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Abstract. The interface profile of the two-dimensional Ising ferromagnet is
obtained for all temperatures in the thermodynamic limit. The width of the
interface depends on its length as (length)1/2.

1. Introduction

Recently considerable effort has been devoted to the unravelling of the
phenomenon of phase separation in the Ising ferromagnet or in the equivalent
lattice gas [1,2, 3]. This paper reports on exact calculation of the surface tension
and interface profile for the two dimensional case with nearest neighbour interac-
tions and zero "gravitational" field [0]. First we shall review briefly exact results
already established and then we shall relate our computation to them.

2. Notation and Results

Let A be a crystal lattice in d dimensions with unit edges; it may therefore be
regarded as a subset of Zd. At each vertex i let there be a spin σi = ± 1. The energy
of a spin configuration {σ} is given by:

EΛ{σ}=-J Σ <rPj-#Λ{σ} (2-1)
<iJ}CΛ

with associated probability measure

pylϊΛ({σ}) = Z - 1 exp -βEA({σ}). (2.2)

The sum in (2.1) is over nearest neighbour pairs on A and &A{{σ}) is a boundary
term [1], examples of which will be encountered later.

Let σA be defined for AcΊLd by

σA=I\σi (2.3)
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where i is a vertex of Zd, and let its expectation with respect to (2.2) be denoted
(σA}Λ><%Λ. Then the state is the collection of all limits:

<PA>m= l i m <VA>A&A (2.4)

where the limit is of van Hove type. No magnetic field term is included in (2.1)
since only then is there a possible lack of uniqueness of the state [6] this possibility
is indeed realized. For instance, the spontaneous magnetization m* is given by:

m* = <σ ί )>+ = -<σ p>_ (2.5)

where the boundary condition means that σ~ +l\fiedΛ, MA. It is known [4]
that for d = 29 m* = (l-(sinh2X)- 4) 1 / 8

5 so that m*>0VK>i^ c where K = βJ and
sinh2i£c = l; β~ι may be defined as the critical temperature for the model.

The states (σA} + have a special significance, as shown in a recent distillation
of the quintescence of duality by Messager and Miracle-Sole [5]. Provided one
considers only translationally invariant states, then

<*A>a = K*A> + +(l-XK*A>r (2.6)
where O^A^l, and λ is determined by J*. Thus (σA}+ may be considered as
describing pure phases [6].

It is now clear how to generate an interface between phases: on a (2M+1) x
(2iV-f 1) rectangular lattice with vertex coordinates (ί,j) — M^zrgM, —N^j^N,
consider the boundary condition BA~ specified by σί7 = + l (resp. —1) if ί^O
(resp. i<0) (Uj)e dΛ. The interface profile is defined by

and the surface tension is

τ= l i m WzT l i m 1O%ZΛΊZΪ (2.8)
iV^oo Z i V "Γ -L M->oo

where

z r = ΣexP-^Λ-(W) (2.9)
{<y)

and ZA is defined analogously with boundary condition 31A :σ f= +1 ViedΛ.
The surface tension τ has already been obtained using the theory of the transfer

matrix of a pure phase [7].
Its value is:

K>KC

0 K^K

This is precisely Onsager's result calculated according to a quite different defini-
tion [8]. Yet others, due to Camp and Fisher [2], to Fisher and Ferdinand [9]
and to Gallavotti and Martin-Lof [10, 3,21] give the same result and the agreement
is no coincidence; but we shall not pursue it further here. Rather, we return to
(2.7), the interface profile, and a related problem.

Contours on the dual lattice Λ* may be constructed by drawing line segments
between antiparallel spin pairs on A; this is described carefully in Ref. [10]. The
only contour configurations which contribute are those for which 0, 2, or 4 edges
meet at any vertex inside A*. There is a long contour λ which intersects dΛ at
opposite sides. Gallavotti [11] proved an interesting theorem about λ:
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Theorem 1 (Gallavotti). Let Q be any finite region in Z2. If β is large enough there
exists a function D(N) such that

limP({d(λ,Q)>D(N)})=l (2.11)
iV->-oo

where P(X) is the probability of event X with respect to the measure (2.2) with the
boundary condition 3d\~ above, as M-»oo. The "best" choice of the function D
isD(N)~Nlβ.

