure involving only a finite number of physically implementable steps;
in this spirit, one should then not be allowed to take, in the definition of
Hφ(ζ\Mn(ζ)), the "Inf over all partitions ζί in 2IΠ(£). We should nevertheless
remark that the introduction of such restrictions would only make Hφ(a) larger.
This would thus only soften the standards by which we decide that a flow is
stochastic. In particular, the validity of our next theorem, which is the principal
result of this section, would not be affected, nor would the discussion presented
in the subsequent, and last, paragraph of this paper.

6. Theorem. The entropy of every non-singular generalized K-flow {5R, φ, α(IR), j/}
is strictly positive.

Proof. Let yiφ be the centralizer of 91 with respect to φ; P be any projector in the
von Neumann algebra s$φ = yiφr\&tf\ and ζ={P, I — P} be the corresponding
partition of the identity. Clearly ζ is admissible. Since ζ is finite, Hφ(ζ)<oo. Hence
#φ(α) = 0 implies in particular limπ_>00ίίφ(C|SIn(0) = 0. Since ^(.|STΠ(0) is an
increasing martingale, with VA(C) = 2I= {φ)[C]|neZ, rc<0}", J?φ(£|9l) = 0.
Consequently, by Remark IVAiv, £c2I, and thus £c{a(w)[X0]|neZ, /7<0}".
However by Theorem 1.8 j/φ£α(ί)[X0], i.e. α(-ί)[^]gj/0 for every ίe!R+.
Hence £Cα(- l)[j</φ], and thus Peα(— 1)[««/^]. Since P was chosen arbitrarily
in j/φ, this means £/φQa(— l)|Wφ]. By Theorem 1.8 again this implies «s/φ =
α(-l)0/φ] and thus ̂  = α(ί) [XJ for all ίeR On the other hand, still by
Theorem 1.8, we have f}ta(ή[<$/φ~] = <£I and \/t<x,(t)[jtfφ] = 3lφ, which is to say
now that 9lφ = <C/, i.e. {91, 0, α(IR), j^} is singular. q.e.d.

7. We now show that the entropy of all the generalized K-flows constructed in
Section III can be explicitely computed.

We first examine Example III.2.
For any /ωe^", let 9l(ω) be the von Neumann subalgebra of 91 generated by

{W(zfω)\ze<C}ι let further 5Rφ(ω) - SR(ω)n9lφ. The latter is the algebra of constants
of the motion for a single harmonic oscillator; it is therefore abelian, with spectrum
isomorphic to Z+. Furthermore φ\yiφ(ω) induces on Z+ the canonical equilibrium
measure v given by vω(n) = λ~n(ί—λ).

For any (not necessarily complete) orthonormal system έF={fω\ω<=Ω}
in "̂, we can identify $ftψ(^) = (^ωeβ9^(ω) as a von Neumann subalgebra of
^Φ ^Φ(̂ ) is again abelian, with spectrum Z+. The product state φ\9lφ(^) =
®ωeΩΦω> witn Φω = Φ\^φ(^\ induces on Z+ the product measure v = (χ)ωeβvω.

For any finite positive integer N, we can find {fk\l^k^N} with

We now take for ί2 the set {ω = (fc, n) | l^fe^JV, πeZ}; and for ̂  the system
{fω=f(k,n)==unfk\ωeΩ}, with {/ f c | l^/c^JV} chosen as just indicated above;
and un = ut=n where {wJίelR} is the unitary group on 2Γ which induces on 91 our
automorphism group α(R). Notice in particular that we have indeed (/ω,/ω') =

^ωω'

This choice of ̂  has the following remarkable properties, (i) The spectrum X
of the abelian von Neumann algebra ytφ(^) is Z+ =(^ΐ)z, i.e. it is the countable
product of copies of the countable space Y = Z^.(ίϊ) φ induces on Y a probability
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measure μ0 with mass py at y = (nί9..., nN)e Y given by Py = μ0(nl9 ...,nN) =
Y\k=ιv(nj) with v(m) = λ~m(l — λ\ m = nk> l^k^N. The entropy of this distribu-
tion is:

with:

(iii) φ induces on X a probability measure μ = (^)nezμn with μn = μQ on 7. (iv)
ΪIΦC^") is α(Z)-stable. (v) α(Z) induces on X a group Γ(Z) of μ-measurable, μ-
preserving transformations with T(n)=Tn given by:

These properties add up to the assertion that {X, μ, T(%)} is a generalized classical
Bernoulli shift (see for instance p. 110 in [21]). Its entropy Hμ(T) is thus equal to
S(y,μ0)5 which is finite. Therefore [23], it has a finite generator.

Consequently, for each finite positive integer N there is a partition ζ in our
original K-flow (51, φ, α(IR), &$} which has finite entropy and such that Hφ(ζ9 α) =
NSQ(λ). The entropy of the generalized K-flow {9ΐ, φ, a(JR),,£/} constructed in
Example III. 2 is therefore infinite.

This proves as well that the generalized K-flow constructed in Example III.3
has infinite entropy, since it is the flow induced by {9ί, φ, α(IR), ̂ /} on its centralizer
9^ where the above argument is actually carried out.

We might also remark that this argument also shows that a dynamical entropy
defined along the line followed by Connes and St0rmer [6] would also take
infinite value on this flow.

Remark (iii) to Scholium I.8.B shows that a generalized K-flow of the type
constructed in Example III.2 is always contained as a subflow of any of the
generalized K-flows constructed in Example III.4. Consequently the latter have
also infinite entropy.

Actually an argument quite similar to that used for the analysis of Example
III.2 can be used for the classical case considered in Example III.l. Consequently
we have back the classical result that the flow of Brownian motion on IR has
infinite entropy.

We should perhaps emphasize that in spite of the common Bernoulli structure
emerging in all the generalized K-flows of Examples III.l to III.4, these flows,
although they all have infinite entropy are mutually non-isomorphic.

Finally, the flow of Example III.5 is singular, and hence has no non-trivial
admissible partition. Its entropy thus vanishes trivially. This however should be
interpreted carefully. Whereas Theorem III.6 shows in effect that one can separate,
for every non-singular generalized K-flow, the stochastic elements in the time
evolution α(IR) from those stochastic elements which might be introduced by the
quantum measurement process, such a clean separation is not possible in the
case of singular generalized K-flow. Whatever stochastic elements the "true"
evolution α(IR) of a singular generalized K-flow might have, these can simply
not be detected from the constants of motion under the "free" evolution σ(IR)
since these singular flows do not admit any non-trivial such constant.
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The point of this section was precisely to show how this separation can be
done for every non-singular generalized K-flow; this applies in particular to
every regular generalized K-flow. We recall that classical K-flows are regular in
the sense of our Definition 1.2, and that a regular, non-classical, generalized
K-fiow can canonically be associated to a quantum transport equation such as
that governing the diffusion of a quantum particle in a harmonic well.
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Note Added in Proof. The fact that Rudolph's work [20] supports the conjecture that (finite-entropy)
classical X-flows are reversible, also follows from recent work by B. M. Gurevich (private communica-
tion, June 1976).






