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Abstract. This paper contains a detailed study of the flow that the classical
Hamiltonian

induces in R4, Θ3 representing a convergent power series that begins with a
third order term.
In particular the existence and stability of periodic orbits is investigated.

0. Introduction

This paper contains a detailed description of the flow that the classical Hamiltonian
(1.1) induces in its phase space R4. The Hamiltonian describes two harmonic
oscillators with equal frequencies that are coupled through a nonlinear force. This
force can be quite general. The only requirement is that it derives from a potential
that is represented by a convergent power series in the position and momentum-
variables of the oscillators.

Our investigation was stimulated by the special case of the Henon-Heiles
Hamiltonian. A detailed study of that special case can be found in Ref. [1]. Ref. [1]
also contains a general result about Hamiltonians of the form (1.1), namely:
conditions are formulated under which Moser's twist theorem implies the existence
of infinitely many invariant tori on each energy surface (compare the theorem on
p. 313). As a side result of our investigation it is shown (Section 5) that these
conditions cannot be quite correct and a correction is suggested.

Our detailed investigation of the flow that the Hamiltonian (1.1) induces in
R4 also uses as its main tool the Gustavson normal form. Because the symplectic
transformations that leave the leading term of the Hamiltonian (1.1) invariant
constitute exactly the group ί/(2), the Gustavson normal form is best viewed as
a function over the Lie algebra of that group. We split the Hamiltonian into two
parts: the unperturbed or truncated Hamiltonian consisting of the sum of the
leading term and of the first non vanishing term of the Gustavson normal form,
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which we assume to be a polynomial in the generators of the Lie algebra w(2) of
degree n, and a perturbation which constitutes the (suitably transformed) remain-
ing part of the power series in (1.1). In Sections 1-3 we keep n quite general,
postponing the most important case n = 2to Section 4. In Section 1 we investigate
the question of the uniqueness of the unperturbed Hamiltonian and find that
exactly the subgroup SU(2) of U(2) connects different equivalent unperturbed
Hamiltonians with each other. Here two unperturbed Hamiltonians are called
equivalent if they are obtained by a canonical transformation from the same
Hamiltonian (1.1). Moreover, the representation that this group induces in the
space of polynomials of degree n over (7(2) is nothing but the representation

of SO(3).
Another ambiguity in the coefficients of the unperturbed Hamiltonian stems

from the fact that in the problem at hand, the sum of the squares of the generators
of SU(2) is the square of the fourth generator of 17(2), which therefore has great
resemblance with the angular momentum of a top. In the case n = 2 this relationship
between our problem and the problem of the asymmetric top is described in
exact terms in Theorem 3.

The flow of the unperturbed Hamiltonian in R4 is completely determined by
the flow that it induces on the unit sphere S2 in the three dimensional space
su(2)πso(3\ which we identify with R3. Of particular interest are the critical
points (abbreviated: c.p.'s) of this flow, which in turn agree with the c.p.'s of the
unperturbed Hamiltonian, viewed as a function over S2. General formulae for
the indices of those c.p.'s are developed.

For the case n = 2, a complete account of the relationship between the un-
perturbed Hamiltonian and the possible stable and unstable c.p.'s that it possesses
on S2 is presented. Needless to say, this task is greatly simplified by choosing
from among all possible unperturbed equivalent Hamiltonians the simplest one
(the so-called "diagonalized Gustavson normal form").

The theory will be illustrated here with the help of the familiar example of the
Henon-Heiles model, and the results will be compared with those of Ref. [1]. It
turns out that we obtain one additional c.p., which, to the author's knowledge,
has not yet been discovered due to a special choice of coordinates. These co-
ordinates are like those obtained by the stereographic projection of S2 regular
everywhere except in exactly one point. (See Fig. 1.)

In Section 3 we will show that to each c.p. that the unperturbed Hamiltonian
possesses on S2, there corresponds a one-parametric family of periodic solutions
of the equations associated with the full Hamiltonian. The stability of these
periodic solutions will be investigated with the help of Moser's twist theorem
(Theorem 1). A stable c.p. represents a family of stable periodic solutions only if
the expression (3.5) is nonzero. It turns out, however, that for a certain type of
c.p.'s that we call "c.p.'s of the second kind" and whose existence is partly due to
the vanishing of certain coefficients in the unperturbed Hamiltonian (for a more
exact definition see Section 4), their stability is already sufficient for the stability
of the corresponding periodic solutions (Theorem 4).
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1. General Considerations

As announced in the introduction, we intend to study the flow induced in R4 by
Hamiltonians of the form

00

k = 3

where Hk is a homogeneous polynomial of degree k in the variables xu yu x2, y2

and the infinite sum (1) represents some function that is real analytic at the origin
oϊR4.

The fundamental symplectic 2-form corresponding to (1) is
2

ω=ΣdykΛdxk. (2)
k=l

It turns out that the variables zk, zk, and Nk, ak (k= 1,2) defined by

fe=conjugate complex of zk,Nk=\zk\
2 (k=ί,2)1

are particularly well adapted to the problem at hand.
In these variables the fundamental 2-form ω becomes

2 2

ω = (1/i) Σ (dzkΛ dΈk) = Σ dNkΛ d^k (4)
k=l k=l

For any two (complex valued) analytic functions /, g, defined on the phase space,
we define the bracket

[/>9l=Σ ((df/dzk)(dg/dzk)-(dg/dzk)(df/dzk)), (5)
k=ί

such that the time rate of change of a function / under the flow induced by H in
R4 is given by

/ = * [ # , / ] • (6)

Here the dot denotes derivative with respect to the time t.
The study of the flow in R4 corresponding to the Hamiltonian (1) is facilitated

if we bring (1) into Gustavson normal form. For this purpose it proves to be
advantageous to introduce the following quadratic expressions in the z-variables:

where

(i o\ /o -ί\ / o n / - l o\

are the Pauli matrices and z, zf denote the column matrix I : and its adjoint
\Z2/

(z1?z2), respectively.
Because Mo will play a special role analogous to the magnitude of the angular

momentum of a top we will also denote it by J.
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The following relations are immediate consequences of the definitions

M, = Im (ztz2), M 2 = Re(z,z2), M 3 = ±(JV2 -Nγ)\

(9)

The Mfc's (fc = 0,1,2, 3) obey bracket relations that are isomorphic to those of w(2).
In particular, we have:

[Afl9 M 2 ] = iM 3 (10)

and cyclic, i.e. the Mfc's (/c=l,2, 3) span the subalgebra su(2)&so(3).
Now the normal form theorem [Ref. 2, 3] states that there exists a formal

transformation of variables

such that in the new variables zk (k= 1,2) the Hamiltonian // has the form 2J + K,
where X is a formal power series in the variables zk (fc=l,2) which has zero
bracket with the leading term J.

In terms of our generators of w(2), however, this means that K has the form

K= Σ Km(J,Ml9M29M3)9 (11)
m = 2

where i£m is a homogeneous polynomial of degree w, defined on the Lie algebra
w(2), and the infinite sum is purely formal. Actually, the Mk's (fc=0,1,2, 3) should
carry carets because they are defined as in (7) with z replaced by z. However, after
the transformation into (11) has been accomplished, we may drop the carets again.