Because the long contour λ is highly corrugated there is no immediate con-
nection between Theorem 1 and the profile (2.7). Indeed, the profile might still be
sharp, and furthermore, it might sharpen on raising the temperature because the
degree of corrugated might well increase. But the following theorem, which is the
main result of this paper, shows that this is not in fact the case.

Theorem 2. Let p = ocNδ, O^δ and let T>0: then

(2.12)

lim (σaNl/2)N = m* sgnα Φ(b\oc\) (2.13)
N->oo

where

b = (sinh2(K-K*))1/2,e-2K* = tίmhK (2.14)
and

Φ(x) = -^]e-"2du. (2.15)

l/πo
The function Φ(x) has the properties:

hence Φ(x) is analytic near x = 0. In fact, Φ(x) is entire; it behaves near x = oo as:

Remarks. 1. The result can be generalized to ours finite number of spin reversals
on the boundary as M->oo; then <σp>^ is independent of p, though of course not
necessarily zero. This strengthens the conjecture that there are no translationally
non-invariant equilibrium states for d = 2. Messager [12] has established an
interesting connection between $%\ ~ and a class of general ones which reinforces
the above remark. For the analogous 3t\ ~ when d = 3, Dobrushin [13] has shown
that <σ p>><σ p_ 1> for T<T{T~ 2~3 2TC!). The range of validity of this result
was extended to JΓC(3) > Tc(2) ̂  T by van Beijeren [14]. There is evidence that
the profile for d = 3 becomes diffuse for T>TC{2) [15].

2. The dividing point δ=j is uniform in T. Moreover, the function
lim<σαΛri/2>iV is analytic in T for any α provided T + 0, Tc. At T=TC there is a
square root branch point.

3. Consider a contour C on Z 2 from ( — JV, 0) to (N, 0) which moves only up
or down or to the right at each vertex, starting from ( — JV, 0). The statistical
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weight is:

(2.18)

where l(C) is the Euclidean length on Z2.
Let the intercept of C on the line (0, y) be y(C). Define the magnetization

profile of the ensemble of all C by:

c
Standard random walk arguments, for instance using the central limit theorem,
shwo that if t = aNδ then

lim mN(t) =

and

lim mN(aNlj2) = m* sgnαΦ(21/2 |α| sinhK) (2.20)
Λf->oo

The origin of the Gaussian distribution is rather clear in this case. This model is
the Temperley string [16].

Further, the incremental free energy is:

lim (2N)-1 logZN={2(K-K*). (2.21)
JV-»oo

At sufficiently low temperature, Theorem 2 is recaptured precisely, including
the scaling factor b in the argument of Φ. This is highly significant: the long
contour λ and the remaining contours (which are relatively short [1]) behave
essentially independently. One wonders whether this might be true for d=3 and
what bearing it might have on Remark 1 above.

4. This theory contrasts sharply with that of Fisk and Widom [22] in which
the free energy density is a functional of the density profile. Even with rescaled
lengths with δ=% there is no agreement. One wonders whether this basic theory
would be recaptured with a small gravitational field.

The rest of this paper is devoted to the derivation of Theorem 2.

3. Proof of Main Theorem

First we relate the problem to one with more symmetry by a clustering argument.
Consider a right cylindrical lattice A with M rows and 2N + 1 columns. Let the
boundary condition 3$Λ(s) be defined by σt ±N = 1 (resp. —1) for l ^ ϊ ^ s (resp.
s<i<.M). The interface profile is defined in terms of 3t\ " by (2.7). Then we have:

Lemma 1. The limit exists and

<σ j P > Λ Γ =lim lim < σ ( p > 0 ) > ^ ( s ) . (3.1)
s->oo M->oo

The surface tension is:

τ= lim — lim lim \ogZψΛ(s)). (3.2)

Proof. Here we use the transfer matrix which acts in a direction perpendicular
to the cylinder axis [7]. The details are given in Appendix A.

