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Global Properties of Radial Wave Functions
in Schwarzschild's Space-Time

I. The Regular Singular Points
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University of Thessaloniki, Thessaloniki, Greece

Abstract. The radial factor R(x, xs) of a scalar field in Schwarzschild's space-
time satisfies a second order ordinary differential equation with two regular
singular points at x=0 and x = xs and one irregular singular point at X=GQ.

The analytical properties of four solutions Mγ, M2, 0t^ and ^ 4 (defined by
their power series expansions about x = 0 and x = xs) with respect to xs are
studied. An analytical continuation is given for each solution outside its circle
of convergence. Relations to the flat-space solutions are established. Finally
the coefficients relating linearly any three of these solutions are determined
and studied as functions of the parameter xs.

1. Introduction

Physical phenomena around black holes are being studied recently with increasing
interest and success. The most rigorous of these studies refer to weak fields imposed
on a known curved background, usually the Schwarzschild or Kerr space-time.
The pattern followed in solving such problems is familiar. A numerical or approxi-
mate study [1-3] indicates the answers and then analytical methods are used to
establish rigorously the results. Combinations of numerical and analytical
methods [4-9] have been used in cases where some of the answers can be
established rigorously and some cannot.

The obstacles preventing a rigorous analytical treatment of perturbation
phenomena in curved space-times are related directly to the procedure followed
in such studies. Since after linearization the essence of the problem is contained
in a second order linear partial differential equation [10—12], we have to separate
the partial differential equation into ordinary differential equations using the
method of separation of variables and then try to solve the ordinary differential
equations. The separation in Schwarzschild's space-time is simple in all cases of
scalar, electromagnetic and gravitational radiation. In Kerr's space-time Carter
[13,14] and Teukolsky [15,16] have succeeded in separating the original partial
differential equation into ordinary differential equations with independent
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variables the angles θ and φ and the radial coordinate r, the time t having been
taken out through a Fourier transformation. Thus further studies [17-19] have
been made possible, but a major obstacle prevents a completely analytical treat-
ment of wave fields around black holes. In both Schwarzschild's and Kerr's
space-times the (ordinary) radial differential equation cannot be solved. This
difficulty has been encountered repeatedly in many works [20-23] and has forced
the use of numerical techniques [9,1] or an effective potential [24,4, 5, 2, 6, 7].

For the time-independent scalar, electromagnetic or gravitational per-
turbations the radial equation has three regular singular points [25-29] and it
can be easily reduced to the hypergeometric differential equation with well known
solutions. For time-dependent perturbations in both Schwarzschild's and Kerr's
space-times the radial equation has two regular singular points and one irregular
singular point [21, 23]. Its solutions are very little known and we need to study
them further. We want to know how they behave as functions of the independent
variable r and other parameters, how they are connected to the solutions of the
corresponding case in flat space and how their behavior at a certain point relates
to the behavior at another point. The discovery and proof of such properties is
expected to be much more difficult and complicated than for the Bessel functions
which represent the special case in flat space-time.

Previous works [20,21,23] have shed some light on the nature of the radial
wave functions, but all have run into difficulties which sooner or later make
proofs based on numerical calculations necessary. In this paper we focus our
attention on the radial equation obtained after separating the scalar wave equation
in Schwarzschild's space-time. Our objective is to establish through analytical
methods certain properties of the radial wave functions. More specifically we are
interested in the answers to the following three questions which are raised in the
studies of physical phenomena around black holes:

(a) How can a radial function (a solution of the radial equation) defined by a
power series expansion about a regular singular point be continued outside its
circle of convergence?

(b) How are the solutions of the radial equation related to the spherical
Bessel functions?

(c) Any three radial functions satisfy a linear equation with coefficients depend-
ing on the Schwarzschild radius rs [see (18) below]. Can we find explicit expressions
of these coefficients?

In Section 2 we present the flat-space case in a way which will be useful for
reference later in the paper and we formulate the problem for the curved-space
case. In Section 3 we examine the solutions as defined by power series about the
regular singularity at x=0 and in Section 4 about x = xs. In both cases analytical
continuations of the solutions are given outside their circle of convergence. In
Section 5 we determine the radial function that reduces to nt(x). In Section 6 we
calculate the coefficients Kι7(xs) (which relate linearly any three radial functions)
as functions of xs. Some closing remarks are presented in Section 7. Theorems and
properties needed in intermediate steps but not related directly to the radial
functions are presented independently in the appendices.

The point x = oo is an irregular singular point of the radial equation and the
method to be followed is somewhat different. For this reason we will present the
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corresponding results for the solutions defined by their asymptotic expansions
about x = oo in a subsequent paper.

In the presentation of properties, theorems and other results we have given
emphasis on the method followed and the final result while minimizing the
intermediate and some times long calculations. Although the notation is explained
where it is used for the first time in the paper we assume in general the following:
The statement f{y) = o\_g(y)~\ as y-+y0 means that lim[/(y)/g(y)]=0 as y-+yo>
All quantities with negative subscripts, i.e. α_1 ? β_u Φ_1 are identically zero by
definition. In all sums the index takes all the integer values from 0 to oo, unless
it is noted specifically otherwise. Pt and Qι are the Legendre functions of the first
and second kind with argument 1 — 2y. The asterisk on a quantity means that
wherever the imaginary unit ί appears in S, it has been replaced by —i in S*.
Thus if i.e. S = 1 -f ίz (z complex in general), then S* = 1 — iz.

2. Formulation of the Problem

2.1 The Flat-Space Case

In flat space-time the development in time of a scalar or electromagnetic field is
determined by the wave equation

0 ^ / ^ = 0, ( 1 )

where gμv is the contravariant form of the metric tensor. If we consider a separable
solution of (1)

ψ = R(r)Y(θ9φ)e-Uot, (2)

then the radial factor R(r) satisfies the equation [30]

x2d2R/dx2 + 2xdR/dx + [x 2 - /(/+ 1)]R = O, (3)

where x = kr with k = w/c (c is the velocity of light). If we set

R(x) = eixF(x) (4)

then F(x) satisfies the equation

x2d2F/dx2 + (2ίx2 + 2x)dF/dx + [2ix - /(/ + 1)]F = 0. (5)

The differential equations (3) and (5) have one regular singular point at x = 0 and
one irregular singular point at x=oo. A pair of linearly independent solutions,
the spherical Bessel functions, can be written in a form appropriate for this
paper as

xι + n (6)
n

for |x|< +oo and

nι(x) = eix X ( ( - if + 2(2l- n) !/2'" "n!(/ - n) !)x" ~ ' " ι (7)
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for 0 < | x | < +00. Although x = co is an irregular singular point, we can express
the solutions about x = oo in a closed form as

£ -1 (8)
n = 0

and
h\2\x) = hf(x), (9)

where the asterisk denotes the expression obtained from (8) after replacement of /
by — i. The functions h^Xx) and h\2Xx) are the spherical Hankel functions and their
expansions (8) and (9) converge obviously for all x=t=O including the point x= oo.
The functions j^x) and ht(x) are called interior and exterior solutions respectively,
since they satisfy the appropriate boundary conditions [30] at x = 0 and x=oo.
They will be related to the solutions of the radial equation in Schwarzschild's
space-time.

