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Abstract. A rigorous construction of new super-selection sectors — so-called
"soliton-sectors" - for the quantum "sine-Gordon" equation and the (φ φ)2-
quantum field models with explicitly broken isospin symmetry in two space-
time dimensions is presented. These sectors are eigenspaces of the charge
Q = §dx(gγ&dφ)(x) with non-zero eigenvalue. The scattering theory for
quantum solitons is briefly discussed and shown to have consequences for the
physics in the vacuum sector. A general theory is developed which explains
why soliton-sectors may exist for theories in two but not in four space-time
dimensions except possibly for non-abelian Yang-Mills theories.

In quantum field theory a great deal of attention has recently been paid to the
construction and analysis of new super-selection sectors orthogonal to the vacuum
sector. Most authors - and this is not an accident (see Section 6) - have studied
Bose quantum field models in two space-time dimensions such as the quantum
"sine-Gordon" equation [3, 8,14,15] and the φ4-model [4, 8, 21, 35] γ which are
known to exist and to define relativistic quantum field theories [12, 36,15,17].
A deep axiomatic analysis of super-selection sectors in the framework of algebras
of local observables has earlier been presented in [9]. (Some of the results of [9],
e.g. the analysis of the statistics of a super-selection sector, do however not apply
to two space-time dimensions.)

For the two dimensional models these new sectors are expected to contain
states describing somewhat unusual collective phenomena which may be related
to the "soliton"-solutions of the c-number, non-linear partial differential field
equations, the "sine-Gordon" equation [8,14], or the equation

(• + m2)φ(x, t)=-λφ(x, t)\ m2 <0

* Supported in part by the National Science Foundation under Grant NSF-GP-39048 and by the
ETH, Zurich.
1 See also Remark 7, Section 6.
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see [21, 8, 35] 1. See also [31,14, 35] and refs. given there for interesting results
about these field equations. For such models this paper attempts to clarify on a
mathematically rigorous basis the existence question of new sectors and of states
with the property that the expectation value of the field operator in such states
is similar to the classical soliton-solution (for this reason these states are called
"soliton-states" in this paper).

Technically a soliton-sector is defined by the following two properties:
— It is space-time translation covariant.
— It is an eigenspace of the charge Q = §dx(gradφ)(x) with non-zero eigen-

value (here φ is an rc-component, canonical scalar Bose field).
Our analysis intends to explain the general mechanism which is responsible

for the occurrence of new sectors in two dimensional models: It is related to the
spontaneous breaking of an internal symmetry of the dynamics (of determinant
+1). We prove that, within the framework of the models considered in this paper,
soliton-sectors are connected with the vacuum sector by certain Bogoiubov
transformations. Some connections with the analysis of [9] and with results of
[42] are explained.

Sections 1-5 are devoted to the analysis of specific models and their super-
selection sectors; Section 6 contains abstract conclusions derived from Sections
1-5: A general theory of "soliton-sectors".'

In this paper we explain the main results and present or at least outline their
proofs. Some of the technical details appear in forthcoming papers: [15,20].
Whereas we have written this paper following the natural order of thoughts we
recommend that (for an overall view) the reader first read Sections 1, 2, Γ, 2',
and 6 and only then proceed to the more technical Sections 3-5.

We will mainly be concerned with the discussion of two specific models which
we now define in terms of their formal Lagrangians.

§ l.The cosε02-Theory

This model describes a neutral, scalar, relativistic quantum field φ in two space-
time dimensions. The total Lagrangian density is

&(x) = &0(x)-λ:cos(εφ(x90) + θ):9 (1)

where i?0(x) is the free Lagrangian density with bare mass m = 0, the colons
denote Wick ordering with respect to bare mass 1 [3,15]; the coupling constant λ
is an arbitrary, real number, and θe [0, 2π) an arbitrary angle.

This model has only been shown to exist for ε 2 ^ 4 π , [15,16,17]. If ε2=4π
it is easily seen to be equivalent to the one describing a free, massive Dirac field
[3,15]. For ε 2 < 4 π it has been shown to be isomorphic to the massive Thirring
model [3]. For ε2>4π it has non-trivial, non-superrenormalizable ultraviolet
divergencies which are not well understood, yet, [15].

The cosεφ2-theory has been extensively discussed in [8] and from a mathe-
matical point of view in [15,17]. The reason why we briefly discuss it in this
paper again is that it is the simplest (and in some sense the only) model which
has infinitely many (rather than only finitely many) super-selection sectors labeled
by an integer charge. This is connected to the fact that i f is invariant under shifts
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of the field φ by 2mπε~1,meZ. The vacuum sector contains states of pairs of
oppositely charged particles but no charged one particle states. Needless to say
that the model is of some interest to physics, e.g. in non-linear optics [31]. Other
(closely related) models of this category are discussed in [15].

§ 2. The (φ ^-Theory

Let φ = (φ1, ...,</>„) be an rc-tuple of neutral, scalar fields and j£?0 the free Lagrangian
density for φ with bare masses m1 =... =mn= 1. The total Lagrangian density is

J?(x) = J?0(x)-λ:(φ(x,0) φ(x,0))2: + Σ σ£:0 f(x,O)2: ; (2)
i=ί

S£ is invariant under the n substitutions φi}-> — φi> i=ί,..., w. The mass terms
σi'.φ^O)2: break the 0(n)-invariance, unless σ1 = ...=σn. As we will see this
theory has only non-trivial super-selection rules if some sub-symmetry group of
the symmetry group O(ή) is spontaneously broken. If σ1 = ...=σn the theory is
O(ft)-invariant and, as a consequence of the Goldstone theorem [13], no such
sub-symmetry group can be broken in this theory. For, it is obvious that the
spontaneous breaking of a discrete sub-symmetry group (which is possible in two
dimensions) would imply the breaking of O(n)\ some polynomial in φ not invariant
under O(n) would necessarily develop a non-vanishing vacuum expectation value
which proves our assertion. This however is impossible in two space-time dimen-
sions [13]. Hence, in order for the {φ-φ)\ -theory to have non-trivial super-
selection rules, at least one of the coefficients of the mass terms must be different
from the others. If σ1ή=σi, ί = 2, ...,n, the φ1^-^ — φ1 symmetry may be broken
spontaneously, and this is actually to be expected if σ x > σ ί ? i = 2,...,/?, on the
basis of the classical Goldstone picture or an approximate calculation of the
effective potential. A rigorous proof follows from recent results of Glimm, Jaffe,
and Spencer [28] and will be presented elsewhere. If the φ^ — φ1 symmetry is
spontaneously broken we are able to construct (at least) two non-trivial super-
selection sectors consisting of soliton states; see Theorems 3 and 4. The existence
of soliton states is related to the invariance of J2? under the following substitutions
of determinant + 1:

(φί,...,Φώt-+(-φ1, ..9enφά, where e, = - l , (3)

for some j , and e{— 1, for ί+ί,j. Soliton-states occur if one of these symmetries
is spontaneously broken.

n

If the classical Goldstone potential (JC JC)2— £ σμ2 has only finitely many
i = ί

absolute minima, it has at most two. We therefore expect that the φ^—φf

symmetry is broken for at most one i and hence that there exist no more than
two non-trivial super-selection sectors. Without loss of generality we may therefore
set n = 29σί = σ, σ 2 = 0 throughout most of the rest of this paper. A more general
situation is met if one considers e.g. a (φ 0)2-theory or the coupling of several
independent systems with broken symmetries.

In a P(0)2-model with one single, neutral, scalar field φ the substitution
φ\-> — φ has determinant — 1. We show in Section 5 that this forces us to consider
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a tensor product theory of two identical copies of the usual P{φ)2-theory which
has an internal symmetry of determinant + 1 . Starting from the (artificial) tensor
product theory we are able to construct soliton sectors for the ordinary P(φ)2-
theory. Our construction is quite different from recent more heuristic proposals.

The (̂ > 0)2-theory is a model for a one-dimensional anharmonic, anisotropic
dielectric chain: The field φ (with two or three components) is then interpreted
as the polarization field which is bound by anharmonic, anisotropic (σ1^>σ2 = 0!)
forces. In order to understand what "soliton-states" are we must consider the
effect of a spatially extended twist (torsion) of the dipole chain by a total angle π.
Our techniques extend to the case where φ is coupled to some modes of the
electric field. The expectation value of the electric field in a soliton-state has the
shape of a pulse. Such a model may be relevant in quantum optics.

We now discuss the existence of a vacuum sector for the cosεφ2-theory with
ε2<16/π and the (φ ^- theory .

Theorem 1. (a) For the cos εφ2-theory with ε2 < 16/π there exists a vacuum sector
Jtf* (2tf is a separable Hilbert space) such that the theory on the vacuum sector
satisfies all Wightman axioms [30] with the possible exception of uniqueness of the
vacuum.

(b) For φ = (φί,..., φn)9 n=ί,2 or 3, σ1=σ^0, σ2 = σ3=0 there exists a vacuum
sector J f for the (φ φ)\-theory such that on J f this theory satisfies all Wightman
axioms with the possible exception of uniqueness of the vacuum. (For 0^/l</l0,
σ < σ0, where λ0 and σ0 are small positive numbers, the vacuum is unique and there
exists a mass gap and one particle states.)

(c) Under the assumptions of part (b) the (φ φ)\-Wightman theory on the vacuum
sector J f of part (b) coincides with the theory obtained from the C*-algebra construc-
tion of Glimm and Jaffe [22, 24] see also Section 3.

Proof, (a) is proved in detail in [15,16] (the restriction ε 2 < 16/π rather than
β2 < 4π is presumably an artefact of our way of estimating).

For n=l (b) is well known. For a proof see [36] and refs. given there. For
further results see [37, 20]. For n = 2,3 the proof of (b) is due to the author [20].
It is based on Spencer's "large external field" expansion [38] which yields existence
of the \{φ φ)2-σφ\-μφ{\2-moάά for large |μ|. The Lee-Yang theorems of [39]
and [11] permit us to continue the Euclidean Green's functions of the model
analytically in μ to arbitrary μΦO and to construct limits as μ\0, μ/0. The part
of (b) within brackets (weak coupling) follows from the cluster expansion [12, 38].
Part (c) follows from combining (b) with the ^-bounds of [20] - see also [25, 26] -
which yield selfadjointness of the quantum fields on jf and then applying a
general result of [26]. Q.E.D.