By applying the FKG inequalities [11] to the boundary condition, we obtain:
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Lemma 2. i) < σ p ) » r ^ < σ P - i ) ί ί r V y l (3 3)

Using the limit part of Lemma 1 we have:

<σ p > w ^<σ p _ 1 > i V . (3.4)

ii) limsup lim ( σ ^ j - 5Ξm* . (3.5)
TV—* oo M —> oo

We shall now use the transfer matrix along the axis of symmetry of the
cylindrical lattice A wi{h boundary condition $Λ(s). Let

V^exp-K*^ F2 = e x p K Σ ^ ^ + i (3 6)
1 1

with

and let | ± > be the states defined by:

Then standard techniques yield the results for the surface tension and interface
profile:

v 1 r r , <-|*(sXlτ = lim —— lim lim log—-———
7V->oo ^™ s^oo M->oo \ -H *;

and

<σp>N=IZ MZ <-iR(s){V2V1)
2Nv2R(s)\-y ( 3 9 )

where R(s) reverses all spins for 1 to s inclusive in the state | — ) .
Clearly

F 2 | ± > = β M K | ± > (3.10)

and

V2R(s) = R(s)V2e~2K (3.11)

so that (3.8) and (3.9) may be expressed in terms of the symmetrized transfer
matrix V=V2-

l2VίV2~
/2 through the quantities:

Z+ -(s) = < - \R(s)V2NR(s)\ - > (3.12)

Z+=(-\V2N\-y (3.13)

and

Σ^~(s\p) = (-\R(s)VNσx

pV
NR(s)\-}. (3.14)

Evidently

τ = lim (4N)'1 lim lim logZ+-(5)/Z+ (3.15)
N-*• oo s-*oo M-^ oo

and
<σ

P>iv= n m π m ^ M ~ ( 5 I P ) / ^ M ~ ( 5 ) (3.16)

The strategy of the remainder of the calculation is to recognize, if necessary
with hind sight, that | ±) and R(s) have very amenable expressions in the spinor
algebra in terms of which the diagonahzation is expressed [19]. Thus it is natural
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to spectrally decompose F i n (3.12) and (3.13). The notation of Ref. 19 will be
used throughout the remainder.

The collections of eigenvectors of V with j particles which lie in § ^ will be
denoted @f. Let ^ 2 be the projector onto the orthogonal complement of

+ <-\R(s)0>2V
Nσx

pV
N0>2R(s)\-y>. (3.17)

The following bound

K-\R(s)<?2V
Nσ*pV

N&2R(s)\-y\

g < - \R(s)&>2 V
2NR{s)\ - > (3.18)

is readily obtained, relating to the analogous problem for Z^~(s) which produces
precisely the term on the rhs of (3.18). This is bounded by obtaining Z^~{s) in
closed form using the method of Schultz et al. [20], and then subtracting the
contribution from ^ 0 u ^ 2 ( s e e Appendix A); the term from &2

 o n ly survives
the limits in (3.15) and (3.16).

The construction of | ± > [21] and R(s) follows: from (3.7),

|±> = Π2-1 / 2(l+σ?)|0> (3.19)
1

where crJ|O> = —10>, Vj=l, ...,M. But the maximum eigenvalue of V when

K*=0 is doubly degenerate with all spins parallel. Let the normalized eigen-
vectors be \Φ°±}9 in £ £ . Now from (3.19), P| + > = | - > . Thus:

»,|α±μi (3.20)

satisfying P\Φ°±}= ±\Φ°+ >. Inverting (3.20) gives:

| + > = 2 - 1 / 2 ( α * | Φ ^ > ± α * | Φ ° . » . (3.21)

Now from Ref. [19] Equations (2.37), (2.39), (2.40)

|Φ°+>HΦ + >,|Φ°_> = F0

+ |Φ_> (3.22)

where

| Φ ± > = Π (-sin(fc±/2) + icos(/c±/2)Ft fc±Fl±)|0> (3.23)

with expfMfe± = + 1 , and M is always taken even. Thus

(-1)M / 2 Π sink+/2a*=2-M/2 (3.24a)
0</c+ <π

(- l) M / 2 + 1 Π sinfc_/2α*=M2-M/2 (3.24b)
0<fe-<π

and, of course, |α+| = | from (3.20). Hence

α* = _ α * = ( - l ) M / 2 (3.25)



Interface Profile 41

from which

| ± > = ( _l)M/2 2 - l/2 ( | φ 0 > T | φ 0 > ) { 3 2 6 )

follows.
The block rotation R(s) on | —> may be written:

i
= ( - l ) s + 1 ( / i t + / 1 ) ( / I - / s ) (3.27)

using Section 2 of Ref. [19]. Evidently [P,.R(s)]_ =0 so (for M even):

zm= Σ <Φ°\R(s)VfR(s)\Φ°ε>/2 (3.28)

to which the method of Ref. [20] may be applied and (for M even)