2.2 The Curved-Space Case

In Schwarzschild's space-time the metric tensor

0μ v = diag[(l-rjr)c\ - ( l - ^ / r ) " 1 , - r 2 , - r 2 s i n 2 θ ] (10)

introduces a parameter rs = 2GMc~2, the Schwarzschild radius. The radial factor
R of a scalar field ψ satisfying (2) obeys the differential equation

x(x - xfd2R/dx2 + (x - xs)(2x - xs)dR/dx + [x 3 - /(/ + l)(x - xs)] R = 0, (11)

where x = kr and x s = krs. Generalizing transformation (4) to {A is independent of x)

R = A exp [ix + ίxs In (x - x s)]. F (12)

we obtain for F the differential equation [21]

x(x-xs)d2F/dx2 + (2ix2 + 2x-xs)dF/dx+l2ix-l(l+l)~]F = 0. (13)

Obviously (3) and (5) are special cases of (11) and (13) for xs = 0.

If we change the independent variable to y = x/xs, (11) and (13) become

y(y- l)2d2R/dy2 +{y- l)(2y - ί)dR/dy + [/x s

2 - /(/ + 1)0,- 1)]R = 0 (14)

and

y(y- l)d2F/dy2+(2ixsy
2 + 2y-l)dF/dy + [_2ixsy-l(l+l)-]F = 0. (15)

Thus a radial function R can be considered and discussed as a solution R = R(x, xs)
of (11) or as a solution # = £[)/, x s] of (14). We will call such a procedure an
R-description of the radial function. Alternatively a radial function can be con-
sidered and discussed through (12) with F = F(x, xs) a solution of (13) or F = Fly, x j
a solution of (15). We will call such a procedure an F-description of the radial
function. As we will see later for some radial functions both descriptions are
simple, while for others one is complicated. We also have an F-description if i in
the exponent of (12) is replaced by —/.

The point x = 0 is a regular singular point of (11). Consequently we can find
two solutions St1 and $2 as power series of x converging up to the next singular
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point. Similarly we can find two other solutions ^ 3 and ^ 4 as power series of
x — xs converging around the other regular singular point x = xs of (11). Finally
we can find two more solutions ^ 5 and ^ 6 as asymptotic expansions around the
irregular singular point x = oo. Each 0t{ (i= 1, 2, 3,4, 5, 6) depends on x and xs or
on y and xs. We express this fact by writting

m^m^x^m^xj. (16)

If W[_0ti9 0tf\ is the Wronskian of any two solutions of (11), it can be easily shown
that

W[βi9 &J] = StidStJdx - StμStJdx = K^/xix - xs) (17)

and

-0, (18)

where Kij = Kij(xs) depend on xs but not on x.
We are ready now to formulate in a precise form the questions to be answered

in this paper as follows:
(a) What can be said about 0t{ as a function of (the complex in general) xsΊ
(b) Can we give an analytic continuation of 0t{ outside the circle of convergence

of the defining series?
(c) To which solution of the flat-space case each 01 { reduces when xs (or rs)

goes to zero?
(d) Can we give an explicit expression for X 0 (xs)?
(e) What can be said about the limits lim Ktj when xs (or rs) goes to zero?
The answers for indices i a n d ; equal to 1, 2, 3,4 will be given in the following

sections. The answers for indices 5 and 6 will be given in another paper, since a
slightly different procedure has to be followed.

In the following sections we will use a theorem which can be obtained easily
from well known theorems [31] on the behavior of solutions of a differential
equation with respect to a parameter. We state the theorem without proof in a
form appropriate for our case.

Theorem. Let the differential equation

d2R/dz2 + p(z9 s)dR/dz + q(z, s)R = 0 (19)

have isolated singularities at zv ( v=l , 2,..., N) and coefficients p{z,s) and q{z,s)
analytic in z for every z + zv and linear in s. Let Dz be a finite (z=coφ Dz) region
of the complex z-plane such that zv φ Dz and let also Ds be a finite (s=coφ Ds) region
of the complex s-plane. If for a solution R(z, s) of (19) the quantities R(z0, s) and
[dR(z, s)/dz']z=Zo are analytic functions of s on Ds for a fixed zoeDz, then R(z, s) is
an analytic function of s on Ds for every zeDz.

The usefulness of the above theorem is due to the fact that if we divide (14)
and (15) by y(y— I) 2 and y(y — 1) the resulting equations have coefficients p and q
analytic in y (except at the points y = 0, y = ί and y = oo) and linear in x2 and xs

respectively. Thus they satisfy the conditions of the theorem.
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3. The Solution about x=0

3J The R-Descήption

The radial function Stx is defined [21] as that solution of (11) which for |x| < |xs| is
given by the absolutely convergent power series

Λ 1 =Λ 1 (x,x s ) = Σ ^ n (20)

n

with a'o = 1 and

n2x2

sύn+ [/(/+ l ) - ( n - l)(2n- l )]xX _, + [_(n- l ) (n-2)- /(/+l)X_ 2 + fl;_4=0.

(21)
Note that in evaluating the successive a'n's we divide at each step by x^. Also note
that when x s ^0, the circle of convergence of the series (20) vanishes. Thus Mι as
given by (20) cannot be studied as a function of xs near xs = 0.

If we set y = x/xs in (20) and (21) we obtain for \y\ < 1

«i = «1[y,xJ = Σ ^ / ( 2 2 )
n

with α'o = 1, &'n = dnx
n

s and

rc2a;+[/(/+4)-(rc-l)(2rc-l)]a^

(23)

Note now that the coefficient of α'n in (23) is n2 and that the circle of convergence
has radius 1. We can prove that 0tγ[y,x^\ is an entire function of x2 for every
finite y φ l . The proof of this property follows a combined application of the
theorem of Section 2.2 and Theorem Al in Appendix A. Since the series (22)
satisfies the conditions of Theorem Al, it converges uniformly for some y near
y = 0. But ocf

n is an entire function of x2. Consequently Σ αί,/ is an entire function
n

of x2 for some y. The same is true for the series Σ n^ny
n- From the theorem of

n

Section 2.2 we conclude that <%ι [j/, x j is an entire function of x^ for every y
different from the singularities of (11). For y = 0 the property is obvious.

Since @tγ[y, x j is an entire function of x^ we can write

®iίy,χs]=Σφ'n(y)χ2sn- (24)
n

This is an analytic continuation of 01 γ outside the circle of convergence of the
series (20) or (22).