Remarks. We would like to emphasize that the C*-algebra construction of
quantum fields in two space-time dimensions as developed in [23,24] is particu-
larly useful for the purposes of this paper: the analysis of superselection rules.

Theorem 1, (b) has various generalizations including simple proofs of existence
and analyticity for lattice systems such as the Heisenberg model, [20].

Since the time when this manuscript was completed Glimm, Jaffe and Spencer
[28] have established spontaneous φ-^ — φ symmetry breaking under the condi-
tions of Theorem 1, (b), σp 1, n= 1. Thanks to correlation inequalities proved in
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[11] and results of [20] the author could extend this result to the (0 </>)2-theory
with <7$>1 and n = 2. This removes the last unproved assumption in Sections 2'
and 3.

For the cosε02-theory some interesting, heuristic results on the mass spectrum
are presented in [8]. In [15,16] it is proved that the cosε02-theory is mathematical-
ly isomorphic to the theory of the classical, two-component, neutral Coulomb
gas in two space dimensions. The well-known scaling properties of the Coulomb
gas [33] are used in [16] to prove 2:

2-«\ m > , λ)=G(a)\λ\1/{2~^, (4)

92au{2) (x, t) = uf\9~1x9 &-% θe(0, oo), (5)

where p(α, λ) is the vacuum energy density, mjμ, λ) the physical mass and uf\x, t)
the truncated two point Euclidean Green's function of the field: eιεφ:(x, t) of the
cosε(/)2-theory; α = ε2/4π. Scaling equations similar to (5) hold for all the truncated
n-point Euclidean Green's functions.

Notice that for α=t=lp, m^ and u{2) have a branch point singularity at λ = 0.
For α < 1 this singularity is caused by infrared divergencies (second order perturba-
tion theory is infrared divergent). For α > 1 the singularity is caused by ultraviolet
divergencies. Equations (4) imply that for α > l the cosεφ2-theory is not super-
renormalizable, and for α ^ 2 it is presumably meaningless (see also [3]). By the
equivalence of cosεφ2 with the massive Thirring model Eq. (5) proves that the
short distance singularities of the massive Thirring model are identical to the
ones of the massless Thirring model.

The isomorphism between cosεφ2 and the classical Coulomb gas suggests
that the physical mass m% is positive. This is interpreted as Debye screening in the
Coulomb gas. One knows that G(oc = 0)~ί=0 and G ( α = l ) ~ 1 = 0 or 2-depending
on the choice of the renormalization scheme — see [16]. This suggests that G(a)~1

is bounded for α sufficiently close to 0 or 1 and therefore m^α,/l)>0 for all real
viφO, i.e., the mass gap is positive, for λ + 0.

Next we describe our construction of new super-selection sectors for the
theories described in Sections 1, 2, and Theorem 1.

§ Γ. The Sectors of the cosε02-Theory

In the discussion of the cosε</>2-theory we choose as our basic observables the
following self adjoint fields [15]:

: cos [εφ{x91) + jδ]:, βe [0, 2π), dxφ(x, t), π(x, t), (6)

where dx denotes derivative in x and π is the momentum operator canonically
conjugate to φ. Note that dxφ(x, t) is the density of a conserved charge

β = (ε/2π)$dxdxφ(x, t) see [3,15] . (7)

Let SΆ(&) denote the usual local von Neumann algebra [9, 22] generated by the
bounded functions of the fields defined in (6) smeared with test functions that are
2 In order to prove the equation for mψ and (5) we must assume that ra^α, λ)>0, for some ΛφO.



274 J. Frohlich

supported in a bounded open region 0CIR2 (e.g. a diamond). We let 21 be the
C*-algebra of all local observables [2] obtained by taking the closure of (J 21(0)

{&)

in the operator norm, where {0} is a covering of IR by bounded, open diamonds.
We set φ(x) = φ(x,0) and π(x) = π(x, 0). A local *-automorphism ρg of 21 is

defined by

ρg( :cos [εψ(x) + j8]:) = :cos [ε(0(x) + #(x)) + j8] : 1

It is known, though not quite trivial to prove that the automorphism ρg is deter-
mined on all of 21 if we know how it acts on the time O-fϊelds, i.e. by (8); see [15].
Here we let g(x) be a continuously differentiable function on the real line with

lim g(x) = 0, lim g(x) = gao, supp(δx#) compact. (9)
χ-+ — oo χ-+ + oo

Such a function is called a kink function. When restricted to 21(0), 0e {0}, ρg is
unitarily implemented by eίπ{9&\ where 0^ is a continuously differentiable function
with gΘ{x) = g{x) on 0, s u p p ^ compact. The operator intertwining the representa-
tions of 21 and of ^(21) on 2tf [i.e. the representations of 21 on Jf and on the
Hubert space obtained from (21, <Ω, ρ̂ ( )Ω>), where Ω is the vacuum in Jf, by the
Gelfand-Naimark-Segal construction] is denoted by Tg. Formally Tg = ei7t{9\
Under the automorphism ρg the dynamics of the cosε02-theory transforms as
follows:

' (10)

where

δH{g)=dxφ{dxg)+^\\dx9\\22

+ λ J dx\_ :cos (εφ{x) + θ) :(cos εgf(x) - 1)

+ : cos (εφ(x) + θ — π/2): sin εgf(x)] . (11)

Inspection of the r.h.s. of (11) shows that <5i/(0) is a tiny form perturbation of the
Hamiltonian H if and only if (cosεg(x)— 1) and sinε^f(x) have compact support, i.e.

εgoo = 2mπ, m e Z , ("soliton-condition"). (12)

The proof of this assertion is based on a straightforward generalization of the
Glimm-Jaffe φ-9 :φj:-, and dxφ-bo\xΐίds [24,25,26] for the (cosεφ+m 2φ 2) 2-
theories, for all m^O, and is given in [15]. Clearly the :0 j:-bounds of the P(φ)2-
models are replaced in the cosε02-theory by :cos(ε0 + /?):-bounds.

On a formel level (11) is an immediate consequence of (1), (8), and (10). The
rigorous proof of (11) involves first studying the (cosεφ + m2φ2)2-theory [15, 17]
and the automorphism ρg-gξ, where g satisfies (12) and gξ = g(x-ξ). Then g-gξ

has compact support, and ρg_gξ is unitarily implemented on tf by eiπ{g~9ξ\ The
proof of (11) with g replaced by g — gξ is then quite easy. One then lets m tend to
0, decomposes the limiting theory into its pure phases - using a theorem of [19] -
and then lets ξ tend to oo. This limit exists because of the cluster properties of a
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pure phase theory (it is interpreted as "sending the anti-soliton to behind the
moon"). For details see [15]. Using the quadratic form estimates described
above and path space techniques one can show that

where H + δH(g) is the Friedrichs extension of the corresponding quadratic form.
We have now sketched the proof of

Theorem 2. All vectors of the form {TgΨ\ Ψe J^^εg^^ 2mπ} span a new Hubert
space 2tfm. The time-translation automorphisms of 2ί are implemented on J f m by a
continuous unitary group {eιtH/te R} :

eίtHTgΨ=Tge
it{H + δHig))Ψ, all ΨeJf; (13)

and

QTgΨ = mTgΨ. (14)

For all vectors Ψ in a dense subspace of #f

lim (TgΨ,φ(x,t)Tgψy= lim (TgΨ,φ(x,t)TgΨ) + 2mπ (15)
χ-> + 00 χ-+ — oo

(the limits on both sides of (15) exist; \\Ψ\\ = I). For m + n the representations of 91
on 34?m and 2tfn are unitarily inequivalent, i.e. J4fm and J f n are orthogonal sectors. •

Remarks. (14) is an immediate consequence of (7) and (8). Concerning (15)
notice that

Kmoo<TgΨ,φ(x,t)Tgψy = χ]imJTgΨ,φ(x)Tβψy, by (13),

= lim (Ψ,ρg(φ(x))ψ}= lim (Ψ,φ(x)Ψ> + 2mπ,
χ-> + oo x-^ + oo

and
lim (TgΨ,φ{x,t)Tgψy = ...= lim <Ψ,ρg(φ(x))Ψ)

χ->-oo Ό χ-> - o o

= lim (Ψ,φ{x)Ψ}= lim (Ψ,φ(x)Ψ}.
χ-> — oo χ-> + oo

The orthogonality of J^ m and J^n for m + n is a direct consequence of (15).
(Heuristically it also follows from the selfadjointness of Q on the total Hubert
space φ Jfm, the spectral theorem and (14).) The rigorous proof follows slightly

meΈ

different lines; see [15]. It is easy to show that for all m the space-translations of 91
are unitarily implemented on 3tfm.

States in J f m, for mφO, are interpreted as "soliton"-(m>0) and "anti-soliton"-
(m<0) states; (TgΨ,φ(x,t)TgΨ} seems to be related to the soliton-solutions
[14, 8] of the classical "sine-Gordon" equation.

The super-selection sectors Jf7

m must be identical with the charged sectors
of the massive Thirring model [3]. It is an interesting open problem to construct
local fields with non-vanishing matrix elements between Jfw and Jffm + 1 : the
Fermion fields of the massive Thirring model.