}. (3.29)

Spectral decomposition may now be applied to in (3.27) and (3.29). First
consider the limiting matrix element:

lim <Φ°|/φ)|Φ±>/<Φ°|Φ> = ̂  l / ω u £ ^ (3.30)

obtained using (3.22), (3.23), (3.27) and the standard method of [20]; the angle
<5*(ω) is given by:

with
/l = exp2KcothiC (3.31a)

B = Qxp2KtcϊnhK (3.31b)

and (5*(0) = 0 selects the branch for A>B>1.
It is clear from the Riemann-Lebesgue lemma that such terms vanish in (3.35).

The first term which does not vanish, and in fact dominates, comes from SH^ \
it is:

(Φ°+\R(s)GlβιGtβ2\Φ+yκΦ°+\Φ+y

= ei(βι +β2)/2(e-isβί __e-isβ2ycos(δ^βJ/2) cos δ*(β2)/2).

Let the term in Σ^~(s\p) which arises from &} be denoted by RQA^~(S\P): then

l i m 4 t 0 0

77 • • J « 4 Π
(Z7ΓJ 0

Fx(eiωιeiω2\eίω3eiω4) (3.33)

where

) = eίip-1)ωe-iθ{ω)e-Ny{ω)/cos(δ*(ω)/2). (3.34)



42 D. B. Abraham and P. Reed

In Ref. [19] [see Eq. (4.5)], Fx( | •) is defined and evaluated; it has the structure:

F x (z 1 z 2 | ί 3 ί 4 ) = m*(-/_(z 1 z 2 )/_(ί 3 ί 4 )

+f+(zit3)f+(z2h)-f+(ziU)f+(z2t3)) (3-35)

where the contraction functions are given by:

and m* is the spontaneous magnetization.
By using the symmetry evident in (3.33) and (3.35) it follows that:

lim .
M—*• oo

P 2,π

- ( 2 π ) 4 j . . j w

pxίpiωlpίω2 iω3 iω4\ /? αγλ

and a similar analysis of the $\ contribution to Z^~(s\ denoted (Z^~(s))2J gives:

lim (
M->oo

1 \2 2π y is(ωi-ω2) pίs(ω2-ωi)

ί ί r f ( ) ~ 2 i V ( y ( ω i ) + y ( ω 2 ) ) ( 3 38)
2π) J

0

J l h (l+cosδ*(ω1))(l+cos(5*(ω2))

The only term in (3.37) which survives as s->oo contains f+(eίωi,eic°3) is the
expansion of Fx(-\ ). This gives the final result:

B(s\p) = m*IN(2π)-2 ]} d{ω)2B{ωι)B{ω2)f+{eiω\ e1^) (3.39)
o

where
1 in

(3.40)
π o

and

C(s\p) = I2

N. (3.41)

The manifestation of clustering is obvious, and the final result is:

o

as iV->oo. The remainder of the proof of Theorem 2 is given in the appendices.

Appendix A: Proof of Lemma 1

First the spectrum of the transfer matrix V with + and — edges will be described.
With infinite edge weight between rows at the boundaries, we have [7]:

2N

•^yβX^jXj-ί) (A.I)
o
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where the Xj are Fermi operators, and γo = 0. Using the notation Xj = Y[ Xt

with index sets / which exclude 0, we have the spectra: ieI

Boundary Eigenvectors Maximum
condition eigenvalue

Λo, T<TC

ΛO,T>TC

Λoe-*°\T<TC

where

Xi\Φ>=09i = 0,...2N9XΪ=2-1'2(l±(Xl+X0)). (A.2)

The + + and maximal eigenvectors are degenerate, as expected by
symmetry. For T > Tc, there is a y} which is asymptotic to zero as JV-»oo, giving
an asymptotic degeneracy of V but no such asymptotic degeneracy obtains for
T<TC, in contrast with the usual case [20]. This is because there is a surface
tension associated with a long contour on a cylinder with + on one face and — on
the other [3]. The reader may be amused to construct and interpret the rest of the
spectrum of V for the various boundary conditions [21]. It is also of interest
to note that the eigenvalue problems for V and V1 = V\I2V2V\12 with free edges
are related by duality, a result suggested by the work of Gallavotti et al. [4] on the
spontaneous magnetization m*.