In order to study the analytic Hamiltonian (1), we cannot use the purely
formal expression (11). We must truncate the transformation of variables at some
finite power in order to make sure that the transformation itself, as well as the
transformed Hamiltonian, are still analytic in a suitable neighborhood of the
origin of R4.

In the following we will assume that the transformation of variables leading
to the Gustavson normal form has been truncated in such a way that (1) in the
new variables assumes the form

H = 2J + Kn{J,Ml9M29M3) + Θ2n+1, (12)

where Kn is the first term in the normal form (11) that does not vanish identically
and (92n + i stands for a convergent power series in the new variables that begins
with a homogeneous polynomial of degree 2 n + 1 .

Of course, in most cases we will have n = 2, but while discussing general proper-
ties of the flow corresponding to the Hamiltonian (1), we will keep n quite general
and postpone the case n = 2 to Section 4.

Our strategy is to drop the term Θ2n + 1 first and study the flow of the truncated
or unperturbed Hamiltonian and only afterwards to find conditions under which
at least some features of the flow obtained in this way carry over to the flow
induced in R4 by the original Hamiltonian.
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At this stage, let us note that the coefficients of the polynomial Kn in (12) are
by no means uniquely determined. There are two reasons why this is so. First,
if n is even, then

(J2-M2-M2-M2)n/2 (13)

is a polynomial of degree n in the Mks (fc = 0,1,2,3) that vanishes identically.
Hence, if akokl1i2k3 is the coefficient of Mk

0°M\ιM\2M\2 in Kn and ckokίk2k3 the cor-
responding coefficient in the polynomial (13), then Hn is unaltered by a translation

of its coefficients.
Secondly — and this will be of great importance in the following — we remind

the reader that any transformation of the z-variables

z=Uz9 (15)

where U belongs to the group SU(2), is symplectic [i.e. leaves (4) invariant] and
simultaneously induces a rotation R(U) of the vector M = (M1, M 2 , M 3 ):

M = R{U)M (16)

by means of the formula

WσkU=ΣR(U)klσι. (17)
1=1

Obviously, the linear space of homogeneous polynomials defined on the Lie
algebra w(2) is carried into itself by such transformations.

2. The Flow of the Truncated (Unperturbed) Hamiltonian

In this section we study some features of the flow corresponding to the Hamiltonian

n(J,Ml9M29M3), (1)

where Kn is of degree n in the variables Mk (k = 0,1,2, 3). Introducing the unit
vector x in the direction of M:

M = Jx, x = (x9y,z)9 (2)

we have

Kn(J9M) = rK<»Xx)9 (3)

where K{n\x) = Kn(l, x). K{n)(x) is a polynomial of degree n, defined on the unit
sphere S2, and therefore it has a representation

K{n)(x)=t Σ "ιmYιm(x)> (4)
1 = 0 m= - I

where Ylm(x) are the usual spherical harmonics. Because K{n\x) and J are integrals
of the Hamiltonian (1), it is clear that this Hamiltonian induces a flow on S{2\
whose orbits are the level curves of K{n\x). We will show in a moment that this
flow on S2 determines the flow in the original phase space R4 completely. Antici-
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pating this result for a moment, we note that the critical points (c.p.'s) of the flow
induced by (1) on S2 are the c.p.'s of the function K{n) on S2. Accordingly the end
point of unit vector e is a critical point if there exists a real number λ such that

VJΪn)\x=e = λe. (5)

This is also seen by observing that as a consequence of (1.10) the flow on S2 is
governed by the differential equations

dx/dτ=VxK
{n)xx (6)

where τ = Jn~1t and x denotes the usual cross product.
In order to study the nature of a c.p., we will make use of the following quadratic

form over R3:

Q(x) = (x,(W(e)-λ)x). (7)

Here (,) denotes the usual inner product of R3 and $I(e) is the linear transformation
of R3 associated with the Hessian of K{n) evaluated at e. A c.p. is called degenerate
if Q(x\ restricted to the plane of vectors orthogonal to e, is semi-definite. Obviously,
a nondegenerate c.p. is stable or unstable (elliptic or hyperbolic) depending on
whether Q(x), restricted to that plane, is definite or indefinite. In the following we
mean by a c.p. a nondegenerate c.p., unless stated otherwise.

If e is the position vector of a c.p. on S2, then, by a special unitary trans-
formation of the z-variables (compare 1.15-17), it can always be rotated into the
negative 3-direction. Assuming that such a transformation has been performed,
— e3 = (0, 0, — 1) is a c.p., and consequently we have

(dKM/dx)x=-e3 = (dKM/dy)χss-e3 = 0. (8)

It is easy to see that our criterion for determining the nature of the c.p. reduces
to the determination of the sign of the expression

) = (λ-A11)(λ-A22)-A2

12, (9)

where

An = (d2K^/dx2)x=^ A22=(d2K^/dy2U_e3, Aί2=(d2K^/dxdy)x=^3.

(10)

In short, the index for our c.p. is given by the formula

(11)

We also observe that the special unitary transformation of the z-variables that
brings e into the negative 3-direction can always be chosen in such a way that
4 1 2 = 0in(9).

We now proceed to relate the flow induced by (1) on the unit sphere S2 to the
flow in the original phase space R4. To this end we start from the canonical
variables (Nki α^ (fe=l,2) as introduced in (1.3) and immediately switch to the
new variables

J , φ=oc1 + α 2 ; M 3 , φ = a2-a1, (12)
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in which the fundamental 2-form has the following representation:

(13)

This coordinate system is undefined for M3= + J, i.e., for two 2-planes in JR4

which correspond to the north and south pole of S2. Using (1.3) and (1.8), we find

(14)

or

y= | / l —z2 cos( (15)

Hence, introducing θ by cosθ = z, we see that φ,θ are polar coordinates on S2

and that φ, θ, ψ, 2J 1 / 2 are exactly the kind of polar coordinates in R4 that result
if S3 is viewed as covering space of the rotation group SO(3); i.e., φ, θ,ψ are the
Euler angles whose values are restricted to the following intervals:

0<,φ<2π

(16)

Indeed, by using (1.3), (1.8), (2), and (12) we find that the matrix

-iz

in terms of the angles φ,θ,ψ is identical with the very member of SU(2) that
represents a rotation with Euler angles φ,θ,ψ, namely

_

This identity exhibits the relationship between the old coordinates of R4 and the
new coordinates J, φ,θ,ψ. More explicitly, we have

xx=2J112ήn{{xp-φ)/2) sin^

;2 - 2 J 1 / 2

Although the variables J, φ, θ9 ψ are not quite canonical, because the fundamental
2-form expresses itself in these coordinates as follows:

ω = dJ A dψ + (cosθ dJ-Jsinθdθ) A dφ , (18)

it is easy to write down the corresponding Hamiltonian equations. We find

ψ = 2 + Jn~1 \nK{n\x) + cot θ 6K{n)/eθ(x)']