In the massless Thirring model there are uncountably many super-selection
sectors labeled by a pair (g^, h^), where h^ is a real number [42]. There is no
restriction on the value oϊg^. The "soliton-condition" (12) can thus be interpreted
as a dynamical charge quantization (which is enforced by the mass of the Fermions).
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§ 2'. The Sectors of the (φ (^-Theory

Since we have broken 0(2)-invariance in this theory explicitly by a mass term,
we have no reason to restrict the algebra of local observables to 0(2)-invariant
(bounded) operators. We may therefore choose as our basic observable fields the
selfadjoint time 0-fields

Φ1(x),π1(x),φ2(x) and π2(x), (16)

where π} is the momentum canonically conjugate to φj9j= 1, 2.
Let 2Ϊ(/L) be the usual local von Neumann algebra generated by all bounded

functions ofφί,π1,φ2, and π 2 smeared with test functions supported on a compact
interval A of the real line (2I(Λ) is identical with the local von Neumann algebra
21(0), where Θ is the diamond with base Λ, and 21(0) is defined in the usual manner,
[22]).

We let 21 be the C*-algebra obtained by taking the closure of (J 2I(/1) in the
{A) .

operator norm ({A} is a covering of the real line by compact intervals). The
construction of the algebra 2Ϊ(/1), Λe {A}, can be done on the Fock space of the
free, charged scalar field φ because of the "locally-Fock" property - proved in
[23] for the 02-model - which holds for the (φ- φ)|-theory, as well.

Let α be a continuously differentiable, bounded function on the real line.
The following equations define a ^-automorphism ρa of the algebra 21:

Qa(Φi(x)) = c o s ΦO Φ l W + s i n ΦO Φi(x) λ

ρa{φ2(x))=-$inφ) ΦΛx) + cosGc(x)'φ2(x), > (17)

plus identical equations for πx(x) and π2(x). >

For g a continuously differentiable, integrable function on the real line we define

L(g) = ίdxlφ1{x)π2(x)-π1(x)φ2(x)]g(x) (18)

Obviously L(δx) is the charge density. On the Fock space of the free, charged
scalar field L(g) is known to define a selfadjoint operator (also denoted by Iig)\
provided g is real; then e ίL(Sf)e2ί(supp#). This is shown in Lemma 1, below.

It then follows from the "locally-Fock" property that eiL{9) is unitary on the
vacuum sector Jf, for g real and of compact support.

From the theory of quantum mechanical angular momentum or of the free,
charged scalar field we know that, formally, ρa is implemented by eίL{a\ Given
Λe {A}, we can choose a function ocΛ with

suppα^ compact and aΛ = α on A . (19)

The local action of ρa and eiL{CCΛ) - see Lemma 1, below - and the "locally-Fock"
property then imply that for all xeΛ
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j= 1, 2, in the sense of operator-valued distributions on Jf. Therefore ρα has a
unique extension to the von Neumann algebras 9l(Λ.), Λe {A}:

ρa(A) = eiL(aΛ)Ae~iLiaίΛ), for all As9l(Λ), (17')

[i.e. ρa ϊ 9ί(yl) is unitarily implemented by eiL{ΛΛ)~\.
We conclude that ρ is a well-defined ^-automorphism of (J 9l(/L) and hence

{Λ}

can be extended to a *-automorphism of 91 by continuity. Let Ω be the vacuum
in jf and set

and

ωoραμ) = ω{ρa{A)), for all Ae 91.

The vacuum sector J f of the (ψ ^ - t h e o r y is the Hubert space obtained from
(91, ω) by the Gelfand-Naimark-Segal (G.N.S.) construction [23, 32]. We denote
the Hubert space obtained from (91, ω°ρα) by G.N.S. construction by J f α. The
representations of 91 on jf and J-f α are intertwined by an isometric mapping

We may therefore write <TαΩ, TαΩ> for ω°ρα( ), etc.
Space-Time Translations. It is an important result due to Glimm and Jaffe

[22] - they consider the φ^-modd, but their results extend to (φ-φ)l - that for
arbitrary A e 91

so that

τt>x(A) = e ι ( ί H - xP)Ae " * H " * p ) (20)

defines a *-automorphism group (the space-time translations) on 91. In the
following a detailed analysis of the space-translations τo>x(xeIR) may mostly be
omitted, since it is trivial. We may then write τt for τu0.

Definition 0. Let α + be a continuously differentiable, bounded function on the
real line with

> — oo

lim α + (x) = 0, lim ot + (x) = aoo = π )

I ( 2 1 )
) compact. J

We set α~(x) = α+( —x); α^(j;) = α±(3; —x). For reasons that will become clear
shortly we call (21) the "soliton-condition"

We now state our main result:

Theorem 3. All vectors of the form {Ta±Ψ/ΨeJ)f,otOQ = π} span a Hubert
space 2tf *.
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The space-time translation automorphisms of the algebra 21 of all local ob-
servables are implemented on 2tf^ by a strongly continuous, unitary group

with

eίtHϊ τoι±Ψ=Ta±eitH{ai ]Ψ, (22)

where //(α1) is a positive, selfadjoint operator on Jf, and

eixn Ta±Ψ= Ta,e
iUaχ-Λ)eixPΨ (23)

moreover

Before we turn to the proof of Theorem 3 we want to make some remarks
and indicate its somewhat surprising consequences.

Remarks. (1) The first part (G.N.S. construction of ^ ) , (23) and (24) are the
easy portions of Theorem 3. The hard part is (22).

(2) Theorem 3 also applies to the Hubert spaces spanned by {Ta±Ψ/ΨeJf9

0too = 2mπ} and {T α ± y/!Pe^,α O T = (2m+l)π},meZ. But these are of course
identical to Jf, Jf^, respectively. We come back to this point below.

(3) As one might guess now we expect that the Hubert spaces Jίf^ represent
new super-selection sectors consisting of "soliton states". It turns out that in order
to decide whether Jf^r is orthogonal to the vacuum sector jf or not (i.e. whether
the representations of 31 on Jf7* and Jtif are inequivalent - more precisely disjoint -
or not) we must know whether or not the Φι^->—φι symmetry of the {φ-φ)l-
Lagrangian is spontaneously broken on ffl.

Φi^—φi symmetry breaking is predicted for sufficiently large σ on the basis
of the classical Goldstone picture. A proof follows from recent results of [28].

Let Jίfp be the vacuum sector of a pure phase (φ-φ)l -theory (i.e. the vacuum
Ωp in jtfp is unique) with the φ1t-

> — φ1 symmetry spontaneously broken. If this
symmetry is broken there exist at least (and presumably only) two such sectors.

We may assume at this point - see however Theorem 4 - that

Then

as X > + GO,

\±φc9 as x ^ —oo.

From (25) one can deduce that J f * is orthogonal to J^p and that the spectrum of
P^ is purely continuous; see Theorem 4.

It is rather striking how much the functions <Tα±Ωp, φx(x, t)T0C±Ωp) resemble
soliton-solutions of the classical field equations even though they are in general
not strictly stationary in t.
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§ 3. Proof of Theorem 3 and More about the Solitons in (φ φ)l

Proof of Theorem 3. The proof is given in seven (rather lengthy) steps (Lemmata
1-7).

A general comment on the strategy of our proof seems to be appropriate:
The construction of the vacuum sector of the (φ ^ - t h e o r y in the infinite volume
limit is based on Euclidean field theory methods and the Lee-Yang theorem
[39,11] which yield convergence and analyticity properties in bare parameters
of the Euclidean Green's functions with periodic boundary conditions ("periodic
box-cutoff). This construction (see Theorem 1) is given in [20]. It is expected to
automatically yield pure phase theories. (The main technical advantage of periodic
boundary conditions is that they preserve space-translation invariance at each
stage. See [24, 27] for an analysis of boundary conditions in the P(</>)2-quantum
field models.)

Our construction of soliton sectors and the dynamics on these sectors is
however based in an essential manner on C*-algebra techniques developed earlier
by Glimm and Jaffe [23, 24]. We have two reasons for doing so:

— Although the input we are using might not be very well known to this or
the other reader the C*-algebra techniques are very adequate to the problem
we are studying and they yield elegant proofs.

— They permit us to use powerful techniques such as the "locally-Fock"
property, finite propagation speed [22,23], duality (for the free field only) [34]
which in a sense have still no equivalent Euclidean counterpart. It is however
quite clear that our main results could be proved in a purely Euclidean setting
- as it is the case in the cosεφ2-theory (Theorem 2) [15] - mainly based on path
space techniques and the convergence of the lattice approximation [27]. This
assertion can be checked easily for a (φ φ)l~theory on a lattice.

Definition ί. Let 3F denote the usual Fock space of the free, charged scalar
field, and

. Pv = ( 0 L2([ - 7/2, 7/2], ax)®*™ f 2 (26)
\m = 0 /

the Fock space of the free, charged scalar field φv with periodic boundary condi-
tions at x=±V/2. The momentum operator canonically conjugate to φv is
denoted by nv. For A a finite union of closed intervals (contained in [— 7/2, 7/2])
2I(F)(yl) denotes the local von Neumann algebra generated by all bounded func-
tions of φ{V) and π(V) smeared with real (periodic) test functions supported on A;
see [23, 24].

We set

(depending on whether we are considering (</>, ^ ) or (φv,^v)); {•••}" denotes
the closure of { }. If 21 is an algebra of operators on a Hubert space, 2Γ denotes
its commutant.

Lemma 1. The free, charged scalar fields φ, φv satisfy duality, i.e.

9ί( ~ A\ %v{A)f = 9IF( ~ A). • (27)
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Proof. For the free, neutral scalar field without cutoffs duality (27) has been
proved in [34]. The method used in Osterwalder's proof [34] (φ — π expansions)
works equally well for (φv, πv, #V).

The theory of a free, charged scalar field is a tensor product of two identical
copies of the theory of a free, neutral scalar field. In particular it follows from our
definitions that

where W{V)(Λ) is the local von Neumann algebra associated with φ(y),p π(V),p
j= 1,2, and (x) denotes tensor products of von Neumann algebras. Now

by Tomita's commutant theorem [41]. Duality [34] yields

W{V)(Λ)' = Wfai-Λ), ./=1,2,

which completes the proof of (27). Q.E.D.

Next we want to study the *-automorphism ρa defined in (17) in some detail.