Substituting expression (24) into (14) we find that the sequence Φ'n{y) satisfies
the differential equation (B1). Moreover, from (22) we have the relations

« 1 [ 0 , x s ] = l , dM1ly,xs]/dy\y==o=-1(1 + 1), (25)

which imply that Φ'n{y) satisfies the conditions (B2). Thus the functions Φ'n{y)
have the properties proved in Theorem Bl. The expansion (24) can now be written

χ\a&,χϊ=Σφn(ΦsHΦyι-2n'χι+2n (26)
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and as xs-»0 with x = const, we obtain using (B5)

lim[xiΛ1(x9x s)] = χ ^ x I + 2 Λ . (27)

From (B6) or (B12) we find easily that the ratio of two consecutive terms of the

series in (27) equals to the ratio of two consecutive terms of the expansion ofy^x)

in (6). Consequently the quantity YJφ'nx
ι + 2n is proportional to ^(x) with pro-

portionality factor φ'0[2ιl\/{2l+\)\γι. With φ'o from (B6) and setting

4 = (-2)'(/!)3/(2J)!(2Z+l)! (28)

we have from (27)

UmlAtX&faxj]^). (29)

This equation relates the (analytic at x = 0) solution ^?1(x,χs) in the case of
Schwarzschild's space-time to the solution yz(x) in the case of flat space-time.

The radial function M2 is defined [21] as that solution of the differential
equation (11) which for 0< |x| < |xs| is given by the expression

\x" (30)
n

with b'Q = 1 and

)-(n-l)(2w-l)]χsft;_1 + [(n-l)(w-2)-/(/+l)]&;_2 + &;_4

(31)

If we set y = x/xs we obtain

(32)

with β'0 = ί,β'n = b'nx
n

s and

(2n-lftβ'n_1 + [(n-l)(n-2)-l(l+l)-]β'n_2 + x*β'n_4

2 = 0. (33)

As a consequence of (32) the function

n (34)

is a linear combination of Mγ\_y, x j and M2[y, x j . Hence $'2[y, x j is a solution
of (14).

According to Theorem A2 the series £ ̂ y 1 and ̂ ] rc/^/1 converge uniformly

for some y. Since ̂  are entire functions of x2, the above series are entire functions
of x2

s for some y. Thus from the theorem of Section 2.2 we conclude that 0t2\y, ^ J
is an entire function of x2

s for every y different from 0,1 and oo.
We can write now

®2[y,χs]=Σψn(y)χin. (3 5)
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Setting this expression into (14) we find that the sequence Ψ'n(y) satisfies the
differential equations (Bl). Moreover, since from (34)

ί^2-\ny-]y=0 = U ld&2/dy-l/y + l(l+l)]ny]y = 0 = l9 (36)

the functions Ψ'n(y) satisfy also the conditions (B13) and, consequently, they have
the properties proved in Theorem B2. Thus using (B16) we have from (35)

Σ (ΦsΓl~2n xl + 2n (37)
n

and

Combining this relation with (32) and (34) we find

Jim [^(xj/ln xs)@2(x, xj] =h(x). (39)

This equation relates the (nonanalytic at x = 0) solution $2(
x> xs) to the spherical

Bessel function jz(x).

3.2 The F-Description

Instead of studying R about x = 0 we can study F about x = 0. If transformation
(12) is taken to be

St^x, xs) = exp(ix + ixs \n{{x-xs)lxs))^(x, xs), (40)

then we find that for \x\ < \xs\

^=^{x,xs) = Σ^n (41)
n

with α0 = 1 and

n2xsαn + (l-n + l)(l + n)αn^-(n-l)2iαn^2=0. (42)

Setting y = x/xs we obtain

with αo = 1, ocn = αnx
n

s and

_1-(n-l)2ixsαn.2 = 0. (44)

As defined by (43) &r

i[y,xs'] is a solution of the differential equation (15) and
satisfies the conditions of Theorem Al. Consequently, #ΊQy, x j is an entire
function of xs for y Φ1 and y φ oo.

If we set

Fi[y>χs]=Σφn(yK> (45)
n

then the sequence Φn(y) satisfies the differential equations (B19). Furthermore,
since from (43)

! [0, xJ = 1, d^i [y, xj/dy |y = 0 = -1(1 + 1), (46)
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the functions Φn(y) satisfy the relations (B20) and, consequently, they have the
properties proved in Theorem B3. From (45) we have

and because of (B27)

l i m [ x ^ 1 ( x , x s ) ] = X φ n x ί + " . (48)
xs->0 n

We observe now that the ratio (φnx
ι+n)/(φn_1x

ι+n~1) is equal to the ratio of two
consecutive terms of e~ixjι{x) as given by expansion (6). Hence after multiplying
by 2ιll[φ0(2l+1)!]"xwe find from (48)

I i m [ ^ x ^ 1 ( x , x s ) ] = e- i x/I(x). (49)

This equation relates the curved-space solution #i(x, xs) to the flat-space solution
e~ ixji(x). If we multiply the quantity inside the brackets by exp(/x+ixs ln((x—xs)/xs))
we rediscover (29).

For the nonanalytic at x = 0 solution we write

m2(x, xs) = exp(ix + ixs ln((x - xs)/xs))^2(x> xs) (50)

and we find for 0 < |x| < |xj

&2 =&2(χ, xs) = ̂ ί(x, xs) lnx + X bnx
n (51)

n

with b0 = 1 and

(52)

Setting y = x/xs we obtain

#- 2 Ξ^ 2 [ ) ; ,x s ] = # 1 [ } ; ) x s ] l n x s + # 1[3;,x s]ln); + Σ Λ / (53)
n

with βo = ί, βn = bnx"s and

(54)

Since # Ί l j , x s] and SF^y, x s] are solutions of (15), we conclude from (53) that the
function

&ί[y, * J = ^ i Cy> xΔ in y + Σ Λ / ( 5 5)

is a solution of (15). Using Theorem A2 we can prove as for 3ir

2[y9 x j that J^Cj7? x5]
is an entire function of xs for every y different from 0,1 and oo.

We write now

F2'\y>χs]=Σψ«(yM (56)
n

Substituting in (15) we find that the sequence Ψn(y) satisfies the differential
equations (B19). Furthermore, since from (55)

0 = U (57)
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the functions Ψn(y) satisfy the recurrence relations (B36) and hence. Theorem B4.
From (56) we have

Σ l~nxl+n (58)
n

and using (B42) we obtain

\imtxι

s^(x,xs)-] = Σψnx
ι+n. ( 5 9 )

xs->0 n

Finally because of (53) and (55) we find

Jim [^(x'/ln xs)^2(x, xs)] = e'^x). (60)

This equation relates the curved-space solution 3F2(x, χs) to the flat-space solution
e~ιxjι(x). Multiplying the quantity inside the brackets in (60) by
exp(ix-\-ixs ln((x — xs)/xs)) we obtain again relation (39).

A formula which will be needed later is the full expansion of 3F2 obtained by
combining (53), (55), and (56)

The above expression gives explicitly the behavior of #"2 D
7? xsi n e a r χ

s

 = 0 f°r

constant y.
To go from the i^-description to the F-description the transformation (12) can

be used as it is or with the imaginary unit i replaced by —i. Then i should be
replaced by —i in the relations (13), (15), the formulas of this sections and in
Theorems B3 and B4. The new quantities will be denoted by the old symbols
with an asterisk. Thus i.e., instead of (40) and (45) we will have
01 ί = exp [ — i(x + xs In (x — xs) — xs In xs)] 3F£ and #i* = ̂  Φ* (y) xn

s respectively.

n

Both cases (with i and — i) are needed for the evaluation of Ktj in Section 6. If x
and xs are real, then the addition of an asterisk to a symbol reduces to taking
its complex conjugate.