φ= -(Jn-1/ύnθ)dK{n)/dθ(x) (19)

θ = (Jn-ί/smθ)δK{n)/dφ(x),

where x = (sin θ sin φ, sin θ cos φ, cos θ).
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We are now in the position to give a complete description of the flow in R4

and its relation to the flow on S2. In doing so, we have to keep in mind that our
coordinate system does not cover the poles of S2 which correspond to the 2-
planes (χί=y1 = Q) and (x2

:=y2=zty- ^ 4 *s decomposed into concentric 3-spheres
of radius 2J 1 / 2, each of which is invariant under the flow. The flow on each such
sphere is completely determined by the flow on S2 governed by the last pair of
the Equations (19) (where we stretch the time by J " " 1 ) . The orbits on S2 are
simply the level curves of Kin\x). To the critical points on S2 which (outside the
poles) are characterized by

dK{n)/dθ{e) = 0, dK{n)/dφ(e) = 0, (20)

and whose index coincides with the sign of the determinant

d2κ{n)/dθ2 d2κ{n)/dφdθ

δ2κ{n)/δφdθ d2κ{n)/dφ2 '

there corresponds a one-parametric family of periodic solutions with period

(21)

l + inJn-χKin)(e). (22)

A particular case occurs if K{n) is independent of φ, i.e., a linear combination of
the first n + 1 Lengendre polynomials [compare formula (4)]. In this case θ is an
integral, i.e., the orbits on the unit sphere in M-space S2 are circles of fixed latitude
and the corresponding motion in R4 is quasi-periodic with frequencies

1 [βK{n) + cot θ dK{n)/dθ~]

and (23)

" Vsin θ)dK{n)

l

respectively. The only critical points (c.p.'s) on S2 are the poles. They represent
two one-parametric families of stable periodic solutions with period

1 + 1 Jn~1nK{n\±e3). (24)

Fig. 1. The point P on the unit sphere is taken
into the point Q by the map (25)
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The validity of the last statement can be checked using any coordinates that are
regular on the poles. Such coordinates will also be used in the next section in
which we will discuss the effect of the inclusion of the term Θ2n + i (compare 1.12)
on the flow discussed in the present section.

In order to prepare ourselves for such a discussion we will introduce new
coordinates by a variant of the stereographic projection. From the north pole of
the unit sphere S2 we first project S2 onto a sphere of radius 2 J1/2 centered at the
north pole and subsequently project the latter sphere vertically onto the equatorial
plane (see Fig. 1).
The coordinates of the image point are denoted by (ξ, η). We have

z))smφ

z))ί/2cosφ. (

Using L = 2J and ax as coordinates in addition to ξ and η, the symplectic 2-form is

ω = dL A άθLγ + dη Λ dξ , (26)

and the Hamiltonian becomes

H0 = L + (L/2yF(ξ,ή)9 (27)

where

F(ξ,η) = K*Xίl-(ξ2 + η2)/4y/2ξ, [ l-O^ + ̂ W ^ , -l+(ξ2 + η2)β) (28)

and

The validity of the statement made about the south pole of S2 before formula (24)
is now obvious, because if K{n) is a linear combination of the first n + 1 Legendre
polynomials, it is a polynomial in z alone and therefore a polynomial P in ρ =
(ξ2 + η2)/L\ K{n) = P(ρ). The corresponding Hamiltonian equations are

(29)

We see again that the motion in general is quasi-periodic with periods

(L/2f ~1Pf and 1 + \{Lβ)n~x\_nP-qP'~\ . (30)

However, using these new coordinates it is immediately evident that the south
pole represents a stable periodic solution with frequency

l + i(L/2)""^P(0). (31)

The statement about the significance of the north pole contained in (24) can be
proved in a similar fashion.
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In concluding this section we state the relation between the new coordinates
L, α l 5 ξ, η and the original variables of R4 as:

3. The Flow of the Full Hamiltonian

In this section we will study the effect of the inclusion of the term Θ2n + ι (see 1.12),
which we call perturbation term. The unperturbed motion has been studied in
the last section. We have found that to each stable/unstable c.p. that the un-
perturbed motion possesses on S2, there corresponds a one-parametric family of
stable/unstable periodic solutions.

Furthermore, we have studied the case in which the unperturbed Hamiltonian
is a linear combination of Legendre polynomials and have shown that in this case
all solutions are quasi-periodic with the exception of those on the planes x1 =
yi=0 and x2 = y2 = 0, which are periodic.

We will show in this section that under certain additional conditions both
statements essentially carry over to the flow induced in R4 by the full Hamiltonian.

In order to give an exact formulation of the first statement, we assume that
e is a c.p. of the flow induced on S2 by the unperturbed Hamiltonian. As already
remarked above, we may, without loss of generality, assume that e= — e3 and
Λί2 = 0 (see. 2.9), because this can always be achieved by a suitable special unitary
transformation of the zk-variables (fc=l,2). In the following we will therefore
assume that e and A12 have the stated values. As a consequence (2.9) will hold.
Besides the partial derivatives introduced in (2.11) we will use all the other second
order derivatives of K{n) evaluated at x= — e3, which we will denote accordingly

(1)

From (2.5) we derive

In addition we use the abbreviations

A — ) A R—2ι A Γ—2 A ΠΊ

and

A 0

0 B ~A7, . (4)D =

We are now in the position to state the first theorem.
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Theorem 1. (i) To each unstable critical point (remember c.p. means non-
degenerate c.p.) of the flow that the unperturbed Hamiltonian induces on S2 there
corresponds an unstable one-parametric family of periodic solutions of the equations
associated with the full Hamiltonian, the family parameter being the energy.

(ii) An analogous statement holds if the critical point is stable provided that in
addition the following expression is nonzero:

(5)

where

AB = A{λ)>0.

In order to prove the theorem, we use the coordinates introduced in the
previous section. Taking (2.27) into account, the full Hamiltonian may be written
in the form

H = L + (L/2)"F((2/L)1/2ξ, (2/L)ί/2η) + Θ(U +1/2), (6)

where Θ(Ln + 1/2) after division by Ln + 1/2 is a function of the variables

α l 5 (7)

which is real analytic in these variables at each point (0, 0, 0, oq) and periodic in
ot1 with period 2π.

Setting L = ε2L, ξ = εξ, η = εή [which amounts to setting zk = εzk (fc=l,2)],
we obtain

L)n-1^ (8)

where we have dropped the carets everywhere, except on H. Notice that

H = ε2H. (9)

Consider now the energy surface H = 2, i.e., H = 2ε2. On this surface relation (8)
defines L as a function of ξ, η, α1? ε which is real analytic at (0, 0, α 1 ; 0) and which for
ε = 0 is identical to two. Subtracting its value at (0,0,0^^), we obtain from this
function a function which we will denote by A and whose power series in ε begins
as follows:

(10)

A together with the symplectic 2-form

dξΛdη (11)

determines the flow on the energy surface H = 2ε2.
If we follow the trajectories from 0^=0 to a1 = 2π we obtain a measure-

preserving map
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where

f(ξ,η,O) = Fη(ξ,η)

g(ξ,η,O)=-Fξ(ξ,η).