Let α be a real, continuously differentiable (for V< oo periodic)}

function on the real line with δ x αeL 2 (R). J

In the sense of quadratic forms we may define

L(α)=Ξ $dx[φ1(x)π2(x)-πί(x)φ2(xj]cc(x), and

Lv(a)= j dx[φVΛ(x)πVί2(x)-πVΛ(x)φV)2(xy\a(x)
-Vβ

We set

Λa={x\oc(x)φ2rnπ,meZ}- . (30)

Let Q){V) be the dense subspace of finite particle vectors in ^{V), i.e. vectors of the
form

with fjk=0, for all ) > M , k>N, for some finite integers M and N.

Lemma 2. (1) Let α be as m (28) and cc(x) = 2mπ, meZ, for all x^xa with xa

some finite real number (depending on a).
Then L(a) is essentially selfadjoint on @), ^ ί L ( a )e 9I(/la), and eiL{a) implements ρΛ.
(2) Let (x be as in (28). Then Lv(oc) is essentially selfadjoint on Q)v, e

iLv{a)e ^{A^
and eiLv{<x) implements ρa. Π

Proof We denote the vector {1,0,0,...} - the bare vacuum - by Ωo and set
μ(k) = ]/k2 + \. We first assume that α(x) = 0, for all x^xa. Then

\\L{a)Ω0 \\% = \ dkdp\ά(k + p)\2(μ(k) - μ(p))2(μ(k)μ(p))'1

is finite under our assumptions on a which imply that \k\a(k) is square integrable.
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It is then standard to show that 3ι is a domain of analytic vectors for L(α)
so that L(oc) \ 2 is essentially selfadjoint by Nelson's theorem. It is easy to see
that for α = 2raπ, rneZ,

where Q is the charge operator on #". We conclude that

eίL(<x + 2mπ) Ξ gί(L(α) + 2mπQ) _ ^iL(α)

i.e. we can always choose α such that α(x) = 0, for x^x α . One can show quite
easily that

eiL(a)eiφj(f)e - iL(oc) = eiQ*{φj){f) = Q (g*<W)) (32)

where ρa(φj) is defined by (17), plus identical equations for ei7lj{f)\ i.e. eίL{a) im-
plements ρa unitarily on # \

(On a space lattice Eq. (32) is a computation. To show it in the continuum
limit one proves strong convergence of the lattice approximations of both sides
in (32) following arguments of [27].)

Next let supp/£ ~ΛW It follows from (32) and (17) that

eίL(a)eiφj(f)e - £L(α) _ gίφjif)

and similarly for eiΊlj{f\ Since the operators

{eiΦΛf)ei*λf)\fE^real(R), s u p p / ς ~Λaf j= 12}

generate 5I(~ylα) we conclude that

eiu«)e ^ _ Λ j = g ! μ j ? b y L e m m a i .

The proof of (2) is similar.
We remark that a direct proof of eιL{oc)e 2I(Λα) can be given, is however

technically a little complicated in one space dimension. Q.E.D.
Definition 2. (1) Let Jf be a Hubert space, A an operator on J»f. The operator

domain of A is denoted by D(A). We say that A is symmetric (positive,
selfadjoint...) on Jf if D(A) is dense in Jf and ,4 is symmetric (positive,
selfadjoint...) on D(A). The quadratic form domain of A is denoted by Q(A).
In our notations we do in general not distinguish between the operator A, its
closure, the quadratic form determined by A,.... The spectrum of A is denoted
by spec A.

(2) We let H0(V) denote the free Hamiltonian of the charged, scalar field (in a
periodic box [— V/2, V/2]) and define the Hamiltonian of the (φ-^-theory in a
periodic box [— V/29 VjΊ\ as the selfadjoint operator determined by

1/2

H(l,V) = H0V + λ f dx:(φv.φv)
2:(x)

r (33)
-σ J dx:φϊtl:(x)-E(l,V),

-1/2

where l^V and E(l V) is the ground state energy (a unique selfadjoint operator
can be associated with H(l, V) e.g. by means of the Feynman-Kac formula [27]).
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For the Euclidean construction of the infinite volume limit (φ-φ)l-theory
on the vacuum sector we also must consider the Hamiltonian defined by

H(l,V,μ) = H(l,V) + μ J dxφVΛ(x)-E(l,V9μ),
-\\1

withμ an arbitrary real number; see [20]. We set H(l, oo) = H(t), H(l, oo, μ) = H(l,μ).
For μ + 0 the φ^—φ symmetry is explicitly broken. Hamiltonians similar to
H(l, V, μ) have been discussed in [24] and from a Euclidean point of view in
[12, 27]. The results of these references apply to the present model after some
straightforward changes.

Next we summarize some basic facts about the cutoff (φ ^- theory .
Fact 1. For all Frgoo, l<cc, μeIR the Hamiltonian H(l,V9μ) is selfadjoint

and bounded below by 0; 0 is an eigenvalue of multiplicity 1, i.e. H(l, V, μ) has a
unique groundstate ΩhVίμ. We set

ωV,μ\)~ \Ώv,V,μ> Ώyfv,μ/&v 9 (34)

and remark that ωVμ is a state on 9IF.
Fact 2. Let A be a finite union of compact intervals. We let ^LiV)(Λ) be the

C*-algebra generated by the operators

^ I 2, fe <^real(IR)5 sup/ QA}

o o

and define ρv to be the ^-isomorphism <Ά(A)-+(ΆV(A) defined by

QΛΦjU)) = Φvjn QvWf)) = πK i//).
If J*y is embedded in <F as a subspace in the usual way [24] one can easily check
that

= y4, for all ^ e ύ ( y l ) ; (35)

see [24] for precise definitions and proofs.
Fact 3. (Convergence of the periodic box cutoff [24])

Fact 4. (Finite propagation speed, [24].) Given A we define At= {x|dist(x,

|ί|}
For AeWyiA) and arbitrary μ

If AtC[-1/2J/2] then

is independent of /.
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Fact 5. (Construction of the time-translation automorphism [24].) If ΛtC
[ - Z/2,1/2] and Ae U(Λ) then

'(l,V,μ)0 fA\e-itH(l,V,μ)

V-+00 ^ V

τμ(A) is contained in 211/1,) and is independent of Z; τμ is the infinite volume time-
translation automorphism of 21 constructed by Glimm and Jaffe [22,24]. Notice
that τμ has wniί propagation speed.

Fact 6. For Ae{jM(A)
{Λ}

s-lim τf (yl) - τμ = V ) = τ , μ ) .

This follows from Fact 3, (36).
Definition 3. For α as in Lemma 2, (2) we define

eitH(<x\l,V,μ) — eiLv(<x)eitH(l,V, μ) β - iL^(α)

and for α as in Lemma 2, (1) we set

eitH(a\l,μ) Ξ eίL(a)eitH(l,μ)β - iL{a)

The following "propagators" play an important role:

VMh V, μ) = e^(a\ι,v,μ)e-imι,v,μ) 9

Fact 7. For α as in (28) and α(x) = 2raπ, for some meZ, all x^x α , ^c^xα? with

s-
F-^oo

(Choose Ψ in ®. Then s- l imL^α)^^! ,^) 1 ^ and hence, using DuhameΓs formula,
F->oo

eiLv(a)ψ^eiL(cc)ψ^ s t r o n g i y # since 3} is dense in SF the proof is complete.) Combining

this with Fact 3 and the unitarity of eiLv(a) and eίtH{l>v>μ) we obtain

s-limVt(a\h V, μ)= Vt(a\h0)=Vt(a\l)
μ->0

Remark. There is no explicit expression for H(a\l, V, μ). The domains
D(H(lf V, μ)) and D(H((x\l V, μ)) are disjoint. [The formal expression for H(oc\l, V, μ)—
H(l, V, μ) is ultraviolet divergent.]

However, if one considers the (φ φ)\ -theory on a space lattice with lattice
constant δ and lets H(l, δ, μ), H(oc\l, δ, μ) be the corresponding lattice Hamiltonians
one can derive an explicit expression for H(oc\l,δ,μ): H(<x\l,δ,μ) = H(l,δ,μ)-
δH(oc\lδ,μ\ where δH(<x\l9δ9μ) = δH(oι\δ,μ) is independent of / if Λa C [ - Z/2,1/2]|;
δH(ot\δ, μ) is a tiny form perturbation of H(l, δ, μ), uniformly in l< oo. [An explicit
computation of δH(oc\δ, μ) is left to the reader.] As we let δ tend to 0 the perturba-
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tion δH(a\δ, μ) develops ultraviolet singularities and the domains of H(l, δ, μ)
and H(a\l, δ, μ) separate in the limit (5 = 0.

It is easy to check that {e~tH{^ι'μ)/t^0} is a positivity preserving contraction
semigroup on L 2(^; e a l(IR) x 2, dμ)^ & which can be extended to Z/(^;e a l(IR)x 2,dμ),
l < p < 2 . [Here dμ is the usual Gaussian measure on the Q-space ^ ^ ( I R ) * 2 °f
the charged scalar time O-fϊeld.] Therefore it ought to be possible to replace our
algebraic proof of Theorem 3 started in Lemmata 1 and 2 and pursued below by a
Euclidean proof using path space techniques - as it is possible in the case of the
cosεφ2-theory.

After this break let us again do some work. The following lemma is the basic
ingredient for the proof of Theorem 3.

Lemma 3. (1) Let α be as in Lemma 2, (2) and suppose that ΛatSQ[ — l/2, Z/2],
for some s>0. Then for all \t\<s9 Vt(aι\l, V,μ)=Vt(<x\V9μ) is contained in SΆy(ΛΛit)
and is independent of I; it is strongly continuous in t.

(2) Let α be as in Lemma 2, (1) and assume that AajS£ [ —1/2, //2], for some s>0.
Then for all |ί| < s, Vt(oc\μ) is contained in $l(/tα ί) and is independent of I It is strongly
continuous in t.

(3) Let μ = 0 and define

Λa = (x|α(x) + mπ, meΊL) .

Then Vt{a\ϊ) is contained in 9l(,4α>f). /// a > sg[-//2,//2] then for all \t\<s, Vt(oc\l) =
Vt(oc) is independent of I Vt(<x) is strongly continuous in t.