4. The Solutions about x=xs

The radial functions ^ 3 and 0t^ are defined [21] as those solutions of (11) which
for 0< |x — xs\ < \xs\ are given by the relations

I 3 Ξ | 3 ( X , χs) = e

ίXsln{χ-χs) Σ c'n(x-xs)
n (62)

(n + 2ixs)nxsc'n + \_{n + ΐ)(n -1 - 1) + 2xs

2 + (2n - l)/xj c'n _ t

with c'o = 1 and

; _ 2 + 4_3 = 0. (64)

Since ^ 3 and &4 are related by (63) we study below only ^ 3 . ^ 4 satisfies every
equation obtained for ^ 3 if we replace i by — / (see explanation at the end of the
previous section).
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Because of the factor e

ix*ln(χ-χs) both M3 and ̂ 4 behave badly near x = xs

and we cannot speak about their values or the values of their derivatives at
x = xs. Thus an i^-description would require specification of &3 and ̂ 4 and of
their derivatives at a different point. This procedure introduces difficulties and
complicates the i^-description.

In the F-description we remove the factor e

ix*ln(χ-χs) setting

(65)

and then we find

^3 = ̂ 3(x,xs) = Σcn(x-xs)
n (66)

n

with c0 = 1 and

n(n+ 2ίxs)xscn- [(/+ n)(l- π + 1 ) - ( I n - l)2ix s]cB_ t + (n- l ) 2 i c n _ 2 - 0 . (67)

If we set y = x/xs the expansion (66) becomes

n

with γo = ί,γn = c χ and

1 _ 2 = 0 . (69)

As defined by (68) ̂ 3[y, x j is an analytic function of xs all over the complex
xs-plane except at the points xs = ni/2 (n= 1, 2,...) for every finite yφO. The points
xs = ni/2 are first order poles of ^ [ ^ x j . This property is a consequence of
Theorem Al. The coefficients yn satisfy the recurrence relation (69) which is similar
to (A2) with the quantities

((/ + n)(l - n + 1) - (In - l)2ixs)/n(n + 2ixs), -(n- l)2ixjn(n + 2ixs) (70)

corresponding to ρnm(xs). In order that these quantities remain bounded we
consider as DXs (which corresponds to Ds of Theorem Al) a finite region of the
complex xs-plane not containing a neighborhood of the points xs =ni/2(n = 1,2,...).
Then according to Theorem Al the series (68) converges uniformly on DXs for
some y near y= 1. Since each term of the series is analytic in xs, the series converges
to an analytic function and because of the theorem of Section 2.2 this analyticity
property holds for any y different from the singularities of (11). For y=ί the
property is obvious. To prove that the point xs = noi/2 is a first order pole of
^ [ j / j x j we repeat the same arguments for the series (no+2ixs)Σyn(y— 1)". For

n

this series we do not exclude a neighborhood of xs=noi/2 from DXs in order to
have the quantities (70) bounded. Thus (no-i-2ixs)^3ly, xj is analytic a tx s = noi/2
and, consequently, #3 Qy, x J has a first order pole there. Since from (65)

^3 = ̂ 3ίy,xs] = eiXs[y-1 + ln{y-1) + lnXs]^3ly,xs'] (71)

we can easily derive properties of M3[y, x s] from the properties of ^3[y, x j . For
$4.[y> χs] w e c a n make similar statements with the points xs= —ni/2 as poles.

We can set now

&3[y,χΛ = ΣXn(y)χϊ (72)
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This expression converges for every finite y + 0 and | x s | < i , because at xs = ί/2
the function ^3[_y,Xs] has the closest to xs = 0 pole. We can have an expansion
similar to (72) converging for larger |xs|, if we expand (l+2ixs)(2 + 2ixs)... (no +
2ixs)^'3[_yi xj in powers of xs. Such an expansion will converge for \xs\ <(n0 +1)/2.
In any case the expansion (72) or similar expansions give an analytic continuation
of ^3[y,xs~] outside the circle of convergence \y —1|<1 of the original expression
(68).

Substituting the series (72) into the differential equation (15) we find that the
sequence Xn(y) (n = 0,1,...) satisfies (B19). From (68) we have

+ 2ixs). (73)

If we expand the right hand sides of (73) in powers of xs and combine (72) and (73)
we find that the sequence Xn{y) satisfies the conditions (B46) and consequently
has the properties proved in Theorem B5. Thus we can write (72) as

xfoix, xs) = Σ Xn(Φs) (x/x.)"'"" x1+" (74)

and obtain using (B54)

l im[4#3(x,x s )] = Σ Z π x i + " . (75)
xs->0 n

Multiplying by 2'/![χo(2/ + l ) ! ] - 1 we find using (B56)

Jim [ ( - lfAixfaix, xs)] = e"*j,(x). (76)

Combining this result with (65) we conclude that

Jim [ ( - l ) U I x ^ 3 ( x , xs)] = /,(*). (77)

This equation and a similar one with ^ 4 instead of 0lz relate &3(x, xs) and ^ 4 (x, xs)
to the solution JΊ(X) of the wave equation in flat space-time.

5. The Radial Function R0(x, xs)

Since all 0t{ (i= 1,2, 3,4) reduce tojt(x) the following question is raised naturally:
Is there any solution of the differential equation (11) that reduces to n^x)? In this
section we will answer this question in the affirmative and find the radial function
which has this property.

In Sections 3 and 4 we started with a solution 0t{ and we wrote it as a power
series of xs with coefficients depending on y. Then we used the asymptotic proper-
ties of those coefficients to find the flat-space solution jt(x) in the limit xs->0.
Here we have to follow the reverse procedure. Let us assume that

xs) (78)

is the solution that reduces to n^x) with

&o=&o[y,χΛ=Σun(yK (79)
n

The sequence Un(y) must have the appropriate asymptotic properties necessary
to find Πι{x) in the limit xs->0. This means that (79) written in the form

^xn-1-' (80)
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would give

lim [x~1'

with the right hand side nothing more than a miltiple of e~ixΠι(x) as given by (7).
To find such a sequence of functions Un(y) we use Theorem B6. With Un(y)

defined by (B60) and (B61) we have the asymptotic property (d). We can easily
prove from (B67) or (B70) that unx/un^1 is equal to the ratio of two consecutive
terms in the sum (7). Thus multiplying (81) by -(2l)\[2ιl\u0]~1 we find

Jim [ £ z x s " ι " ^ ( x , xs)] = e"^(x), (82)

where

Bι = ( - \)\2Ϊ) !(2/ +1) \/2ι ~ \l ! ) 3 . (83)

Finally from (78) and (82) we obtain

lim [Bιx~ι~1StQ(x, xs)] = nz(x). (84)

Thus we have established the existence of a radial function &0 that reduces to
nt(x) and we have given an expression for ^ 0 , namely the relations (78) and (79)
with Un(y) defined by (B60), (B62) and (B61).

