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Abstract. In this paper we examine the Einstein equations with a perfect
fluid source under the assumptions of (i) axial symmetry and time-
independence, (ii) uniform rotation of the fluid about the symmetry axis, and
(iii) separability of the Hamilton-Jacobi equation for the null geodesies of the
space. These assumptions are made in an attempt to generalize the results of a
similar investigation by Carter for the source-free case.
We first extend Carter's results by showing that his additional assumption
of separability of the wave equation is unnecessary, it being a consequence of
the field equations.

When the density of the fluid is non-zero, we are led to a particular solution
discovered by Wahlquist, or to more symmetrical interior solutions with
spherical equipressure surfaces. Except for the case of no rotation, these
solutions cannot be matched to asymptotically flat exteriors.

1. Introduction

In a 1968 paper [1], Carter examined spaces with a two-parameter Abelian
isometry group in which the Hamilton-Jacobi equation for the geodesies separates.
While the first assumption (two-parameter Abelian isometry group) is readily
interpreted physically as restricting the study to stationary and axisymmetric
spacetimes, the second assumption (H —J separability) has no simple physical
justification. It is made, as Carter admits, in order to obtain sufficiently strong
restrictions to make a detailed study possible.

In the same spirit, we use, in this paper, a weaker form of Carter's separability
ansatz as a simplifying tool in the study of rotating fluid masses. We find that the
only solution having an isometry group with fewer than 3 parameters is one
discovered by Wahlquist starting from different assumptions [2]. We also obtain
other solutions having spherical symmetry. None of these solutions, however,
can represent a finite, isolated object in an asymptotically flat space, except in the
limit of no rotation.
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Another result of this paper is a demonstration of the fact that the separability
of the wave equation, which Carter assumes explicitly, follows from his other
assumptions and the field equations.

2. The Symmetry and Separability Conditions

In this section we follow closely Carter's paper [1] in deducing the form of the
metric from the symmetry and separability assumptions.

Our symmetry assumptions of time independence, axial symmetry and
uniform rotation are equivalent to Carter's assumptions I (invariance under a
two-parameter Abelian isometry group) and II (invertibility of the symmetry
group). In reference [3] it is shown that the constancy of the angular velocity of
the fluid guarantees II. These symmetry assumptions, though materially simplify-
ing the problem, do not restrict it to unrealistic situations: the stationary state
of a rotating object must be axisymmetric, and equilibrium against transfer of
angular momentum requires that the angular velocity of rotation be constant
throughout the star [4].

The essential restriction comes from the requirement that the Hamilton-
Jacobi equation for the null geodesies of the space be soluble by separation of
variables in such a way as to determine a canonical orthonormal frame1. To the
extent that we demand separability for the null geodesies only, our separability
requirement is weaker than the corresponding one of Carter who demands
separability for all geodesies (his condition IV). The effect on the metric is to
allow an extra arbitrary function as a conformal factor. We can thus use Carter's
form of the metric ([1], Eq. (77)) and write

2 , \Λ{Qdt-Pdφf-M{Bdt-Adφ)2

ds2 =
R2\

(1)
W " \Λ ' M

where t and φ are the two ignorable coordinates corresponding to the two sym-
metries (time translation and rotation about the axis), λ and μ are the remaining
two coordinates in terms of which the separation is possible, A, B, A are functions
of A only, P, Q, M are functions of μ only, W = AQ — BP, and R arbitrary. Carter's
stronger separability condition is satisfied if the conformal factor R is given by
R2 = W/U, where U is the sum of a function of λ and a function of μ.

In writing (1) we have abandoned Carter's condensed notation with indices
preferring to use a different letter for each function entering the metric. The
following table translates the notation of this paper to that of Carter's paper [1].