(4) Let μ = 0, a = a x + a 2 with a1 ? a2 such as in Lemma 2, (1) and assume that

Then

with

V,(aj\l)eWΛxJ, j=ί,2. D

Proof. (1) By Lemma 2, (2) e± ί L" ( α )e2tF(ylα). Thus

by Fact 4. Therefore Vt{a\l, V, μ)eMM. ι) If ΛΛ rC[-//2,7/2] then
jtmι.v.μ)jLvwe-uiw.v.μ) = eumv,v,μ)e-iLr(«)e-itmv,v,μ) i s i n d e p e n d e n t o f ^ b y F a c t 4 ,

and hence so is Vt(a\l, V,μ). Finally Vt(a\l, V, μ) is strongly continuous in t, since
{eiίH<i'lΛ''')|ίeIR} is a strongly continuous unitary group and eiLv(ά> is unitary on !FV.
The proof of (2) is identical (the only difference being that a need no longer be
periodic).

(3) Let ρπ be the *-automorρhism on 31 defined by

y=l,2j ( 3 7 )

Clearly QI = I.
If Ae'ΆiΛ) and α(x) = (2m + l)π, for all xeΛ, then by Lemma 2, (1)

(38)
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For μ = 0 a n d all AeSΆ

eitH^ρπ(A)e ~itm) = ρπ(eitH{l)Aeίml)), (39)

by the φ-^-φ symmetry of H(l). (The operators Ho and H(l)-H0 are obviously
invariant under φv-^ — φ', (39) follows therefore from the Trotter product formula.)

Now let AeM(~Λatt). Then

by Fact 5 (unit propagation speed).
Thus, using (37)-(39)

eiL(a)eitH(l)e ~ iL(<x)e - i

eiL(a)eitH(l) ίe - it

a)e - itH(l)e - iL(α)

- itH(l)e - iL(α)

Therefore Vt{a\l)e^{^AaJ = ^{A^ by duality (Lemma 1). Next let W(l)

H(l)-H0 be the spatially cutoff (</>• (/^-interaction. We set

l,τ) = e-ίτHoW(l)eίτHo.

By the Trotter product formula - see [22, 24] -

- iL(oc)e - it

j = o

x e~iL{a) Π e^'^e-™0.

We let d > a and define

W(a\ a, τ) = W(a\ τ) - W{a, τ).

For all α', α and τ, e ^ ^ ^ ^ is

invariant under the substitution φ

NowforΛ"α>τg

— φ

(40)

and therefore it commutes with e~iL{Oί) by Lemma 2, (1), Definition (17) of ρa

and (41).
Finally

eiW(a'
c o m m u t e s With (42)

Let ao = minia\AaQ —-, - >. Since | ί | < s andylα > s£I L 2 2jj "2'2
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Thus

e i L { < x ) e

x 1
7

by

itHo

•—rπ
= 1

(41)

"π
7 = 0

- i —

e n

and (42)

e n

'n e-i
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7 = 0

X Π e'^^^nΊ^itHo ^ (43)

7 = 1

The r.h.s. of Eq. (43) is obviously independent of I By Eq. (40) it converges strongly
as n-+ oo. The limit is denoted by Vt(a); Vt(ot) is strongly continuous in t by (40)
and Lemma 3, (2). This completes the proof of (3).

(4) By Lemma 2, (1), Definition (17) of ρα and the fact that 50(2) is an abelian
group we have

for all τ4e2ϊ. Since 91 acts irreducibly on #", this equation is true for all bounded
operators on # \ Thus

iίH(0\

by Lemma 3, (3) and the fact that

M(ΛaJCW{ΛaJ, for ΛautnΛa2tt = β.

Clearly e ί L^ l )F*(-α 1 |/)= F^aJOe^^.
Since ΛautnΛa2>t = 0,

depending on whether (xx(x) is an odd or an even multiple of π for xeAa2jV As a
consequence of the φ-+ — φ invariance of H(ϊ) we have

as one easily checks.
Therefore

iL(αi + <x2)eitH(l)e - iL

= F t(αi |/)F t(α2 |/)

which completes the proof of (4). Q.E.D.
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Definition 4. We abbreviate (/, V, μ) by y. A point (ί, x)eIR2 is denoted by ξ9 and

where P(y) = P(V) is the momentum operator on ^v( = ̂ , for F=oo). We set

τy — TΊ
τt = τ ( ί , 0 )

) = Lv(a)(=L(a) for F =

and

χ e - iU«\ y)e - Htmy) - xP(γ))

ίUct~aχ]y)), ( 4 4 )

where <xx(y) = a(^ — x).

Notice that τJ(e ί L ( o t -^ l r t )e 9 1 ^ , , _ β > ( ) . (45)

Lemma 4. For all I <co, V ^ oo αwd arbitrary μ

(1) ϊ

(2)

Proof. This lemma is an immediate consequence of Definitions 3 and 4; e.g.

= Ty

ξe
iLi*hl ξ(A)e -iL(α) Tl ξ

= τ\(QJ(τlξ{A))). Q.E.D.

Next we construct the infinite volume limit F->oo and then pass to the limit
μ = 0.

Definition 5. Let α+ satisfy the soliton-condition (21), i.e. α+ is continuously
differentiable and

lim α + (x)=0, lim α+(x) = π, supp(<3xoc+) compact. (46)
X-> — 00 X-* + GO

We define a~(x) = oc + (-x); oφcJΞΞα^x), for e= ± 1,

ae>n{x)ΞΞ(χe(χ)-oce(x-n),

where n is some integer.

The cutoff vacuum states ωVμ have been defined in Fact 1, (34), the iso-
morphism Qγ'M^^γ in Fact 2.
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Lemma 5. For μ φ 0

(1) ^ωvJ

for all A and B in U.

(2) hm ωVtliV*ξ{Φn\y)Q.UQv{A))Vξ{ae'n\i))

(3) There exists a decreasing sequence {μι}Γ=ι converging to 0 such that

lim ω±μι(AVξl(ae "\ f f

Z= Z±(AVξl(<xe *TξιVξ2(oce »)Tξ2B)

(4) lim

(5) For φ = (φv ...,</>„) with n=ί or 2 the limits in (3) and (4) are independent
of the choice of the sequence {μ j^ j . D

Proof. This lemma looks complicated but is easy. We use the locally Fock
property - more precisely the local norm-compactness of the family {ωVi±μ\V^= oo,
μ2;0} of states [23,24] - to transfer the relations of Lemma 4 to the limits V= oo,
μ=0.

(1) It suffices to prove (1) for A and B in ϊl(/l), for some arbitrary, but bounded
interval A. The convergence of ρv to the identity, as F-»oo, on such operators
follows from Fact 2, (35). The convergence of the vacuum states ω F μ , as F-+co,
is a consequence of [20] [see also Theorem 1, (b) and (c)] and [24,26]. By Lemma 4,
(1)

v^eΛy)τUvd^n\y))τUdQviB))
= Vξι + ξ2(^n\y)τl + ξ2(ρv(B)). (47)

Next we use Fact 2, (35), Facts 3 and 4, Fact 7, Lemma 3, (1) and (2), and (44)
and (45) to conclude that

and
s;lim ρv(A)Vξι

Lemma 5, (1) now follows from (47) and Theorem 3.1 of Ref. [24].
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(2) By Lemma 4, (2)

l ξ (48)

By Fact 2, (35), Facts 3 and 4, Fact 7, Lemma 3, (1) and (2), and (44) and (45) the
left and the r.h.s. of (48) converge strongly on 3F to

£ ^ , respectively, as 7->oo .

Application of [24, Theorem 3.1] and the convergence of the states ωv μ [20]
completes the proof of (2). The proofs of (3) and (4) are similar to the ones of (1),
(2), resp.: We combine Facts 3-7 and Lemma 5, (1) and (2), with a straightforward
extension of [24, Theorem 3.1, (3.5)].

(5) This follows from correlation inequalities of [27] for the case n=\ and of
[11] for the case n = 2. Some details are given in [20]. For n^3 the relevant
correlation inequalities (yielding uniqueness of the limit μ-»0) are not known.

Q.E.D.
Remark. The theory reconstructed from the limiting states ω± satisfies all

Wightman axioms with the possible exception of the cluster properties; see
Theorem 1, (b) and (c), and [20].

Next we want to let n tend to oo. The states ω±°ραe,n represent "soliton-anti-
soliton states". The limit n->oo can be interpreted as "sending the soliton (or
anti-soliton) to behind the moon". It has not been proved that the vacuum states
ω+ have spatial cluster decomposition properties — i.e. are pure states — and thus
the limit n->co might not be meaningful. Therefore we must first decompose the
vacuum states ω± into pure phase states which do have spatial cluster properties.

Lemma 6. There exists a compact Hausdorff space X (points in X are interpreted
as pure phases), μnd a regular Borel probability measure v+ on X such that

ω±(Ά) = μv±(χ)ω\(A), for all AeW,
x

and for v± almost all χeX, ω\ is a pure state on 91 satisfying spatial cluster prop-
erties, i.e.

lim ω\ (AeixPBe ~ixP) = ω\ [A)ω\ (B) (49)
|x|-*oo

the theory reconstructed from ω\ satisfies all Wightman axioms; ω\ is locally Fock.
Proof. For the Wightman theory determined by ω+ the lemma has been

proved in [18, Theorem 2.19] and [19, Theorem 1.4]. Since the Wightman theory
coincides with the theory obtained from (ω+, 91) by G.N.S. construction [20,26],
Lemma 6 follows from [19, Theorem 1.4, (3)]. See also [2]. The arguments proving
the stability of the locally Fock property under the decomposition of Lemma 6
are standard. See [18, Section 2] for related results. Q.E.D.

Conjecture. The states ω+ and ω_ are pure. They are the only pure vacuum
states of the (φ ^ - t h e o r y at μ = 0.
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It follows from the techniques of [28] that for large σ, ω + φ ω _ , and the
Φi^ — φi symmetry is broken in the pure phases reconstructed from ω + , ω_.