(The subscripts ξ, η denote the corresponding partial derivatives.) In the following
we use the expansion

(14)

In particular,

/ {(0,0,0)=0,(0,0,0)=0,

fη{0,0,0)=Fm(0,0) = λ-A22 = B

gζ(0,0,0)=-Fκ(0,0)=-(λ-A11)=-A.

Hence,

h fn (15)
ξ=η=ε=O

by assumption. Taking into account that

we see that there exist two functions ξo(ε), ηQ{ε\ real analytic at ε = 0, such that

f(εξo(ε), ) 0
(lo)

g(εξo(ε)9 εηo(ε),ε) = O.

Clearly (εξo(ε% εηo(ε)) is a fixed point of the map M. Thus, we have shown that to
each c.p. of the unperturbed Hamiltonian there exists a one-parametric family of
periodic solutions of the full Hamiltonian.

Let εξo(<xl9ε\ εηo(auε) be the periodic solutions corresponding to the
Hamiltonian (10) found in this way. We set

ξ = ξ-εξo(a1,ε)

ή = η-εηo((X1,ε).

The new Hamiltonian is

(18)

Dropping the carets, we recognize that the coordinates ξ, η can be chosen in such
a way that on every energy surface H = 2ε2 the periodic solution is simply given by
ξ = η = O. Λ(ξ,η,oc1,ε) therefore begins with a quadratic expression whose co-
efficients depend on α l 5 ε. From the expansion (14) we see that for ε = 0 the quadratic
part of yl is definite or indefinite depending on whether A(λ)>0 or A(λ)<0. But
because A is periodic in α l 5 this property prevails for all a1 and for all sufficiently
small |ε|. If A(λ)<0, it follows immediately that the map M and therefore the
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corresponding family of periodic solutions is unstable. Let us therefore concentrate
on the case A(λ) > 0. We introduce normal coordinates r, y such that for sufficiently
small |ε| the Hamiltonian A in these variables has an expansion

/ l ( r , 7 , α 1 ? ε ) - | [ v ( α 1 ? ε ) r 2 - | φ 1 ? ε ) r 4 + ^ 5 ] (19)

where Θ5 is a function periodic in α1 ?y with period 2π and real analytic in its
variables at r = 0, α1?y, ε = 0. The power series expansion of this function begins
with a term of order five in r. Taking into account that the fundamental symplectic
two-form in the new variables is

rdr Λ dy , (20)

the equations corresponding to (19) become

Hence, we see that the map M in these coordinates has the form of a perturbed
twist:

r = +

(21)

which, moreover, preserves the area element (20). In (21) v*, K* denote the functions
of ε obtained by averaging the functions v, K over α x ; also, the perturbation terms
are no longer functions of α^ Dropping them we are left with a twist M o that is
exactly nondegenerate if κ:*(ε) + 0. A straightforward but somewhat lengthy
calculation yields

κ*(0) = (l/2Δ(λ)) expression (5).

It follows that under the conditions of the theorem the twist M o is nondegenerate
for sufficiently small |ε|.

We are now ready to show that the fixed point r = 0, ε = ε o φ 0 (sufficiently
small ε0) is stable. This will imply orbital stability of the periodic solution on the
energy surface H = 2ε%.

To each small positive number δ select a "strongly irrational" number ωδ in
the interval

(ε^-^Ev^βo)-^^^)!]^^-1^^)). (22)

This is possible because the "strongly irrational" numbers, i.e., numbers ω satisfying
the finitely many inequalities

\ωq-p\^co/qμ (p, q = 1, 2, ...)

with some c o > 0 and some μ^2, are dense on the real axis (Ref. [4], p. 191).
There exists an open interval Iδ about ε0, not containing ε = 0, such that for all
selδ,ωδ is also in the interval with the same endpoints as (22), except that ε0 is
replaced by ε.
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According to Moser's twist theorem (Ref. [3,4, 5]) to each εel, there exists an
analytic curve r = rδ(y, ε) which by the map M is mapped into itself via the trans-
formation

Because this curve is obtained by a continuous deformation of the circle of radius

[v*(ε)-ω,/ε 2 ("" 1 }] 1 / 2 |κ:*(ε)r 1 / 2,

and this number lies in the interval (0, <5) by (22), the inequality rδ(y,s)<2δ is
valid for εelδ and for sufficiently small δ. If U is a preassigned neighborhood of
the point r = 0, ε = ε0, then the neighborhood

{r,γ,ε\r<rδ(γ,ε),εelδ}

for sufficiently small δ is contained in U and invariant under M, proving the
stability of the map M and, therefore, our theorem.

We turn now to an exact statement and proof of our second contention made
at the beginning of this section.

Theorem 2. If K{n) is a polynomial of degree at least 2 of the variable z alone,
then for sufficiently small ε the energy surface H = 2ε2 (with H as defined in 112)
is filled with invariant tori except for a portion whose measure is small with ε.

Proof. The conditions of the theorem imply that A as defined in (10) has the
form

where P has been defined in (2.29) and

Setting ξ = R sin φ, η = R cos φ, the Hamiltonian becomes a function A periodic
in φ,oίί with period 2π and real analytic in its variables at R = 0,φ,auε = 0,
whose power series expansion begins as follows:

A together with the symplectic two-form — RdR A dφ governs the flow on the
energy surface H = 2ε2. The corresponding Hamilton equations therefore are

Thus, under the present assumptions also, the map M defined above will assume
the form of an analytically perturbed, nondegenerate twist

Our Theorem 2 follows in a standard manner from Moser's twist theorem.
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4. The case n = 2

We specialize to the case n = 2 and write K2 in the form

i 2 i (1)
3

where (a, b)= Σ aibi is the usual inner product of R3 and 51 is a real symmetric
i = ί

matrix

(WM)k=ΣakjMj (fc=l,2,3). (2)
J = I

Clearly, α0, α 1 1 ? α 2 2 ? #33 are not uniquely determined, but a substitution

α o - > α o - μ , akk->akk + μ (fc=l,2,3) (3)

leaves (1) invariant [compare (1.14)]. Moreover, a transformation of the z-variables
as described in (1.15) replaces b, 5ί by

b = Rb, & = RVIRT, (4)

where R is the matrix defined in (1.17) and Rτ its transposition. U in (1.15) may
therefore be chosen in such a way that 51 is a diagonal matrix with the eigenvalues
aί9 a2, a3 of 51 along the diagonal. Of course, a transformation of type (2), carried
out in the matrix 51, will also replace the eigenvalue ak by ak + μ, such that its
effect on 51 is still described by (3) with akk replaced by ak (k= 1,2, 3).