This paper

Paper [1]

Coordinates

t φ

φ~2 φ2

λ μ

Metric functions

A M A

A γ A _ i Ziγ

B

Z " 1

δ

z~_\

P w

z

1 The canonical separation frame is determined by the requirement that, in the H-J equation, "the
terms containing derivatives with respect to the ignorable coordinates separate as the sum of two
squares each depending on only one of the non-ignorable coordinates" ([1], Condition IV).
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The coordinates t, φ, λ, μ are determined by the symmetry and separability
conditions up to transformations of the form φ = φ' + Ωt with Ω constant, λ=f(λ'\
μ = g(μ'). These changes leave the form of the metric (1) unaffected. The freedom
in the φ coordinate can be removed by requiring that it be a comoving coordinate,
i.e., that the fluid 4-velocity have components uφ = uλ = uμ = 0, w i :=(#oo)~1/2; while
the freedom in the λ and μ coordinates can be used to make the functions Q and B
constants2. Thus, with no coordinate freedom left, the metric becomes

, , 1 \A{adt-Pdφ)2-M{bdt-Adφ)2 ίdλ2 dμ2\)
ds = F { τi^bp {aA-bP)U+w)\ (2)

where α, b are constants; A, A functions of λ; P, M functions of μ; and R arbitrary.
The constants a and b, if different from zero, can be scaled to 1. In the particular
case when 6 = 0, the canonical separation frame coincides with the comoving
frame. As B — 0 in this case, we still have the coordinate freedom λ=f(λ'). (a = 0
is equivalent to b = 0 up to an interchange of λ and μ.)

3. The Schrόdinger Separability Condition

We use the metric of Equation (1) and define 1-forms ωι by

(3)

so that the metric becomes

ds2 = (ω0)2-(ω1)2-(ω2)2-(ω3)2. (4)

We compute the Ricci tensor in this orthonormal frame, and, after some algebraic
manipulation, find that the derivatives of A, B, P, Q in the R 2 3 = 0 equation can
be combined into derivatives of W = AQ — BP. Thus the field equation R23

:=lQ
reads simply

where the subscripts denote partial derivatives with respect to the indicated
variable. Now, Carter's stronger separability condition is equivalent to R2 = W/U
with Uλμ = 0. Making this substitution into (5), we find that it can be written as

gS =0. (5a)
U Jλμ

This is precisely the additional condition that must be satisfied to ensure the
separability of the wave equation (compare [1], Eq. (69); Carter's W equals

2 Define primed functions by R2 =(QB/ab)R'\ Λ = (B2/b2)Λf, M = (Q2/a2)Mf, A = (B/b)A\ P = (Q/a)F
and primed variables by dλ' =(b/B)dλ, dμ! = (a/Q)dμ; upon substitution in (1) the functions Q, B cancel
and we obtain (2) with primes.
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our W2); it is thus not a separate assumption, but a consequence of the field
equations. When the coordinate choice Q = B=1 is made, the only solution of
(5a) is W=U.

4.ΎheCaseQ=B=l

We compute the field equations Gi

j = &π[{ρ + p)uiuj — pδlj'] where G) is the Einstein
tensor, ρ the density and p the pressure of the fluid, in the orthonormal frame (3)
with Q = B=1 and R arbitrary (the case B = 0 is discussed in the next section).
We find that the following linear combinations of the field equations lead to the
simplest equivalent set of equations:

^^j0, (I)

(Ill)3

(IV)

(V)

= —16πp}

μ) (VI)
W 'ΛR2

 λχ \R
?2

μμ w
In writing these equations we have introduced a new function, Θ, defined by
Θ = (Λ — M)/(A — P). We observe that, except for (VI), the single-variable functions
A, P, A, M enter in these equations in the combinations W and Θ only. In view
of their definitions in terms of A, P, A, M, the functions W and Θ satisfy, in addition
to Equations (I-V), the equations Wλμ = 0 and (ΘW)λμ = 0.

In writing (V) we have made use of (I) and (III) to eliminate Rλλ and Rμμ from
Gl-Gl

The integrability conditions of these equations are the equations of motion
Tab.b = 0, which are well known to lead, in the case of uniform rotation in comoving
coordinates, to [5, 6]

(gf0o)L α : ^ o r J" (6)

Equation (6), together with an equation of state of the form ρ = ρ(p) imply that
both p and ρ are functions of goo = Θ/R2 in our case.