With the notation:

Σή Σ^+i ( A 3)
1 1

the standard transfer matric techniques give:

M 7 2 | + >)- 1

Pί>2l+> (A.4)

The limit M->oo is easily taken if T φ T c , for then y7 >0V7φ0, and

0

+ |Φ> (A.5)

where σo=V{/2σ%Vϊ1/2.
We can set up an analogous argument for the boundary condition 3SΛ(s) on

the cylinder: evidently:

o\Φ} (A.6)

and by repeating the argument as s-»oo we have:

<<rP>N = •^ <σ P W - (A.7)

Note that we have also proved the existence of the limit as M-*oo!
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Appendix B: Asymptotics

Here we analyse the integral

p 2π
/(AT, p) = — JJ d{ω)2B(ωί)B{ω2)f+(eiω\ eiω2) (B.I)

for large N. By using Lemma 2 it suffices, as will be seen, to consider the case:

p = aNδ (B.2)

with δ<l. The saddle point in (B.I) is at ωΐ=ω2 = ω0 where

γ{1)(ωΌ) = ίp/N (B.3)

for which we have:

ωo~ip/Nγ™(0) (B.4)

as iV-»oo. The path of integration is deformed onto the steepest descent contour
Cfor each variable. By the Plemelj formula, we have:

2π

I(N,p) = sgnp j dωe~ 2Ny{ω)(l+cos δ*(ω))~1 +I(Q (B.5)
o

where

I(C)~e~{2Nyi0)+p2/Ny(2)m- ff aχdye
π c i(2ωo + x + y)

Now rotating the domain of integration through π/4 gives the desired result:

7(C)~(π/Λy2)(0))1/2 exp -(2Nγ(0) + p2/Ny{2\0))J({p/Nγ{2\0))1/2) (B.6)

where

1 °° e~t2

J(x) = - ί dt. (B.7)
πi . ^ t + ix

Note that lim J(x)=—1 and that J(x) is monotone inreasing with J(oo) = 0.

These results lead directly from (4.42) to Theorem 2.

Appendix C

Here the matrix elements <Φ + |iφ)Gj}1G|2|Φ + > will be calculated using the

method of Schultz et al. [20]. From (3.27) R(s) is given by:

3)(Fl4-F_β4). (C.I)

The trick is to use the structure of |Φ + > and |Φ + > in which for each β>0 0 either β
and — β are both "occupied" or both are "empty". Thus we have an isomorphism
in each subspace of this type with a Pauli algebra, which greatly facilitates the
working. The result is (3.32), which has the proper antisymmetry in βί and β2.
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It is also easy to evaluate the matrix element

(Φ°+\R(s)V2NR(s)\Φ°+y

by the same procedure. Referring to (C.I) the terms with internal pairing in R(s)
vanish as s-*oo after M->oo by the Riemann Lebesgue lemma. Thus the β must
be paired between different R(s) factors.

Consequently V2N works in the subspace for β>0 spanned by Ftβ\0} and
Fβ\0} in which it acts as the identity. Thus we have immediately that:

(Φ°+\R(s)V2NR(s)\Φ°+)

= — Y (cosh2Nγ(β) + sinh2Ny{β) cosd*^))" 1 (C.2)

+ (term which vanishes in limit as s->oo).
Here

P=
>o

= <Φ°+ |F 2 H |Φ°>. (C.3)

The desired result is:

V2NR(s)\Φ°±y
S φ V φ ( C . 4 )

s^ooM->oo \ψ±\y \ψ±?

where

1 2π

JN = — J rfω(cosh 2Ny(ω) + sinh 2iYy(ω) cos δ*(ω))"x . (C.5)
2π o

Thus the error term is immediately computed:

lim lim Σ / < Φ ε

0 | R ( s ) F f l φ ) | Φ ? > - £ KΦ°ε\R(s)\jy\2Λ2N

s->oo M->oo ε \ jegfiou082

-2Ny(ω)

(Φ°±\R(s)V2NR(s)\Φ°±y

π o l + cos<5*(ω)

Finally, note (3.18).
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