In the following we will assume that the matrix 5ί has been diagonalized and
that the eigenvalues are mutually distinct. The case of degenerate eigenvalues
will be dealt with later. In any case, the assumption that 51 is diagonal implies
that the eigenbasis of 51 coincides with the standard frame eu e2, e3 of R3. In
order to find all families of periodic solutions connected with Hamiltonian (1.12)
(where now n = 2), we have to determine all c.p.'s together with their indices that
the function

K{2)(x) = a0/2 + b1x + b2y + b3z + ̂ (a1x
2 + a2y

2 + a3z
2) (5)

possesses on the unit sphere S2.
As explained in Section 1, the c.p.'s are the endpoints of those unit vectors

e = (eu e2i e3) to which a real number λ can be found with the property

(λ-ade-b, (6)

for i= 1,2, 3. In our classification scheme of possible c.p.'s the function

g(λ) = 1 - b\l{λ -a,)2- b2l{λ - a2)
2 - b2/(λ - a3)

2 (7)

will play a central role. Assuming that ^^2^3 + ̂  every c.p. will be the endpoint
of a vector

e(λo) = (b1/(λo-aί\ b2/(λ0-a2), b3/(λ0-a3)) (8)

where λ0 is a zero of g.
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We shall call c.p.'s that arise in this manner from zeros of g "c.p.'s of the first
kind". C.p.'s of a different nature arise if bk = 0 and g{ak)>0 (fc=l,2, 3). If, e.g.,
£>! = () and g(aί)>0, then

/ ί = ( ± [ # ! ) ] 1 / 2 , b2/(ai-a2l b./i^-a,)) (9)

is a pair of unit vectors satisfying (6) with λ = av It consists of position vectors of
c.p.'s that we shall call "c.p.'s of the second kind". To give a more geometrical
description of the conditions under which c.p.'s of the second kind are present,
let us momentarily assume that the matrix 2ί is in general form. If its eigenvalues
are all distinct and if b is orthogonal to an eigendirection with corresponding
eigenvalue λ, then the equation

(λ-SΆ)e = b (60

[which replaces (6) under this more general assumptions] is satisfied by a one-
parametric family of vectors whose endpoints form a straight line. This family
contains either two, one or no unit vectors, depending on whether the line inter-
sects, touches or does not intersect the unit sphere.

If 91 is diagonal and b1 = 0, then λ = ah and g(aί)>0 is precisely the condition
under which the line of solutions of (6) intersects the unit sphere. The position
vectors of the points of intersection are given in (9).

What are the indices of these critical points? Applying the criterion expressed
in connection with formula (2.7) to the special case K{2\ we obtain the following
formula:

(10)

where A(λ) is the function

) = (λ-a2)(λ-a3)e2+(λ-a3)(λ-a1)e2+(λ-a1)(λ-a2)e2. (11)

This criterion, when applied to the members of the pair of c.p.'s (we identify each
c.p. with its position vector), yields the following result:

ind/± =sgn Π (flk-αy) (k= 1, 2, 3). (12)

In order to obtain a suitable criterion for the indices of a c.p. of the first kind, we
observe that an alternate expression for Δ{λ) is

A(λ) = Uλ-a1)(λ-a2)(λ-a3)g\λ). (13)

Hence, the index of the c.p. e(λ0) is determined by the position of the zero λ0 of
g(λ) relative to aί9 α2, α3 and the sign of the slope of the graph of g at λ0.

Let us pause in order to study in detail how a pair of c.p.'s of the second kind
emerges. For that purpose we will assume that the eigenvalues α1? a2, a3 are
distinct, that bΐ=0 and that b2, b3 are real analytic functions of some parameter
μ at μ = 0. We could also assume that the ak's are function of μ as is the case, for
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example, in the Henon-Heiles Hamiltonian. However, in order to keep -the
argument as simple as possible, we keep the ak's constant.

g(λ9 μ)=l- b2

2(μ)/(λ-a2)
2- bj(μ)/(λ-a3)

2

is an analytic function of its variables for all λ + a2, a3 and in a neighborhood of
μ = 0. We will assume that it has the following properties:

g(al9 0) = 0, gμ(al90)>0, g'(al9 0)*09

where the subscript μ denotes partial derivative with respect to μ and the prime
partial derivative with respect to λ. Under our assumptions, there exists a function
λ(μ), real analytic at μ = 0 with the properties

g(λ(μ\ μ) = 0, λ(0) = α 1 , sgn g'(λ(μ\ μ) = sgn g'(al9 0)

sgn λ'(μ) = sgn λ'(a t) = - sgn g\a 1, 0),

provided |μ| is sufficiently small.
Hence, according to (13)

ind e(λ(μ)) = sgn {λ(μ) -aγ)(λ{μ) - a2)(λ(μ) -a3)g\λ{μ\ μ)

= sgn[μ-λ\a1){a1-a2){a1-a3)g'{ai,ϋj]

= -εsgnμ, where ε = sgn[(α 1-α 2)(α 1-α 3)] .

As long as μ<0, ind^(A) = ε. For μ = 0, /f, and e(a1) all agree and are given by
the vector

(Oίb2(O)/(a1-a2lb3(O)/(a1-a3)).

By a continuity argument this c.p. still has index ε. As soon as μ > 0 the pair / *
with total index 2ε [see (12)] splits off from e(λ(μ)) and the latter c.p. simultaneously
changes its index from ε to — ε. This process could be represented symbolically by

We proceed now to discuss the classification scheme of c.p.'s on S2. First, we
will assume that all eigenvalues α l 5 a2, a3 are distinct and only later turn to the
case in which two of them coincide. In the case a1 = a2 = a3 a transformation of
type (3) will make all eigenvalues zero and a transformation of type (1.15) will
rotate the vector b into the 3-direction: the motion is a pure rotation about the
3-axis and accordingly the only two c.p.'s are the poles. Obviously they are stable.

Until further notice, we will now assume that the αfc's are mutually distinct.
The various cases we will distinguish differ by the number of components of the
^-vector that vanish.

We state in advance that in all these various cases (omitting degeneracies)
there exist only three possibilities with regard to the number of c.p.'s on S2 and
their indices. On S2 the function (5) has either:

(1) 2 elliptic

(2) 3 elliptic and 1 hyperbolic (14)

(3) 4 elliptic and 2 hyperbolic
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c.p.'s. This is in agreement with the general fact that the total index of a continuous
vector field on S2 is equal to two.

Case 0. The vector b has no vanishing components.
Let Iί9 I2 be the two adjacent bounded open intervals whose endpoints are

the αfe's (fc=l,2, 3), and let Io be the complement in R of the closure of their
union. Drawing the graph of g(λ) shows: g has always two real zeros λ$ in 70, to
which, according to the criterion (13), there corresponds an elliptic pair of c.p.'s.
Furthermore, g has exactly one relative maximum Gk in each of the intervals
Ik (fc= 1,2). If Gk<0 (fc = 1,2), there are no other c.p.'s and possibility (1) is realized.
If G 1 G 2 < 0 , g has another pair of real zeros either in /x or in I2. The zero closer
to the common endpoint of Ix and I2 gives rise to a hyperbolic c.p., the other one
to an elliptic c.p.; i.e., possibility (2) is realized. If finally Gk>0 (fe=l,2), all six
real zeros mentioned so far are present, showing that possibility (3) is realized.