3 The condition that the canonical separation frame is also the canonical frame of the Weyl tensor
in the Petrov-Pirani classification ([1], Eq. (137)) turns out to be that the right-hand-side of this equa-
tion vanish; in that case the Weyl tensor is type D. The solutions to be obtained satisfy this additional
requirement and are thus type D.
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In terms of the complex variable z = λ + iμ, z = λ — ίμ the field Equations
(I)-(V) become:

(III) 2-£ = (logW)2ί, (8)

(IV) -U{Q+p) = Θ~ -f + k ϊ . (9)
Wλ\R2

(V) ( ^ | + ί ^ | = o , do)

while the equations H /i / 1=0 and (ΘW) λ μ =0 become

Wzt=Wa, (11)

ΘZ 2 + 2 - ^ 6 > z = Θz-ϊ + 2 ^ < 9 , . (12)

In this form, the integration of the field equations is straightforward. Equation
(7) implies that RJW is a function of z only which, for later convenience, we
write as

w=¥ΰ where F ( z ) = έ F ( z )

and F is a function of z only. This can be written, using the fact that W and R are
real, as

1 dR W 1 dR

F{z) dz F\z)F\ϊ)

which implies that
(i) R is a function of (F + JF) and

(ii) W = R(F + F)F'(z)F'{z)9 (14)

Λ' denoting the derivative of R with respect to its argument. To determine R(F + F)
we turn to Equation (8) which becomes

2 * " * " ίR"\2

Two integrations of (15) give R' = d — eR3, where d and e are constants. Finally,
Equation (11), using (14) demands that e = 0 and that F(z) satisfies F'"= —g2F'
where g2 is a real constant. Absorbing d into F, we see that Equations (7), (8),
and (11) are satisfied if

W=F\z)Fr{z), F" + g2F = c (16)

where g2 is a real and c a complex constant.
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Using these results in Equation (9) we find

8π(ρ + p) = 2ΘR(c + c). (17)

Since we know, from the integrability condition, Equation (6), that ρ+p is a
function of Θ/R2, Equation (17) can only hold if one of the following is true:

(a) Θ = constant;
(b) R = constant;
(c) Θ = Θ(R);
(d) c + c = 0, which restricts the problem to the sourceless case.
We now proceed to examine each case separately.

Case fa): Θ = k = constant. This is the simplest case, because now Equations (10)
and (12) are trivially satisfied. However, the restriction Θ — k implies A = kA + m
and M = kP + m, where m is another constant, which makes gOφ = (MA — ΛP)/
WR2 = m/R2. Since gOφ must vanish on the axis we must take m — 0. Thus gOφ = 0
everywhere and we have no rotation. Equations (17) and (VI) now determine the
equation of state to be ρ = constant. Finally, the requirement that the equipressure
surfaces R = constant be smooth at the axis requires that the constant g2 entering
in Equation (16) must vanish. Our metric then becomes conformally flat and the
conformal factor R a function of the radial coordinate only, so that this case
leads to the conformally flat form of Schwarzschild's interior solution.

Case (b): R = ί. In this case (7) is an identity and (8) and (11) demand that

W=G(z)G(z), G" + g2G = 0 (18)

where G here is equivalent to F in Equation (16). The general solution of (10) is
Θ = U(z)+U(z) and (12) determines the arbitrary function U(z) in terms of G(z):

U(z) = oc + β~+yz^ί (19)

where α and β are complex and y a real constant. Choosing G(z) = (sin gz)/g for
the solution of (18) which remains finite as g-+0, and redefining the constants α,
j8, y we find the single-variable functions which combine to give W and Θ.

+ C ι , (20)

\ 9 I

= c2+hl—— -m —-rλsmlgλ, (22)
9 I 9

Ί IsmhquS sinh2gμ . i ^ / Λ^λ

M=c2-h[ — +q — + rμsmh2gμ9 (23)
\ 9 I 9

where h, m, q, r are new real constants equivalent to α + ά, β±β, 7, and c1 and c2

are separation constants. These constants are restricted by requirements of
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proper behavior on the axis where M = P = 0. Equations (9) and (VI) now determine
the equation of state as ρ + 3p = 2g2r = constant, suggesting that this is Wahlquisfs
solution [2]. Indeed, the change of coordinates ζ = (sin gλ)/g9 ξ = (sinhgμ)/g shows
the equivalence of the two solutions. (See Ref. [2] for more details on this solution.)

Case (c): Θ=Θ(R). The assumption Θ = Θ(R), together with Equation (16), when
substituted in Equations (10) and (12) leads to the system

RΘ" = 2Θ', (24)

Θ"F'2 + 3©T" = Θ"F'2 + 3Θ'F", (25)

F" + g2F = c. (26)

Remembering that R = F-\-F and F a function of z only, we find that the only
solutions of these equations are (i) Θ'=0, or (ii) Ff = + F = constant. Solution (i)
is case (a) while solution (ii) implies g2 = c = 0, which is case (d). Thus this case
leads to no new solutions.