To express # Q as a linear combination of J ^ and 3F2 we observe from Theorem
B6 that as >>->0 only Uo and dU0/dy diverge while Un and dUJdy go to constants.
Separating the n = 0 term from (79) and using (B18) we find

Σ V"
n = l

and

[d^o [y, Xsl/dy + \y -ι - \ l(f +1) In y\=0 = - \ - h 1(1 +1) + /(/ + l)σ(/)

-/(/ + 1 ) Σ » X (86)
n = l

If now we assume that

^ol>. x J = CiίxJ^Ί [y, x j + C 2 (x s )^ 2 [y, x s] (87)

we can substitute in (85) and (86) and find using (46) and (57)

C x ( x s ) = i l n x , + * - σ ( Q + Σ vnx"s, (88)
« = 1

C 2 (x s )=-4. (89)

Thus #o has been expressed as a linear combination of # i and #2- Because of
(78) a similar relation holds for 3t0. Using (87), (43), and (53) we can obtain an
expansion of J^o or ^ 0 in powers of y or x.

6. The Quantities Kϋ(xs)

Any three of the four solutions Mί9 &2> &3> a n ( i ^4 of the differential equation
(11) are related by (18) with the indices i and; ranging from 1 to 4. Since Ktj= —Kjt
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there are six only Ktj related to the regular singular points x = 0 and x = xs,
namely K12, Kl3, K14, K23, K24, K34. It has been found [21] that

Kί2=-xs and K34r= -2ix2

s . (90)

To evaluate the remaining four Ktj we set y = x/xs in (17) and find that in general

, xj/dy}. (91)

For K13 we observe that the expressions (22) and (23) do not contain anywhere
the imaginary unit i. Thus using (40) we have

>,x s ] (92)

with

^[J^J = Σ^K (93)
n

instead of (45). The use of (92) instead of (40) in the following eliminates the
exponential factor and simplifies the calculations. Substituting expressions (92)
and (65) into (91) we find that

(94)

Expression (94) shows that Kί3(xs) is analytic in xs for all xs except perhaps at the
points xs = ni/2 (n=l,2,...), where Kί3 has at most first order poles, and the branch
cut introduced by the factor e

ίXslϊlXs.
For |xj < i we obtain from (94) using (72) and (93)

K13{x) = x8eW*--»ΣκX (95)
n

where

Kn = Σ \yiy ~ midXn-Jdy - Xn-JΦ*/dy) + 2iy2Φ*mXn _m _,] . (96)

Expansions of Kί3 in power series of xs converging for |xs| larger than 1/2 can be
obtained using expansions of #3 valid for | x s | > ^ according to the method of
Section 4.

Although #!*, # 3 , Φ*, and Xn depend on y, K13 and κn are independent oϊy.
This is a direct consequence of the Wronskian (17). We can also prove that
dκn/dy = 0 by direct differentiation of (96) and use of (B19). Since κn is a constant
it can be evaluated for any y. We choose to evaluate it for y = 0 using the order
relations (B24), (B25), (B50), and (B51). Since these relations hold for n>0 we
have to consider separately the m = 0 and m — n terms in the sum (96). After some
calculations we find using (B26) and (B52) that for n^O

κn=-λn = 2i II yPMyXn - i)/dy)dy. (97)

Explicit evaluation with Xo and Xt from (B47) and (B48) gives

κo = O, Kl = i(-ί)', (98)

(99)
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The evaluation of κ2 has been made possible after factorial integration of (97) for
n = 2 and use of the formulas

ί yQι{d{yPύ/dy)dy = hy2?^ -ky-\ \n(y - 1 ) , (100)

(101)

The last relation can be derived from definite integrals [34] containing Pι and Qt.
It can be shown that for n = 2 the explicit calculation of X2(y) from (B49)

requires the calculation of the integral

${ dy In y/(y-l) (102)

in terms of elementary functions, which is not possible. Thus Xn{y) for n^2
cannot be given explicitly as X0(y) and X^y) by (B47) and (B48). Hence for n>2
κn can be calculated numerically only from (97).

To evaluate Kί4.(xs) we use 0tί as given by (40) and 01\ as given by (63) and
(65). We find

K14(xs) = KUxs) (103)

with Kί3 given by (95) and consequently for \xs\ <\

« i 4 ω = ̂ " i 3 C β ( l n x ' " 1 ) Σ ' c ? ^ ( 1 0 4)
n

Since κn is a constant, K* is the complex conjugate of κn. K14(xs) is analytic in xs

for all xs except perhaps for xs= —ni/2 (n = l,2,...), where it has first order poles
at the most.

The solution &2 as defined by (32), (33), and (34) does not contain the imaginary
unit i, hence

y, χ s ] (ios)

Substituting into (91) we find

K23(xs) = K13(xs) lnxs + K2,3(xs) (106)

where

K2,i,{xs) = xsy{y-\)l®'2*d®Jdy-!M3d®'2*ldy-\. (107)

As given by (106) and (107) K2i(xs) has a branch cut introduced by In xs and perhaps
first order poles at xs = ni/2 (n = ί,2,...). It is analytic in xs in the rest xs-plane.

We use now the F-description to calculate Kr3. With

ly, x J (i08)

and ίΆ^y, x s] given by (65) expression (107) becomes

Kr3(xs) = xse
ix^ »• - "y(y - l)(^2'*d^3/dy - ^3d^*/dy + (2ixsy/iy ~ IWfF*) •

(109)

Using (56) and (72) we obtain for \xs\<%

K r 3 ( x s ) = x / ^ l n ^ - 1 ) Σ κ X , (HO)
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where

< = Σbfo-l)mdXn-Jdy-Xn-JΨt/dy) + 2iy2Ψ*Xn-n-A. (Ill)

For n = 0we have directly from (111) using (B37) and (B47)

ιcΌH-1) 1 . (112)

For n>0 since κ'n (and Kr3) is independent of y we evaluate the right side of (111)
for y = 0. Using the order relations (B39), (B40), (B50), and (B51) we find

kn = 2μn-lί-2σ(Γβλn (113)

with λn and μn given by (B52) and (B53). For n — \ the explicit evaluation of the
integrals (B52) and (B53) gives

(114)

The calculation of κ'2 is complicated and will not be given here.
Combining expressions (93), (106), and (110) we obtain for \xs\ < |

Working along the same lines we find

with K* and K'* the complex conjugates of κn and κ'n. Statements similar to those
made for K23(xs) can be made for K24(xs).

From the expressions found for Ku (i,j= 1,2, 3,4) we find easily that as xs->0

lim Xo(x s) = 0, lim K23(xs)/K24(xs) = - l im K13(xs)/K14(xs)= 1, (117)

which were expected since all 0ti reduce to jt(x) as xs-+0 and they become linearly
dependent.

7. General Remarks

The main results of this paper can be considered as answers to the three questions
raised in the introduction. The Equations (24), (35), (45), (56), (72), and (79) give
analytic continuations of radial functions outside their original circle of con-
vergence. The relations (29), (39), (49), (60), (76), (77), and (84) relate the radial
functions to the flat-space solutions jt(x) and nt(x). Finally the expressions (90),
(95), (104), (115), and (116) give the coefficients X 0 (xs) of a linear relation connecting
any three M{. All these results provide a more rigorous mathematical basis for
studying weak fields in blackhole space-times.