Case ί. The vector b has exactly one vanishing component. We will treat the
case b1b2 + 0, &3 = 0. The cases b2b3 + 0, b1=0 and b3bίή=0, b2 = 0 are obtained
from this case by a cyclic permutation of the subscripts. By a transformation of
type (1.15) we could also reduce the latter two cases to the first.

Let / be the open interval with endpoints α1? a2, and Io the interior of its
complement in R. g has a unique relative maximum in /, given by

Let GφO and ρ = sgnG. g always has two real zeros in 70 which we denote by
1Q, and another pair λ± occurs in /, if and only if ρ = l. Of the pair λ$ (or A±)
let XQ (or λ~) be the one closer to a3. If and only if g(a3)>0, the pair of c.p.'s of
the second kind f3 is present. The indices of the various c.p.'s depend on whether
α 3 belongs to / or Io.

(a): α 3 e / 0 . We have

= - ε , i n d ^ / l 1 ) - ± 1

f = 1, where ε = 1 for g(a3) > 0 and ε = — 1 otherwise .

In any case, of the three possibilities listed in (14), the one with the number

is present.

Case 2. Exactly two components of the vector b vanish. We shall assume
fr3φ0, b1 = b2 = 0. The other two cases (&! + 0, b2 = b3 = 0, and b 2 φ0, b3 = bx = Q)
can either be obtained from the first by a cyclic permutation of the subscripts, or
they can be reduced to it by a transformation of type (1.15). Because g has just
two zeros, namely:

λ± =a3±b3,

we can treat this case more explicitly than the previous ones. Notice that to the
two roots λ± there correspond the north and the south pole of S2. We first assume
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that the numbers

Gc±=a3-ar±b3 (r=l,2)

are non-zero and set

^ * (r=l,2)

From (10) and (11) we find

i n d ^ ± ) = εfεf, where e{λ±)=±e3.

Because αr

+ — α~ = 2£>3, only the two cases

^ = ±£3 and ε+=ε~ΞΞε,. (r=l,2)

can occur, and we easily check that the first case corresponds to g(ar)<0, the
second one to g(ar)>0 (r=ί, 2). In the second case the pair of c.p.'s / * (r= 1,2) is
present. The indices of these c.p.'s of the second kind are given according to (12)
by the formulae

Here the last expression on each line tells us:
If at least one of the c.p.'s of the first kind has an index of —1 and if εr

+ =ε~,
then the c.p.'s tf are both elliptic. (r= 1,2.)

We are now ready to distinguish different subcases
(a) εf = ± ε 3 , ε j = ± ε 3 : North and south pole are the only c.p.'s and both

are elliptic.
(b) ε 1

+ = ε 1 " Ξ ε 1 , ε | : - ± ε 3 :
md(±e3) = ε1ε2, fi exists and has an index of + 1 .
(c) Subscripts 1 and 2 interchanged in (b).
(d) βί=fiΓΞβ l 5 f i 2

+ = β 2=g 2 :

( ± ^ 3 ) = ε1ε2. Both pairs /f, f} are present with index:

ind/f = ind/f = 1, if ε1ε1 = - ε
2 ,

indjf=ε1 sgn(a2-a1)= -ind/f , if 81=ε2.

Finally, we observe that whenever one of the numbers αr

+, α~ vanishes, the other
does not, and although g(ar) = 0, we infer from the study of how a pair of c.p.'s
of the second kind breaks away from one of the first kind (p. 30) that the situation
is essentially the same as for g(ar)<0, i.e., we have to set ε^ = ± ε 3 .

We illustrate the present case by taking up the example of Henon-Heiles
(Ref. [1, 6]). The Hamiltonian is



72 M. Kummer

It has (diagonalized) Gustavson normal form (5), where

b3 = (15/2X1/9 - μ 2 ) .

In our classification scheme, this corresponds to case 2. We easily calculate

a2-aι = 2(μ-2) a3-a2= -(

α3-«i=-(15/2)(μ-l/3)(μ-3/5)

and

αί = 15(μ-l/3)(2/15-μ)

αΓ=7(μ-l/3)

α2

+= 15(2/3-μ)(μ+1/3)

In order to distinguish the different subcases, we have to divide the μ-axis into
different subintervals:

μ < —1/3: ε+=g~ = — 1 5 ε + = ε ~ = — 1 .

Subcase (d) is realized, and because (a2 — #1) = 2(μ — 2), we find ind/f = — ind/f = 1,
i n d ( ± e 3 ) = l .

Again subcase (d) is realized with ind/f = ind/f = 1, ind(± e3)= — 1.

2/15 ^ μ < 1/3: fi+=e- = l , ef = ± 1, e3 = l .

Hence, subcase (c) is realized with i n d ( ± e 3 ) = ± 1 . /f exists with index 1.

1/3 < μ < 2/3: Same as previous case, with north and south pole interchanged.

2/3^μ: ef = ± l , εf = + 1, ε 3 = - l .

Corresponds to case (a).
Summarizing, we see that /f exists for /ι<2/3, with index ± 1 for —1/3<μ<

2/3 and index — 1 for μ< —1/3. /f exists for μ<2/15, always with index 1. The
north pole is elliptic for μ< —1/3, 2/15 :gμ< 1/3, and μ^2/3, whereas the south
pole is elliptic for |μ| > 1/3. An easy calculation using formula (9) yields

/ 1

±=(3/5-μ)- 1(±[(28/15)(2/15-μ)] 1/ 2,0,l/3 + μ)

/ ? = ( l - μ ) " 1 ( 0 , ±2[(l/3)(2/3-μ)]1/2, -

The relation between the flow on our unit sphere and the flow induced in the
ξ — η-plane of Ref. [1] (see pictures 3-9 of Ref. [1]) is exactly described by the
modification of the stereographic projection introduced earlier in our paper
[compare Fig. 1 and formulae (2.25)]. However, we have to keep in mind that this
projection is not continuous at the north pole. Indeed, the image of the north pole
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is the circle of radius (2L)1/2 = 2Jlβ in the ξ — η-plane. Thus, if the north pole is a
c.p., as is the case in the Henon-Heiles model, it gets lost in the process of projection.

Case 3. b = 0.
In this case the motion on S2 is the same as the motion of the endpoint of the

angular momentum vector (normalized to unit length) in the case of a top with
principal moments of inertia a[1, a2 *, a3 \ as seen from an observer that is fixed
with respect to the frame formed by the principal axis of inertia. Notice that if not
all αfc's are positive, they can always be made so by a transformation of type (3).
Also, by a suitable transformation of type (1.15) we can achieve a permutation of
the coordinate axes in such a way that the ak's are ordered in the same way as
their subscripts, i.e.,

ax<a2<a3.

The motion is governed by the Euler equations:

x = J(a2 — a3)yz

y = J(a3 — a1)zx (15)

z — J(a1 — a2)xy.