Case (d): c + c = 0. (Case without matter.) To obtain solutions different from
Carter's [1] we must demand that # z φ 0 . A lengthy calculation shows that the
most general solution of our equations in this case is

W=F'F\ Θ = ib(F - F) + b(a2 - 1), (27)

where a and b are real constants. The functions A, P, A, M, and R are given by

A = λ2 + 1 , Λ = b(λ2 + l)(α2 - λ2), (28)

P=l-μ2, M = b(l-μ2)(a2 + μ2), (29)

R=2(a-λμ). (30)

Computing the metric, we find that gOφ= —gφφ/(a2 + l), so that again we have
no rotation (φ-+φ' + t/(a2 +1) makes gOφ = 0). The coordinate ranges are determin-
ed by the requirement that A and M be positive, |μ|< 1, |Λ|<|α|. An examination
of the Riemann tensor components reveals that the only singularities of the space
occur when W = λ2 +μ2 = 0. The zeroes of A, M, and R are coordinate singularities.
In fact, all components of the Riemann tensor vanish when K = 0.

For completeness, we consider in this section the case B = 0, Q = l [see Eq. (1)],
in which the canonical separation frame coincides with the comoving frame. As
mentioned earlier, we still have the freedom to redefine the coordinate λ9 and we
now make use of this freedom to set A = ί.

The G\ — G3, G3, G°u and G\ — G\ equations determine the μ dependence of
the unknowns as

(i) R = R(λ) (independent of μ), (31)
(ii) P=k(l±μ\k = constant, (32)

(iii) M = 1(1 - μ2), / = constant. (33)
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In writing (33) we have changed the origin and scale of μ to make M vanish
at μ = ± 1 and (32) incorporates the requirement that P vanish4 with M (on the
axis).

The remaining equations determine R(λ) and A(λ) when the equation of state
is given; they are equivalent to the two propagation equations

A" R'A' A'2-\-k2

-r-2—-+ 2 +l-A2f'(x), (35)
A RA A

subject to the initial condition

In these equations χ = AR2 = (g00)~1 and/(x) is an arbitrary function, equivalent
to the equation of state and determined by it through the equations

(37)

x/'(x) = 8π(ρ+p). (38)

These equations make the integrability condition [Eq. (6)] an identity. It can be
verified that the initial condition, Equation (36), continues to hold true if it is
true initially and R and A satisfy Equations (34) and (35).

The metric is

R 2 { A I M

so that the comoving metric on the equipressure surfaces (inconstant) is

ds2 = const \-j- + Mdφ2\ = const ί — + / sin2 Sdφ2), (40)

where we put μ — cosθ. The equipressure surfaces will be closed and smooth on
the axis (μ= ±1) only when /= 1, in which case they will be spheres, so that (39)
represents an interior solution with the symmetries of NUT space. However, it
cannot be matched to exterior NUT, without restricting both metrics to their
static cases. This result is not unexpected, for, otherwise, we would have, in an
asymptotically flat empty space, a rotating perfect fluid mass with spherical
rather than oblate shape, contrary to what we know from Newtonian theory.

4 It will be observed that, whichever sign is chosen in Equation (32), P vanishes at only one of the
two roots of M. We can make P vanish at both roots if we choose P = /c(l — μ) for 0 ̂  μ ̂  1 and P = /c(l +μ)
for — l^gμ^O; P is then continuous but F changes sign at μ = 0. However, as the Einstein tensor
contains P'2 only, the discontinuity in P does not introduce any new distributions of matter.
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6. Summary

Starting from a stationary and axisymmetric metric and imposing the requirement
that the Hamilton-Jacobi equation for the null geodesies be soluble by separation
of variables, we obtained, apart from static or vacuum solutions, two types of
solutions representing rotating perfect fluid masses: (a) a general type, admitting
an arbitrary equation of state, in which a canonically defined separation frame
coincides with the comoving frame; and (b) a particular type, with equation of
state ρ + 3p = constant, with distinct separation and comoving frames. The
equipressure surfaces of (a) are spherical and of (b) prolate [2], suggesting that
neither can be matched to empty and asymptotically flat exterior solutions.
Except for the conformally flat interior Schwarzschild, the solutions obtained are
Petrov type D.
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