We now let ω be an arbitrary pure vacuum state satisfying the cluster property
(49) obtained from Lemma 6. For such a state we may let n tend to oo and complete
the proof of Theorem 3.

Lemma 7.

(1) lim ω(V*(oce>n)ρae,n(A)Vξ(ae>n))

(2) lim ω(AVξ(θίe'n)TξB)

(3) {Vξ(ae)Tξ\ξeΊR. } is a continuous unitary group on the vacuum sector Jti?
reconstructed from (ω, 5ί), the infinitesimal generators of which satisfy the relativistic
spectrum condition. D

Proof. (1) It suffices to prove (1) for Ae [j 2I(/t). Then there exists a bounded
interval AA such that Ae *H(AA). Λe^

By Eq. (44), Fact 5 and Lemma 3, (2)

Vξ(oce'n)= Vt(oίe'n)φiL{^n-aχ>n)).

We let \n\ be so large that

and Λ ^ n Λ ^ 0 9 1 (50)

Then by Lemma 3, (4)

= K ^ ^ - α ; ) τ ί ( ^ β -*>)φ i Lt- f l« + αίί + ^

= Vt(oce)φiL^e ~ ̂ ) Vt{ - a^)φiL{ - ^ ^ x))

< ) . (51)

Let dA be the smallest real number such that AAQ\_ — dA,dA~\ and dae the smallest
real number such that

Now pick n such that (50) holds and

n^dA + dχe. (52)

Then A, thus ρa.,n(A), commute with Vξ(oζ); moreover ρa.,n(A) = ρx.(A). Hence

= V*ξ{ae)V*ξ{ - OQQ
e). (53)
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Due to the locally Fock property of ω and Lemma 3, (3), the operator on the
r.h.s. of (53) can be further studied on the Fock space !F using the spatially cutoff
(<£ 0)2-Hamiltonian Rv If we choose the cutoff / large enough

by Eq. (44), Lemma 3, (3), Lemma 2, (1), and Fact 5. Using Definition 3 and Eq. (44)
it is then trivial to show that

Since ω is invariant under τξ this yields (1).
(2) By (50) and (51)

Vξ(ote>n)=Vξ(ae)Vξ(-ae

n).

Thus

lim ω(AVJoce>n)Tβ)= lim

as a consequence of the cluster properties (49).
This proves (2).
(3) We first verify the group property for {Vξ(ae)Tξ\ξelR2}:

ω(AVξi(ocηTξlVξ2(ae)Tξ2B)

= ω(AVξi(oce)τξί(Vi2(ae))τξl + i2(B)).

For the proof of the group property it suffices to choose A and B in 91(̂ 4) for some
bounded, but otherwise arbitrary interval A, since Vξ(ae) and Tξ are unitary
operators on Jf.

We may then apply Lemma 3, (3) the locally Fock property of the state ω and
Facts 4 and 5 to conclude that we may further analyze

AVξl(ze)τξl(Vξ2(a'))τξι+ξ2(B)

as an operator on the Fock space $F using the spatially cutoff Hamiltonian R{

and choosing / so large that

AVξι(oce\l)τξί(Vξ2(ae\l))τξι + ξ2(B)

= AVξl(ae)τξl(Vξ2(ae))τξl + ξ2(B) is independent o f/ .

We then get immediately

= AVξί+ζ2(cf)τζl+ζl(B).

Thus

ω(AVξί(aηTξiVξ2(ae)Tξ2B)

(by the invariance of ω under τξ).
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This proves the group property.
Next we prove continuity of Vξ(oce)Tξ in ξ on Jf. Continuity of Tξ in ξ on J f

is known. By Eq. (44) and the locally Fock property

Vξ{ae)=Vt(ae)φiL{ae~aeχ)).

Strong continuity of Vt(ote) in t on <F has been proved in Lemma 3, (3). For / large
enough

Tt(eiL(«e - «£)) = eitHι(eiL(* - «%)y - itHi

which is obviously strongly continuous in t and x on J*. Thus Vξ(oce) is strongly
continuous in ξ on #", and, since Vξ(ae)e 2I(/1) for some bounded Λ, it is thus
strongly continuous in ξ on Jtf, by the locally Fock property.

Finally we must show that the infinitesimal generator of {Vt(θLe)eitH\teWL} is
positive.

We let A and B be operators in 91(̂ 4), for some bounded, but otherwise arbitrary
interval A and set

Bn = e'inPBeinP.

Consider the expectation value

Ff>B(t) = co(ABnVt{aLe n)eitHB*A*)

= ω(ABnVt(ae>")τt(BΪA*)).

The set Aae,n = A<χe-.0Ce is bounded for all \n\ < oo. Hence by Lemma 3, (2) and our
assumptions on A and B

for some bounded interval An.
By the locally Fock property of ω we may further analyze Cn on the Fock

space 3F using the spatially cutoff Hamiltonian Hι with / sufficiently large. Using
Definition 3 and Lemma 3, (2) we obtain

= ABne
ίL{ae' n)φ ~iL(αe> n)B*A*).

Since eiL(αe>n)e2ϊ(/lαe,n), we conclude that

FϊB(t) = ω(ABnVt(oce>n)eitHBΪA*)

= ω(Cn) = ω ( ^ β ^ l L ( α e > n \ ( e ~ i L ^ n

Since eίL{<χe'n) is unitary on J f for all |π|<oo and H is a positive operator, the
Fourier transform of F^'B(t) is supported on the positive half line. We now let n
tend to oo:

Using the cluster property (49) and Lemma 3, (4) we get

«->• oo

lim Ff>B(t)= lim ω(ABnVt(ae)Vt(-ae

n)τt(BΪ)τt(A*))
« > oo «->oo

= ω(A Vt(ae)τt(A*))ω(BVt(-ae)τt(B*))

= ω{A Vt(ae)eitHA *)ω(J3 Vt{ - <xe)eitHB*).
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Since the Fourier transform of lim F^iB(t) is supported on the positive half line
n-»oo

for arbitrary A and B in (J 2ί(/l) the Fourier transform of ω(AVt(ae)eίtHA*)
Λe{Λ}

and of ω(BVt( — ote)eίtHB*) are supported on the positive half line, as well, for
arbitrary A and B. The relativistic spectrum condition for the generators of
{F^oOT^elR2} follows by similar arguments. This completes the proof of (3).

Q.E.D.
Proof of Theorem 3. Let ω be an arbitrary pure phase state at μ = 0 or a direct

integral of such states.
Γ) From (ω°ραe, 21) with e=±l, we obtain a Hubert space #fe

π and a re-
presentation πae of 21 on ffle

π by the G.N.S. construction.
2°) By Lemma 7, (1) the state ω°ραe is space-time translation covariant; for

ω°ρae{τξ(A)) = ω(ραβ(

By Lemma 7, (3), {Fξ(αe)Tξ|^GlR2} is a strongly continuous unitary group on J"f
so that ω°ρα°τξ is a vector state of B(J^ζ) - the algebra of all bounded operators
on jjf* — and is continuous in ξ in norm. Therefore there exists a unitary group
{eι{tH%~xP%)\(t,x)elR1} which implements the space-time translation auto-
morphisms of 91 on 3tf% and

for all Ψeje, which [with Eq. (44)] proves (22) and (23). Since {Vξ{ae)Tξ\ξeWi2}
is an abelian group, we obtain (24).

3°) By Lemma 7, (3)

FA(t) ΞΞ ω°Qae{A*eίtmA) =

has a Fourier transform which is supported on the positive half line, for all AE 21,
so that i f ^ O . In the same way we obtain

sVcc(He

π,Pζ)QV+. Q.E.D.

Remark. The procedure for the proof of Theorem 3 outlined in Lemmata 3,
6, and 7 can be applied in a much more general, largely model-independent
context, as will be indicated later.

Next we study the structure of the super-selection sectors constructed in
Theorem 3. The main question is whether these sectors are really disjoint from
the vacuum sector.

Let ω+ be a pure vacuum state of the (0 </>)2

1-theory satisfying the cluster
property (49) such as obtained in Lemma 6.

Let {ontYi^i be kink functions satisfying the soliton-condition (46), (21).
We set

m m + n

a + (m)= Σ «/ a n d «"(«)Ξ Σ α 7
; = 1 j=m+ί
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The group law of S0(2) and definition (17) give

Let ffi + be the vacuum sector reconstructed from (ω + , 21).

Lemma 8. // m and n are even numbers, the automorphism

Qa + (m) + a.-(n)

is unitarily ίmplementable on J f +. •

Proof. Since m and n are even numbers and the functions {α* }Γ=Y satisfy the
soliton-condition,

is a compact set.
Therefore, by Lemma 2, (1)

This operator implements Qχ + {m)+a-{n) unitarily on # \ By the locally Fock property
of the state ω+ (see Lemma 6), e

iL(a + (m)+a~(n» determines a unique, unitary operator
71« + (m)+α-(»,)e2ί(^«+(M)+α-(π)) implementing ρ« + (m)+α-(,o unitarily on jf+. Q.E.D.

Due to the composition law (54) and Lemma 8, it now suffices to study the
automorphisms ρ^+ and ρ2- with α+ satisfying the soliton-condition.

A priori it is not clear whether the automorphisms ρ^± are unitarily imple-
mented on Jf + or not — they are implemented on the Fock space # \ If the φ1 —• — φx

symmetry of the (</> 0)2-Lagrangian is spontaneously broken by the vacuum
state OJ+ we can prove that ρa+ and ρa- are not unitarily implemented on J^+.
Thanks to the new results of [28] one may show that if the coefficient σ of the
term \φ\\ in the Lagrangian is large enough the φγ-* — φ\ symmetry is spon-
taneously broken by ω+ and that ω+(φί)>0. This is assumed henceforth. By
Lemma 6 we may suppose that ω+ is a pure phase state satisfying the cluster
property (49) and we may also assume that

ω+(φ1(x,ί)) = <O + ,01(x,ί)Ω + > = Ψc>O. (55)

The state ω _ Ξ ω + °ρπ is then a translation-invariant pure phase state satisfying
(49), and

ω4φ1(x,t))=-φc<0. (56)

If α^ and α̂ " satisfy the soliton-condition then ρπ°ρa + °ρoc- is unitarily imple-
mented on Jf+, by Lemma 8.