They possess the six c.p.'s fk = ek(k= 1, 2, 3), where /* , f3 have an index of one
and f2 an index of — 1. The solutions of the Euler equations are best labeled
with help of the parameter

E==2J\.2J —$0 ?

and the time ί0, at which they pass through the x — z-plane. The values of E are
restricted to the interval (α1? α3). If we introduce the quantities

2, E),

k2 = p-2(a3-M(E))(m(E) -ajKl,

the solutions are explicitly given by

x(t)-((a -E)/(a _ α ΛΛI/2 ίcnΠP^(ί — ô)D for E>a2
Ul \dn[pJ{t-to)~] for £ < α 2 ,

y(t) = ((a3-M(E))/(a3-a2))1/2((rn(E)-aί)/(a2-a1))1/2 s n [ p j ( ί - ί o ) ] , (16)

Jdn[pJ(ί—ί0)] for £><^2

l c n [ p J ( ί - ί 0 ) ] for £ < ^ 2 ?

where sn τ, en τ, dn τ are the usual Jacobi elliptic functions, i.e., sn τ is the solution
of the initial value problem

; = ( l - 7 2 ) ( l - / c 2 7 2 ) , 7(0) = 0, 7 ' ( 0 ) = l ,
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and c n 2 τ = l —sn2τ, d n 2 τ = 1 —fc2sn2τ. In short, the motion on S2 is periodic
with frequency

ω i = (π/2)pJ/K(k), (17)

where K(k) is the complete elliptic integral of the first kind. Accordingly (compare
2.19 and the remarks following that formula), the motion induced by K2 in R4

in the case b = 0 is quasi-periodic with frequencies ωl9 ω2, where ω1 is given in
(17) and ω2 differs from the value 1 by a term of order J. Again this quasi-periodic
motion essentially persists when higher terms are included in the Hamiltonian
and the energy is kept sufficiently small. Actually, the proof of a similar theorem
in connection with the heavy asymmetric top given by Arnold (Ref. [7]) could be
carried over with only minor modifications to the present case.

We note in passing that if b φ 0, the differential equations governing the flow
on S2 are still the Euler Equations (15), the only difference being, that the dot
over (x, y, z) no longer represents the simple derivative with respect to time, but
the more complicated operation

d/dt-JIb,

where the linear operator Ib over .R3 is defined by

Ibx = b x x.

We therefore obtain the following theorem about the flow that the Hamiltonian
K2 induces on S2:

Theorem 3. The flow on S2 induced by the Hamiltonian K2 is the same as the
one described by solutions (16) of the Euler equations, but as seen by an observer
rotating with angular speed J\b\ about an axis with direction b with respect to the
standard frame of R3.

We turn now to the case in which two of the eigenvalues of 9ί coincide. Specifi-
cally, we will assume a = a1=a2ή=a3.

All other cases of two colliding eigenvalues of the matrix 21 can be reduced
to this case, either by a cyclic permutation of the subscripts or by a transformation
of type (1.15). By a transformation of type (3), a could be normalized to zero, but
not much is gained by such a normalization. Applying the formulas (10), (13) to
the present case, we obtain the following simplified formula for the index of a
c.p. of the first kind:

indu(λo) = sgn(Ao-Λ3MA). (18)

Case 0'. b\ + b\ ΦO, b3 = 0. Let / be the open interval with endpoints a and a3

and Io the interior of its complement, g has always two zeros λ^ in Io and the
corresponding c.p.'s are elliptic. Moreover, if the unique relative maximum G of g,
which occurs at the position
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in the interval / is positive, another pair of c.p.'s of the first kind is present cor-
responding to two zeros λ± of g in I. We have

where λ~ is the zero closer to a. In any case, of the three possibilities listed in (14)
the first or second is realized depending on whether G < 0 or G>0.

Case Γ. b\ + b | φ θ 9 fo3 = 0. The pair of c.p.'s e{a±(b\+b\f12) is always present.
If #(α 3)<0, they are both elliptic. If #(α 3)>0, the one corresponding to the zero
of g that lies closer to α3 has an index of — 1, whereas the other one remains
elliptic. Moreover, the elliptic pair of c.p.'s f3 is present. Of the three possibilities
(14) the first or second one is realized, depending on whether g(a3) is negative or
positive.

Case2r. bί = b2 = 0, b3φ0. Besides the elliptic pair of c.p.'s e(a3±b3)= ±e3,
which is always present, the circle of fixed latitude cosθ = b3/(a — a3) consists of
parabolic c.p.'s (index 0). This circle has a parametric representation

f12(φ) = (lg(a)Y12 cosφ,lg(a)Y/2 sinφ,b3/(a-a3)) (O^0<2π).

Case 3'. b = 0. The same as 2' except that the pair of c.p.'s ± e3 is of the second
kind and fί2{φ) is simply the equator of S2:

Remark 1. The case of 3' occurs in the Henon-Heiles model for μ — ±1/3. If
11 = 1/3, a3 and aγ collide: we have the two elliptic c.p.'s f2 = ±e2 and the circle
of parabolic c.p.'s

f31(φ) = cosφ e3 + sinφ ex (0^φ<2π)

(compare Fig. 7 of Ref. [1]). If μ= -1/3, a3 and a2 collide. Accordingly, we find
the two elliptic c.p.'s

and the circle of parabolic c.p.'s: f23{

Remark 2. If we normalize a = 0 by a transformation of type (3), the Hamiltonian
in the last two cases becomes

K2 = (ao/2)J2 + b3JM3 + \a3M\ = J2[(α0/2) + b3 cosθ + \a3 cos2 0] ,

where a3 + 0 (of course b3 — 0 in the case 3').
According to (2.23) K2 induces in R4 a flow that is quasi-periodic with

frequencies

and J[_b3 + a3 cos 0] ,

θ being an integral of motion. According to Theorem 2 this flow is essentially
preserved under perturbations made up of higher order terms, as long as the
energy stays sufficiently small.
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Before concluding this section, let us apply the theory of Section 3 to the
Hamiltonian (1), i.e., we want to find a condition on the coefficients of that
Hamiltonian which guarantees that a certain stable c.p. on S2 represents a family
of stable periodic solutions of the equations associated with the full Hamiltonian
(compare Theorem 1).

As already pointed out in Section 3, it is no loss of generality to assume that
e= — e3 and Λί2 = 0. These requirements translate into the following conditions
on the coefficients of the Hamiltonian (1)

bi = aί3, b2 = a23, α 1 2 = 0 , (19)

where the αίfc's are the entries of the matrix 91. (Notice that quite generally, the
partial derivative Aik of Section 3 agrees with the corresponding entry of the
matrix 91 that we introduced in this section.) Also, from (3.2), we obtain

λ = a33-b3. (20)

It is now clear that the decisive expression (3.5), when applied to the Hamiltonian
(1), stays exactly as it stands, provided that all Aίks are replaced by the cor-
responding αίfc's.