Beyond the above mentioned concrete results the procedure used in this
paper suggests a new approach for studying the radial functions and at the same
time shows that there are certain limits in the analytical study of such functions.
The new approach consists in studying the properties of sequences of functions
satisfying the differential equation (Bl) or (B19). Other properties of these sequences
beyond those presented in Appendix B can shed more light in the behavior of
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radial functions. Many relations presented in this paper, i.e. those relating 0t{ to
jtix), can be generalized to order relations. On the other hand the proven fact that
members of the sequences Φn, Ψn, Xn, Un cannot be determined explicitly for
n>\ shows that numerical calculations are a necessity beyond this point. Thus
i.e. κn in (95) has to be found numerically for n>2.

A more complete description of the radial functions and of their relationships
to the special cases (k = 0 or rs = 0) will be presented in a subsequent paper where
similar results will be established for radial functions related to the irregular
singular point x = oo.

Appendix

A. Two Theorems on Uniform Convergence

We present here two theorems used repeatedly in this paper to prove the analyticity
of a power series with respect to a parameter which appears in the coefficients of
the series.

Theorem Al. We consider the series

Σfn(s)oin and f>/π(s)α", (Al)
n = 0 n=0

where a is a positive number. The coefficients fn(s) are defined by the recurrence
relations

fo{s) = 1 , fn(s)=Σ Qnmis)fn -«(*) M Π > 0 , M < + 00 , (A2)
m = l

with Qnm(s) given functions of s defined on a region Ds of the complex s-plane. If

Jjm^ ρnm(s) = ρm(s) (m = 1,2,..., M) (A3)

uniformly on Ds and the functions ρnm(s), ρm(s) are bounded on Ds then there exists
a number a0 such that for α < α 0 the series (Al) converge uniformly on Ds.

Proof. Since the limits (A3) exist uniformly on Ds, for every ε > 0 there is an integer
N (depending on ε only) such that n ̂  N implies

\Qnm(s)-Qm(s)\<ε. (A4)

If λ is an upper bound for all ρm(s) (m = 1,2,..., M, seDs), then we conclude from
(A4) that

\ρnm(s)\<λ + ε. (A5)

Without any restriction we can assume that λ>l.
By induction we prove easily that for fixed n fn(s) is bounded on Ds. Hence

there is a number A such that

|/π(s)|<.4 for all n^N, seDs. (A6)

We claim now that for n = 0,1,. . . , + oo we have

\fn(s)\<AMn(λ + ε)\ (A7)
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For n^N this is obvious from inequality (A6). For n>N we prove the relation
(A7) by induction. In fact if we assume that (A7) is true for /0(s), ...,/„-1(5), then
using (A5) we obtain from (A2)

fn(s)<[ Σ \fn-m(s)\)(λ + ε)<( £ AMn~^λ + ε)""mUλ + ε)<AM»{λ + εf,
\m=ί I \m=l / ^

namely inequality (A7).
If we choose now ao = M~1(λ + ε)~1, then for α < α 0 the series

£ AMn(λ + ε)nan and £ nAMn(λ + ε)V (A9)
n=0 n = 0

converge. But

I /B(s)α" I < AMn(λ + ε)"α", (A10)

hence according to Weierstrass's test the series (Al) converge uniformly on Ds for
α < α 0 .

Theorem A2. We consider the series

f/n'(s)α" and £ π/π'(s)α", (All)

where a is a positive number. The coefficients fή(s) are defined by the recurrence
relations

M' M"

Ms)=l, / „ » = Σ σπm(s)/n'_m(s)+ X τnm(s)/n_m(s) (A12)
m = 1 m = 1

wiί/i /n(s) satisfying (A2) and ρπm(5), σπm(s), τ/jm(5) ^ii eπ functions of s defined on a
region Ds of the complex s-plane. If Qnm{s\ σnm{s) and τnm(s) satisfy uniformly on Ds

relations similar to (A3) and the functions ρπw(s), σnm(s), τnm(s), ρm(s), σm(s), τm(s)
are bounded on Dsi then there exist a number a0 such that for a < a 0 the series (Al)
converge uniformly on Ds.

Proof. As in Theorem Al for every ε > 0 there is an integer N such that for n^N
\ρnm(s)\, |σnm(s)| and |τnm(s)| are smaller than λ' + ε and \fή(s)\ smaller than A'
\_λ'>l is an upper bound for ρm(s), σm(s), τm(5)]. Thus for n^N we have

\fM < AW + M")\λf + ε)B (A13)

and by induction for n > N

M' M" \

Σ l/»'-»(s)l+ Σ \fn-m(s)\)(λ' + ε)<A'(M' + M"r(λ' + εγ. (A 14)
= 1 m = 1 /

Thus λ\ A and M' + M" replace λ, A and M in (A10) and the series (All) converge
uniformly on Ds for

B. The Sequences Φ'n, ψ'n9 Φn, Ψn, Xn, Un

The main contributions of this paper concerning questions of analytic continu-
ation, the relation of the radial functions to the Bessel functions and the evaluation
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of K 0 (xs) have been made possible through the study of some sequences of func-
tions Φ'n, Ψ'n9 Φn, ψn9 Xn and Un. The most important properties of these functions
are presented here as theorems.

Theorem Bl. // Φ'n{y) {n = 0,1,..., + GO) is a sequence of functions satisfying the
differential equations

y(y-ί)d2Φ'n/dy2 + (2y-ί)dΦ'n/dy-l(l+ί)Φ'n= - (y3/(y - ί))Φ'n _ 1 (Bl)

and the conditions

Φ'o(O)=ί, dΦ'0(y)/dy\y=0= -1(1+1), 1

Φ;(0) = 0 , dΦ'n(y)/dy\y = 0 = 0 for n > O , j ( '

then

(a) Φ'0(y) = P,(ί-2y), (B3)

(b) forn>0
Φ'n(y)=2Pι J5 tfliy- l))ρ;Φ;_ 1dy-2Qι f0 (y3/(y- l))P^'n^dy, (B4)

(c) for riίiO as y-> +co

φ'n(y)=φ'ny
ι+2n+o(yί+2n) (B5)

with

l (B6)

Proof. For n = 0 (Bl) reduces to the Legendre differential equation and its solution
Pι(l—2y) satisfies the conditions (B2). For n>0 we can easily verify that Φf

n(y)
as given by (B4) satisfies the differential equation (Bl) and the conditions (B2).

To prove properly (c) and some other properties later in the appendix we
need the formulas

Σ n)\{nϊ)2y1 (B7)

and

Qι(l-2y) = lj(-l)ι+ίί(l + n)\-]2[_2nl(2l + n+l)\r1y-n-1-1 (y>ί). (B8)
n

As y-> + oo we obtain

Pι=Pιyi + o{yιh P i = (-l)'(20!/(/!)2 (B9)

Qι=q,y~ι~1 + o(y-'-χ), q( = (-l) i + 1(/!)2/2(2/ + l ) ! . (BIO)

Thus for n = 0 property (c) is true with φ'0=pι. If we assume that it is also true for
Φ'o, Φ\,..., Φ'n-u then from (B4) we have as y-* + oo

(Bll)
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where y0 is an arbitrary number large enough for expansion (B8) to hold (some
intermediate calculations have been ommitted). Thus (B5) is true with

φ i = - ( 2 « ( 2 / + 2 n + l ) Γ > ; _ 1 . (B12)

From this recurrence relation we prove easily the general expression (B6).