Therefore there exists a unitary operator Ta++a- on the vacuum sector JfL
reconstructed from (ω_, 21) such that

<Tβ i + + α a-Ω_,oΓα i + + α.β_> = ω + o ρ β i + + α _(.) . (57)

We define the Hubert spaces

je: = {Ta+ Ψ\Ψe^+f at=π} , (58)
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and

Jt?; = {Ta-Ψ\ΨeX'+,uZ=π}

= {Tx+Ψ\Ψeje.,at = π}. (59)

Theorem4. Assume that σ > 1 and that the vacuum state ω+ is chosen such as
described above.

Then the (φ φ)\-theory has four orthogonal super-selection sectors JfV> ^->
Jf+, and #e~. The representations of the algebra 91 on j f+, J>f_, J f+, J f ~ are
pairwίse unitarily inequivalent (more precisely disjoint).

The spectrum of P^ is purely continuous. For all vectors Ψ in a subspace dense

i.e. parity is spontaneously broken on J f * 3. •

Remarks. Obviously the behaviour qualitatively described in (60) reminds one
very much of the behaviour of the soliton-solutions of the classical, non-linear
field equation, even though <Tα± Ψ, φ^x, t)Ta± Ψ} is never strictly stationary in t.
That is why we call j f + the "soliton-" and Jf ~ the "anti-soliton" sector.

As a consequence of Lemma 8 and (58) we have: For Ψe J f + and m, n arbitrary

« + (2ffl) + α-(2n + l ) T b t / ί π ' J α + (

Proof of Theorem 4. The fact that J f + and Jf_ are orthogonal and that the
representations of 91 on Jf+ and ̂ _ are disjoint is well known [2].

Let/be some positive test function on IR2 of compact support and let/ x >t(y,s) =
f(y-x,s-1). Then for all Ψe 3tf±

lim<Ψ,β i φ l ( /-' t )Ψ>= lim (ψ,e

iMx't]ψy
χ->oo JC-^ — oo

>, (62)

which is an immediate consequence of the cluster property (49). However for
all

Λ ^OO

= lim < Γ α ± f , e - ί φ l < / - t ) T α ±

l P > (63)
χ-> — oo

by definition (17) of ρα± and Γα±, the unitarity of {eitH%\telR} on jf* - see
Theorem 3, (22) - and by (62). Obviously the r.h.s. of (63) is independent of t.

The factor (Ψ, Ψ} on the r.h.s. of (63) is real, but the second factor on the
r.h.s. of (63) is not, since ω+ breaks the φι-~* — φι symmetry [see (55), (56)]. Thus,
for 3

l i m < T α ± f , e i l ί ) ' < / - t ) 7 ; ±

t f ' > Φ l i m <•••>. (64)
X->00 X~+ — oo

Lorentz covariance of ^f * has recently been proven; see Remark 7, § 6.
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From (49) and (55) we conclude that for all Ψ in some subspace dense in J^+

Formulas (62) and (64) obviously prove that Jf+ and J f *, and jtf~ and J f ^ are
orthogonal. The orthogonality of jtf*£ and Jf~ follows from (63) (and, alternatively,
from the one of Jίf+ and Jtf_). In more precise terms, formulas (62)-(64) prove
that the representations of 91 on Jf+, ffl + and J f ~ are pairwise inequivalent. It is
known that the representations of 21 on jf+ and J^_ are irreducible, see [2].
Since ρa± are invertible ^-automorphisms of 91, the representations of 91 on J-f *
and Jf ~ are irreducible, as well. Hence the representations of 91 on Jf+, j f *, Jf_,
and J f ~ are pairwise disjoint. The breaking of parity on J ^ * follows directly
from (64).

Finally we learn from (63) and (64) that for all 3 φ Ψe 34? + and a positive test
function / of compact support

lim (T^,e-ixnei(l)df)e + i x n Ta±Ψ}

= lim(Ta±Ψ,eiφl{fx> o)Ta±Ψ)
JC-> oo

φ lim <T β ± ¥ r ,e ' * l ( / - 0 ) Γ β ± y>
Λ:—• — o o

= lim <T β ±«P,«"'-...>.
χ - > — oo

Therefore P^ does not have any discrete spectrum. Q.E.D.
Remarks. If the (φ- ̂ - t h e o r y is Lorentz-covariant on the sectors jtf* then

it follows from the continuity of specP^ that specH^ is purely continuous, as
well. Although the functions φa±ιΨ(x9t) = ^Ta±Ψ9φ1(x9t)TaiΨy [see Theorem 4,
(60)], remind one of the soliton-solutions of the classical field equation there is
one essential difference: If the {φ φ)\-theory is Lorentz-covariant on J f J it
follows from the continuity of specH* that the function φa±fψ(x, t) is never strictly
stationary in t.

There may exist states ρ on 91 with the property that ρiφ^x, ή) is similar to
the function φa±iΨ(x, t) but is independent of t [ρ(Φι(x, ή) is the strict analogue of
the time-independent, classical soliton solution]. The state ρ is then, however, a
non-translation invariant vacuum state which has to be sharply distinguished
from a soliton state: see Section 6.

§ 4. The Scattering of Solitons

Next we examine the consequences of assuming the existence of one-(anti-) soliton
states with discrete mass for the physics on the vacuum sector.

Definition 6. We define as the physical Hubert space of the (φ-φ)l -theory

π

+ θ ^~ (65)
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The total energy-momentum operator is given by

(H, v)=(H, p)\(jtr+ θ ^ - ) θ ( i / π

+ , K)Wt ®(H~, p ; )μr π - . (66)

Let α+ be a kink function satisfying the soliton-condition (see Definition 5) and
let a~(x) = a+( — x). We define soliton- and anti-soliton fields s, s by

fs,fore= + l
ands β =<L,

[5, for e = — 1.
Clearly

s β ( έ ) = Γ β . ^ α β ) = Γ β i 7 K ) , with ξ = (x,ί). (68)

From Eq. (68) we may derive locality properties: Suppose that

A^ttnA^tt. = 0. (69)

Then

since by (69)

ln(«?). or

and ρ π (F t «
1 ))=^ t «')> by the φ\-+-φ symmetry of (H,P). Therefore

sβl(ί)sβ2(ξ') = ϊώ+«^T t(αS I)^(«' 2)

= T ά , T & F,.K?)Fr(α^), by (69) and Lemma 3, (3)

(70)

Since suρρ(δxα
+) may be an arbitrarily small interval, the soliton- and anti-

soliton fields may be chosen so that they are almost local relative to each other.
They are, however, "anti-local" relative to the fundamental field φ:

In general
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Therefore if {x'}t,nΛΛett = 0

Clearly the soliton- and anti-soliton fields are almost local relative to even, local
functions of φ.

We now consider arbitrary vacuum expectation values (v.e.v.'s) of the fields
s,s,φί9φ2. For the purposes of scattering theory we must define the truncated
v.e.v.'s, too. The truncation is more complicated than in the case of a field theory
with local fields and a unique vacuum. This is because according to (61) odd
numbers of soliton- and of anti-soliton fields map Jί?± onto Jίfτ, so that when
defining truncation we always have to take into account two possible intermediate
vacua, Ω+ and Ω_.

Let π be an arbitrary product of s, s, φv and φ2 fields, n in number. We consider
arbitrary proper partitions p of π into disjoint clusters Cf, . . . , Q , where some
of these clusters may be empty, and such that each cluster contains an odd or an
even number of s and of s fields. We write

where Ψ(l) is an s, s, φx or φ2 field, and Ψp

h(ΐ) belongs to cluster Cp

jλ.
We set

Ψξ{l) = eim-Xΐ

Suppose that π has non-vanishing matrix elements between Jf + and f̂e(π), where
e{π) = + if π contains an even number of 5 and s fields and e(π) = — if π contains
an odd number of these fields. Assume that the physical mass

mHi = dist(0,specH\{0})

is positive. Let χn(ξ) be a Schwartz space function whose Fourier transform is
supported on {(p,po)\p2 + (p°)2^mJn-\-l}, and χn(0) = l.
We now define

( 7 3 )

where |p| is the number of non-empty clusters in p.
It is to be noticed that because of the commutation relations (71) the truncated

v.e.v.'s as defined in (73) do in general not decay to 0, as the separation between
two of their arguments tends to oo. This can be seen by considering e.g.

and letting ξ2 tend to + oo.
If there exist one-soliton and one-anti-soliton states with discrete mass it is,

however, consistent to assume that the Fourier transforms of the truncated v.e.v.'s
have sufficient smoothness properties in some neighbourhood of the mass shells
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to permit us to construct the scattering theory on fflphys a la Haag-Ruelle for
non-overlapping test-functions [29] vanishing at the origin in momentum space.
At this point no new concepts are required, and (on a formal level) one may
proceed as in [29]. Since the analysis of spec (H, IP) has not advanced enough,
details are deferred to later investigations.

We now assume that such a scattering theory for solitons, anti-solitons and
mesons exists. Let Ns be the number of solitons and JV5 the number of anti-
solitons in a scattering state of J f p h y s .

From the discussion above and from Lemma 8 and (61) we obtain

Corollary 5. (1) For every scattering state in the soliton-sectors J f J , Ns — N^
is odd.

(2) For every scattering state in the vacuum sectors J f ± , Ns — Njis even.
(3) Without taking into account solitons and anti-solitons, the scattering theory

onJ^-t does not satisfy asymptotic completeness.

Remarks. Even if ^ J Γ do not contain one- . ,. states with discrete
\anti-sohton/

mass, we consider it as likely that ^ p h y s > contains vectors describing resonances
(the solitons and anti-solitons) of such a long life-time that they may undergo
scattering.