In particular, we have

A = λ-aίl9 B = λ-a22, C=-b3. (21)

If we further assume that 91 is diagonal, but not a multiple of the unit matrix, we
are again dealing with one of the cases 2, 3, 2' or 3' that we discussed earlier.
Using the notation that we introduced in connection with the case 2, we find

and because oί^a2 >0, whenever the south pole is a stable c.p., we may divide the
expression (3.5) by 4α^α^ and we obtain

(αΓα2-)(αΓ +α 2 " -b3) + (3/4)b3fa +a2)
2. (22)

It is no loss of generality if we assume a2— — α l 5 because this can always be
achieved by a translation of type (3). The expression (22) is further simplified and
becomes

2(ocϊa2)a3 + 3b3a
2. (23)

Inducing a rotation about the vector eι + e2 through π by a transformation of
type (1.15), we find that the analogous expression for the north pole is

2(otΐa+)a3-3b3a
2, (24)

where the stability of the north pole implies a^a2 >0.
Whenever one of the expressions (23), (24) is nonzero and the corresponding

pole is a stable c.p., then it represents a family of stable periodic solutions of the
equations associated with the full Hamiltonian. If both poles are stable c.p.'s this
is at least the case for one pole, because under our assumptions the expressions
(23) and (24) cannot vanish simultaneously.
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Calculating these expressions in the Henon-Heiles model and dividing them
by (5/2)(1/9 — μ2) (recall that for μ= +1/3 both poles are not stable), we obtain

219μ2-204μ + 22

for the south pole and

for the north pole. One can show that both polynomials have exactly two real
roots, but only the larger one (denoted by μn and μs for the north and south pole
respectively) lies in the range of μ-values for which the corresponding pole is a
stable c.p.. We find

μs = (102 + (5586)1/2)/219^4/5,

and

μn lies in the open interval (13/15,14/15).

Hence, we obtain the result that, whenever in the Henon-Heiles model the south
or north pole of S2 is a stable c.p. of the unperturbed Hamiltonian and μ + μs

and μή=μn respectively, then it represents a family of stable periodic solutions.
Actually, the numerical results of Ref. [1] indicate that this is so even when μ
assumes one of the exceptional values.

As a second and last application of Theorem 1, we shall prove the following
result:

Theorem 4. To every stable c.p. of the second kind that the function (5) possesses
on S2 there corresponds a one-parametric family of stable periodic solutions of the
equations associated with the full Hamiltonian (1.12) (ft = 2).

Proof. As pointed out earlier, it is no loss of generality to assume that the c.p.
coincides with the south pole. Because we are dealing with a c.p. of the second
kind λ is an eigenvalue of the matrix % and therefore, we have

D = ABC-a2

l3B-a2

23A = 0.

Stability of the c.p. implies AB>0, i.e., an inequality that in combination with
D = 0 implies C + Oand

sgn C = sgn A = sgn B .

Taking these facts into account shows that in the decisive expression (3.5) the third
term is zero, the second is always nonzero and the first either vanishes or, if it
does not, it has the same sign as the second term. Hence, under the assumptions
of Theorem 4, the expression (3.5) never vanishes. Our theorem is proved.

Remark. Notice that the result expressed in Theorem 4 is not limited to the
case n = 2, provided we define a c.p. of the second kind more generally to be the
endpoint of a unit vector e satisfying (1.6) with a value of λ which coincides with
an eigenvalue of the Hessian of K{n\ evaluated at e.
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5. Final Remarks

In this final section we want to demonstrate that statement (ii) of the theorem on
p. 313 of Ref. [1] cannot be proved with the help of Moser's twist theorem. To
show this we let

in the notation of (17) on p. 312 of Ref. [1]. Then λj + λ | + λ | = 1/8Φ0 and the
Hamiltonian becomes (in our notation)

H = 2J(1+M2)+Θ5. (1)

By a transformation of type (1.5) we induce a rotation about the 1-axis through
π/2 and obtain

Switching back to the notation of Ref. [1], this Hamiltonian is again of the form
(17) (p. 312), but this time the constants are

The nondegeneracy condition of Arnold (see p. 313 of Ref. [1]) and Ref. [8] is not
satisfied, proving our contention.

Of course, we can also use the methods of Ref. [1] and find that the second
derivative in (15) (p. 311) vanishes for the Hamiltonian (1), but the argument
given above is much simpler. In order to make the theorem of Ref. [1] a con-
sequence of Moser's twist theorem we suggest to replace the expression
Re(C?CiC2) (in (17) p. 312, Ref. [1]) by Im(ζ1ζ2ζ

2). In this instance the theorem in
question is equivalent (in our notation) to the following statement: If the matrix
91 in the Hamiltonian (4.1) is not a multiple of unity, then the corresponding full
Hamiltonian (1.12) possesses infinitely many tori on each energy surface.

The argument for why this theorem seems intuitively obvious runs as follows:
The Hamiltonian (4.1) always possesses at least two elliptic c.p.'s on S2. The only
case in which for both c.p.'s the nondegeneracy condition is violated is the case
of a rotation of S2 into itself, the c.p.'s being the points of intersection of S2 with
the axis of rotation. But the Hamiltonian (4.1) induces a rotation of S2 if and
only if 21 is a multiple of unity.
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Note Added in January 1976. The author is indebted to the referees of the present paper for drawing
his attention to several papers (Ref. [9-13]) that deal (among other things) with the question of the
existence of periodic orbits of resonant non-linear Hamiltonians near an equilibrium point, i.e. of
Hamiltonians that (if analyticity is assumed) in suitable canonical coordinates (x,y)eR2n have a
convergent power series expansion:

about the origin of R2n. Here Hp (p = 2, 3,...) is homogeneous in (x,y) of degree p and it is assumed
that there exists some rational dependence between the eigenvalues of the infinitesimal transformation
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associated with H2 that is not forced upon them by its symplectic character. In Ref. [9] (p. 634) it is
assumed that

and the periodic orbits of H on the energy surfaces of H near the origin of R2n are associated with the
non-degenerate critical points of the function over P"~1(Q ( = complex protective space) that is
obtained by averaging H4 over the flow induced by H2 on S2"'1. Because P1(Q is homeomorphic to
S2 our paper essentially carries through the program outlined in (Ref. [9]) for the case n = 2 with the
difference, however, that the average over if4 is replaced by Birkhoff-Gustavson averaging (which
involves also H3). The fact that Birkhoff-Gustavson averaging is a valuable tool in the search for
periodic orbits near an equilibrium of a Hamiltonian system has been amply demonstrated by Sweet
and Schmidt (see e.g. Ref. [10] and references listed there) who simplify and generalize earlier work
byRoel(Ref. [11]).

Our approach which makes full use of the group of symplectic transformations leaving H2 in-
variant [in our case 1/(2)] can also be applied to other resonant Hamiltonians. E.g. in the case in which
the frequencies are opposite equal, 1/(2) is replaced by [/(1,1) (compare Ref. [14] where the same
approach is used to interpret the results of a certain computer study).

To discuss the relationship between our work and the very general approach to the question of
periodic orbits in Hamiltonian systems initiated by Weinstein (Ref. [12,13]) is beyond the scope of
this note.
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