Theorem B2. // Ψ'n{y) (n = 0,1,..., oo) is a sequence of functions satisfying the
differential equations (Bl) and the conditions

ldΨΌ/dy - y-' +1(1+1) In yl=0=U

y=o = 0 for

then

(a) ΨΌ(y) = [1 - 2σ(/)]Pz(l - 2y) - 2ft(l - 2y) (B14)

with [32]

σ[ϊ)= £ m " 1 , (B15)
m = l

(b) for n>0 Ψf

n(y) satisfies the same integral recurrence relation (B4) as Φ'n,
(c) for n^O as y-> + oo

2 1 1 ) (BIO)

with

Ψ'n=[l-2σ(l)Wn. (B17)

Proof. We verify easily that ^όW and Ψ'n(y) satisfy the differential equation (Bl).
Using the relation [33]

&(l-2j;) = iP,ln((y-l)/3,)- £ m " 1 ? ^ ^ (B18)
m=ί

we find that ^(j;) satisfies the conditions (B13). From expression (B4) written for
Ψ'n(y) w e verify the conditions (B13) for Ψ'n{y) with n>0. Finally the order of
Ψ'n{y) and expression (B17) for \p'n are derived as in the case of Φ'n{y) in Theorem Bl.

Theorem B3. If Φn(y) (n = 0,1,..., +oo) is a sequence of functions satisfying the
differential equation

+ (2y-ί)dΦJdy-Kl+ί)Φn= -2iyd(yΦn^)/dy (B19)

and the conditions

Φ 0 (0)=1, d

ΦB(0)=0, dΦJdy\y=o = 0 for n>0,
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then

(a) Φ0(y)=Pι(ί-2y), (B21)

(b) Φ 1 ( y ) = - i [ y + l n ( y - l ) ] P I , (B22)

(c) for n>0

Φn(y) = AiPι % yQMdyHyΦn-My-4iQ, JJ yPι{dldy){yΦn.Jdy, (B23)

(d) /or n>0as y->0

Φn(y) = ρny
2n + o(y2n+1 In" y), (B24)

dΦn(y)/dy=2nQny
2"-γ + o(y2n In" j) (B25)

with

ρn = i"(2n)\/22n(nl)3 (B26)

(e) /or n §: 0 as y—> + co

"), (B27)

w/ί/z

+ l ) ! . (B29)

Proo/. Properties (a), (b), and (c) can be proved as in Theorems Bl and B2 by
direct substitution of (B21), (B22), and (B23) into (B19) and (B20). For n=\ we
can derive property (d) from expression (B22). Furthermore, as j/->0 we have
from (B7) and (B18)

pι = 1 + o{y In y), dPJdy = o{\n y) (B30)

and

&=-ϊlny~σ(l) + o(y ln2y), dQι/dy=-^y~l+ o(ln2y). (B31)

If we accept property (d) for Φ l 5 Φ 2 , . . . , Φn-1 we obtain from (23) for n^2

+ o{y2n \nnyy]dy - 4 i [ - £ In y - σ(/) + o(y In2}/)]

- 1 i ρ M _ y " + o( 3; 2"+ 1 ln" };) 5 (B32)

where some intermediate calculations have been ommitted. Thus the relation
(B24) has been proved with

ρ n _ 1 . (B33)

From this recurrence relation we prove (B26). Working along the same lines we
prove (B25). Note that it is not permissible to derive (B25) from (B24) by dif-
ferentiation.
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Property (e) can be easily verified for Φo and Φx from expressions (B21) and
(B22). Assuming (e) for Φθ9 Φl9 ..., Φn_1 we have from (B23) using (B7), (B8),
(B9) and (BIO)

n + o(yι + n), (B34)

namely the relation (B27) with

(B35)

Working along the same lines we prove (B28) and from the recurrence relation
(B35) we derive the expression (B29) for φn.

Theorem B4. If Ψn(y) (n = 0, 1,..., +00) is a sequence of functions satisfying the
differential equation (B19) and the conditions

=o = 0 for π > O , J l '

then

(a) fo(y) = [l-2σ(/)]P ί(l-2y)-2ρ ί(l-2j;), (B37)

(b) Ψ1{y)=-i[y + ln{y-VβΨ0(y), (B38)

(c) for n > 0 Ψn(y) satisfies an integral recurrence relation similar to (B23),
(d) for n>0 as y->0

ψn(y) = Gny
2n In y + τny

2n + o(y2n +ί\nn+1y), (B39)

d Ψn(y)/dy = 2nσny
2n'1 In y + (σn + 2nτ n)y2n ~ι + o(y2n In"+ x y) (B40)

wfί/i

σn = in(2n)\/22n(nl)\ (B41)

(e) /or π^Oαs y-> + oo

/ + / (B42)
l 1 - 1 ) (B43)

with

xpn=ll-2σ(ϊ)-\φn. (B44)

Proof. Properties (a), (b)5 and (c) can be proved by direct substitution into the
differential equation (B19) and the conditions (B36). For / t = l w e derive property
(d) from (B38). For n> 1 property (d) can be derived from the integral recurrence
relation satisfied by Ψn [property (c)]. The detailed calculations show that we
have to keep two terms in (B39) (and not one as was the case with Φn in Theorem B3).
We find

'iσn^ and τn= - (n- l ) (2 W

3 )- 1 ΐ (τ n _ 1 +(2n- l ) (2n 2 )- 1 i τ l i _ 1

(B45)
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from which we obtain (B41) and a more complicated formula for τn. Finally we
prove property (e) working along the same lines as for property (e) in Theorem B3.

Theorem B5. // Xn(y) (n = 0,1,..., + oo) is a sequence of functions satisfying the
differential equation (B19) and the conditions

X0(l)=l, d y

Xn(ί) = 0, dXJdy\y=1 = W+l)+Ώ(-2W for n>O,

then

(a) X0(y) = (-l)ιPι(ί-2y), (B47)

(b) X,(y) = [1 - 2σ(/)] i( - \)% + 2i( - l)'ρ, - i( - ί)'[y + ln(y - 1)]P;, (B48)

(c) for n>0

xn(y)=4ίP, Jϊ yβ i (^y)(y^ n - 1 ) ^ - 4/β, J? ypι(d/dy)(yxn .jdy, (B49)

(d) /or n>Q as y->0

Xn(y) = λn In y + (2μn + 2σ(l)λn) + o(ί), (B50)

JXn(3;)/^ = An3;-1 -/(/+ l)An lny + o(ln y) (B51)

with

λn=-2i JJ ^ ( d / d j ; ) ^ , , _ i ) ^ , (B52)

μ n = -2/ jέyρί(ί//dy)(yXn_1)^> (B53)

(e) /or π ^ 0 as 3;-* + 00

^ ω = Zny
+" + Φ'+")> (B54)

ίίXH(y)/^ = (/+π)χny+"-1 + o(y+"-1) (B55)

with

l. (B56)

Proo/. We prove easily that (B47), (B48), and (B49) satisfy (B19) and that Xo and
* ! fulfill the conditions (B46). If Xn-i(y) satisfies (B46) then as y-*l

Xn_1(y) = o(l) and dXn.1(y)/dy = U(l+l) + ^(-W-1 + o(l). (B57)

Thus (B49) gives as y-*l

= o(l) (B58)

while a similar calculation gives

^ n ( y ) / ^ = [ / ( / + l ) + l ] ( - 2 i ) " + o(l). (B59)

The relations (B58) and (B59) imply the conditions (B46) for Xn.
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Property (d) can be verified for n = 1 from (B48) and then proved by induction
from (B49). Property (e) is proved as in Theorems B3 and B4. In the proof the
behavior of P/5 Qι and their derivatives near y = 0, y=l, and y = +00 is obtained
from (B7)5 (B8), (B9), (BIO), (B18), (B30), and (B31).

Theorem B6. // Un(y) (n = 0,1,..., + 00) is a sequence of functions defined by the
relations

U0(y) = Qι(l-2y) (B60)

and for n>0

Un(y) = 4iPι βnyQtid/dyKyUn_ x)dy - AiQι f0 yPι(d/dy){yUn^ t)dy (B61)

withyn= + 00 for n ^ 2 / + l and yn = 0 for n>2l+l, then
(a) the sequence Un(y) satisfies the differential equation (B19),

(b) U1(y)= - i [ y + l n ( y - l ) ] f t , (B62)

(c) for n>0 as y-^0

Un(y) = vn + o(l), dVn(y)/dy=-l(l+ί)vn + o(l) (B63)

with

„ _i4i joyQi(d{yV n ^) ldy)dy for n £ 2 / + l , l

" 1 0 for n>2l+l,ί ( B 6 4 )

(d) for n}± 0 as y-> + oo

UM = uy-ι-χ+o{y-1-1), (B65)

d l / π O / d y = ( « - / - !)«„/ ~' ~ 2 + o ( / " ' " 2 ) (B66)

with

J(-l)i+1(/!)3(-20"(2/-π)!/2(20!(2/+l)!(/-n)! /or n^/,1

0 for „>/.} ( B 6 7 )

Proof. We prove easily properties (a) and (b). For O^rc^ί we prove property (d)
by induction. We verify (B65), (B66), and (B67) for n = 0 and n=ί. Assuming
property (d) for 0, 1,..., n — 1 we have from (B61)

-4iQ, Jδ [ ( n - i - ^ P A - i / ^ + Φ " " 1 ) ] ^ (B68)

= MBy"-'-1 + o(y-- 1- 1), (B69)

where

un= -2i(l+l-n)n-1(2l+l-ny1un-1 . (B70)

When n= /+1 the first term in the integrals of (B68) vanishes. Thus we obtain
(B67). Furthermore, since the term o(yn~2l~2) in the first integral of (B68) is equal
to const. xyn~2l~3, the integral diverges when n>2l + l and we have to change
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yn from +00 to 0. Property (c) can be proved easily by induction from (B61). It
should be stressed that whenever an integrand becomes infinite at y = 1 we obtain
the Cauchy principal value of the integral.

References

1. De la Cruz,V., Chase, J.E., Israel, W.: Phys. Rev. Letters 24, 423 (1970)
2. Davis, M., Ruffini,R., Press, W.H., Price, R.H.: Phys. Rev. Letters 27, 1466 (1971)
3. Press,W.H., Teukolsky,S.A.: Astrophys. J. 185, 649 (1973)
4. Price, R.H.: Phys. Rev. D5, 2419 (1972)
5. Price, R.H.: Phys. Rev. D5, 2439 (1972)
6. Misner,C.W., Breuer,R.A., Brill, D.R., Chrzanowski,P.L., Hughes III,H.G., Pereira,C.M.:

Phys. Rev. Letters 28, 998 (1972)
7. Davis, M., Ruffmi,R., Tiomno,J., Zerilli,F.: Phys. Rev. Letters 28, 1352 (1972)
8. Chitre,D.M,, Price, R.H.: Phys. Rev. Letters 29, 185 (1972)
9. Detweiler,S.L., Ipser, J.R.: Astrophys. J. 185, 675 (1973)

10. Ipser, J.R.: Phys. Rev. Letters 27, 529 (1971)
11. Fackerell,E.D., Ipser, J.R.: Phys. Rev. D5, 2455 (1972)
12. BardeenJ.M., Press,W. H.: J. Math. Phys. 14, 7 (1973)
13. Carter,B.: Phys. Rev. 174, 1559 (1968)
14. Carter, B.: Commun. math. Phys. 10, 280 (1968)
15. Teukolsky,S.A.: Phys. Rev. Letters 29, 1114 (1972)
16. Teukolsky,S.A.: Astrophys. J. 185, 635 (1973)
17. Brill,D.R., Chrzanowski,P.L., Pereira,C.M., Fackerell,E.D., Ipser,J.R.: Phys. Rev. D5, 1913

(1972)
18. Wald,R.M.: J. Math. Phys. 14, 1453 (1973)
19. Stewart, J.: Proc. Roy. Soc. Lond. A.344, 65 (1975)
20. Kundt,W., Newman,E.T.: J. Math. Phys. 9, 2193 (1968)
21. Persides,S.: J. Math. Phys. 14, 1017 (1973)
22. Persides,S.: J. Math. Phys. 15, 885 (1974)
23. Stewart, J.: Proc. R. Soc. Lond. A. 344, 51 (1975)
24. Matzner,R.A.: J. Math. Phys. 9, 163 (1968)
25. Persides,S.: J. Math. Anal. Applic. 43, 571 (1973)
26. Israel, W.: Commun. math. Phys. 8, 245 (1968)
27. Anderson, J.L., Cohen, J.M.: Astrophys. Space Sci. 9, 146 (1970)
28. Cohen, J.M., Wald,R.M.: J. Math. Phys. 12, 1845 (1971)
29. Stewart, J.: Phys. Letters 44 A, 499 (1973)
30. Jackson,J.: Classical Electrodynamics, p. 539. New York: Wiley 1962
31. Coddington,E.A., Levinson,N.: Theory of Ordinary Differential Equations, pp. 22—37. New

York: McGraw-Hill 1955
32. Magnus, W., Oberhettinger,F., Soni,R.P.: Formulas and Theorems for the Special Functions

of Mathematical Physics, p. 175. Berlin-Heidelberg-New York: Springer 1966
33. Abramowitz,M., StegunJ.A.: Handbook of Mathematical Functions, p. 334. New York:

Dover 1968
34. Gradshteyn,I.S., RyzhikJ.M.: Table of Integrals, Series, and Products, p. 821. New York:

Academic Press 1965

Communicated by J. Ehlers

Received June 7, 1975