A scattering theory for solitons of zero rest mass exists, as follows from the
interesting results of [5]. The existence of solitons with zero rest mass can, however,
presumably be excluded for σ ^ 1 on the basis of announced results [28].

The commutation relations (71) confirm that parity is spontaneously broken
on Jf7*. Space reflection is the conjugation mapping #?* to tf 1. J f + and #?~
have opposite Q-charge [where Q = J dx (grad</>) (x)] .

§ 5. The Solitons in the P(φ)2-Models

Let φ be a neutral, scalar field in two space-time dimensions and let P be an
even polynomial with positive, leading coefficient. The quantum field models
with interaction Lagrangian :P(φ):, where the double colons denote Wick ordering
with respect to some fixed bare mass, e.g. 1, are presently the best understood
models of a relativistic quantum field theory; see [12, 36, 28, 40]. It has recently
been proved that the φ^—φ symmetry of the Lagrangian is spontaneously
broken by some pure vacuum states if the coefficient of the :02:-term in :P(φ):
is sufficiently large and negative, [28], [at least if P(φ) = λφ4 — σφ2^\. Under
these circumstances we now show how to construct soliton- and anti-soliton
sectors.

We want to emphasize here that the situation met in the analysis of the P(φ)2

models is quite different from the one in the (φ φ)2 — σφ\ model, since in the
former we are dealing with only one scalar, neutral field so that there is no obvious
choice for a*-autormorphism ρα with

Q*Φ()) φ{)> f o r *

a n d

ρa(φ(x))=-φ(x), for x>xa>xa (74)
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and such that ω°ρα is a space-time translation covariant soliton-state. Let ω+

be a P(φ)2 vacuum state with
ω+(φ(x9t)) = φc>0.

We let ρπ be the *-automorphism determined by

and

As in Sections 2, 3 (jf + ,Ω+) and (Jf _,Ω_) denote the G.N.S. ( = Wightman-)
Hubert spaces and vacua reconstructed from ω +, ω _.

Definition 7. (tensor product P(φ)2-theory)

and φ = (φl9φ2)9

where </> is the interacting P(</>)2 quantum field.
On the basis of this seemingly unnatural tensor product P(φ)2-theory [which

we denote for short by P(φ)2 ® P{φ)ϊ\ we may now construct soliton- and anti-
soliton states.

Let α + be a kink function satisfying the soliton-condition (see Definition 5).
We define

(x) φ1(x)+cosα+(x) φ2{x),

plus identical equations for the corresponding canonically conjugate momenta;
see also (17).

Let 91 be the C*-algebra of all quasi-local observables generated by bounded
functions of φv φ2 and their conjugate momenta; the precise definition is as in
Section 2'. Let 3tf* be the G.N.S. Hubert spaces associated with (ω°ρα±,2l),
and Tα± the isometry: J f->Jf ^ intertwining the representations of 91 on Jf, Jf7^,
respectively.

With these definitions Theorem 3 remains true for the P{φ)2 ® P(φ)2-theory5

and the proof is almost verbally the same as the one in the case of the (φ φ)\-
theory. (We notice that for the P(φ)2(χ)P(φ)2-theory on the vacuum sector
J f all Wightman axioms are known [19, 36] and that the cluster properties
(49) — see Lemma 6 — hold in almost all pure phases [19].)

The spatial cluster properties imply that the vacuum Ω+®Ω_ is unique.
From this and results of [2] we conclude that the weak closure of 21 on Jίf + ® J^_
coincides with £(J f + ® J f _). As in Section 3 it then follows that the weak closure
of 91 on #e± is equal to B(^). By the P{φ)2®P{φ)2 version of Theorem 3 the
space-time translation automorphisms of 9ί are implemented on J f * by a unitary
group

which satisfies the relativistic spectrum condition.
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We now construct a soliton-state for the P((/>)2-theory which is a factor state.
Let 2I1 ? be the C*-algebra of all quasi-local observable generated by bounded

functions of φί and πx\ see Section 2'. Let 21^ denote its weak closure on J f *.
Since the weak closure of 91 on J f ^ is a factor of type 1^ 21 f is a factor, as well.

For A e 21 f

By a theorem of Borchers [7] there exists a continuous, unitary group
ζei(tH%,i-xP±ti)iξe jp2j ^ ςjj± ^y ĵcjj satisfies the relativistic spectrum condition
and implements τ ξ f 21 x.

Thus ω+f Sli is a space-time translation covariant factor state and, by con-
struction, it is a soliton-state for the P(</>)2-theory.

We conjecture that 2If is a factor of type 1^. If this is true there exists a tensor
product decomposition

We can then drop the trivial factor J^^i- The vectors in J^^Λ are pure, space-time
translation covariant soliton-states, for the P(φ)2-theory. Let Π^± l 5 Π#,+ denote
the representation of 2ίx on Jf^ 4 , J f+, respectively. Still assuming that our
conjecture is true one can show, using a theorem of [43], that

for some ^-automorphism ρ+ of 2IX.
With ( 2 1 ^ , (if± l 9 P ΐ J ) [ ( 2 1 , , ^ , , (ifj f l, Pί f l)), resp.] rep lac ing(21,^ ,

(H^,Pn)) Theorem 4 remains literally true for the P((/>)2-model. Parity is spon-
taneously broken on the soliton sectors ^iΛ1y The analysis of Section 4 applies
to this case, as well. It follows from announced results of Glimm et al.
[28], that for σ> 1 the spectrum of (//, P) on J f + and J4? _ has a mass gap which
excludes soliton-states of rest mass 0!

Concluding remarks: By considering the P(φ)2 ® P(0)2-theory we are able
to construct soliton-states for the P(φ)2-theory that are factor states, and pre-
sumably they are pure states of the form ω + °ρ±, for some ^-automorphism
ρ ± o f 2 I 1 .

By using a different Bogoliubov transformation we can easily construct pure
P((/))2-states with non-vanishing charge Q = J dx (gradφ) (x). However these
states are presumably not space-time translation covariant. For the (A04)2-model
on a space lattice in the two phase region we can prove existence of pure, charged
space-time translation covariant soliton-states.

§ 6. Soliton-Sectors and Soliton-Automorphisms: An Outline of a General Theory

In this section we draw abstract conclusions from what we learnt in the previous
sections about soliton-sectors by studying specific models. The setup we are
going to use must be placed in the framework of algebraic quantum field theory
[9,6].
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According to our personal taste we would like to present the following general
results within the framework of local morphisms on the algebra of all local
observables [9]. This would, however, go beyond the purposes of this paper.
Therefore we rather make the framework of [9] somewhat more concrete so
that the typical properties found for the soliton-states in the models are still
present in this general setup and the peculiarities of two space-time dimensions
remain apparent. We remark, however, that most of the following results can be
proved in the more general situation considered in [9]. Some of them are scattered
about different places of [9]. We hope to present a summary of such results
elsewhere. In the following a hypothesis which becomes a theorem for the models
considered in Sections 1-5 is marked by (*).

Let (21, τξ,ω) be an algebra of local observables, a space-time translation
automorphism group on 91 and a state on 9ί which is invariant under {τξ} =
{\

ξ

The G.N.S. Hubert space, the cyclic vector, the scalar product and the unitary
space-time translation group implementing {τξ} reconstructed from (2ί, τξ,ω)
are denoted by Jf7, Ω, < , > and {Tξ} respectively.

We assume that J f is a separable Hubert space and {Tξ} satisfies the relativistic
spectrum condition. In this case ω is called a vacuum state and Ω a vacuum. Through-
out the following we may assume that ω is a pure vacuum state so that the re-
presentation of 91 on J f is irreducible [2]. Let 3* be the family of all compact
diamonds in IR2 with non-empty interior. We suppose that

91= U 91(0) norm,

where {9I(0)|0 e ̂ } is a family of local von Neumann algebras with the properties:

1) \ΪΘ1 and 0 2 are in SF

2l(0i) Λ 9I(02) = 91(0! n 0 2 ); (*)

Merely as a matter of convenience we also assume that for 0 e #", 91(0) is a factor.
(Since ω is pure, such an assumption is possible.)

If 0 is an unbounded region, e. g. a cone, we define

91(0) = (J 91(0) norm.

&C&

If 33 is an algebra of operators on Jtf, 93' denotes its commutant and 93" its weak
closure.

Given any diamond or cone 0 we define

Ox = {ξ\ξ-(x,0)eΘ}

Θt: the smallest diamond containing all points

{ξ = (x,s)\3(y,s)e(9 with \x-y\^\t\}

0ξ = (Θx)t, with ξ = (x,ή
~ 0: causal complement of 0.

We notice that for 0 6 ^ , ~Θ = ΘLKJΘR, where 0 L and ΘR are two disjoint
cones opening to the left, the right, respectively.
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If two regions 0 l 5 0 2 are space-like separated, we write Θγ x 0 2 . The standard
locality hypothesis is: For 0 <Ξ # ; 31(0) ς 2 l(~ 0)'.

We assume furthermore:
2) Duality: For Θ e ^

See [6] for the problems connected with locality and duality and for the construc-
tion of local algebras satisfying duality (*).

3) Finite Propagation Speed: If 0 is a diamond or a cone,

We let G be the class {ρχ\χeX,X some index set} of local ^-automorphisms
on 3ί such that

£ 31(0), for all diamonds (cones) 0 , (75)

τξoρχ{A) = ρχ°τξ{A)9 for all .4 e 31. (76)

Clearly all states {ω°ρχ\χe X} are space-time translation invariant, and G is
a group; X becomes a group if we associate with χ1 ? χ2 the element χx χ2 e X
with the property that QXί°QX2 = QXί X2 Then χ1 χ2 is uniquely determined: All
states {ω°ρχ\χe X} satisfy the cluster property — see (49) — , since ω is pure and
by (76). Thus if ω°ρχ> is a vector state of ω°ρχ then ρχ' = ρχ. The group G is a
representation of X on 31.

We let e be the identity of X, i.e. ρe(A) = A9 all A e 31. By (76) X is a symmetry
group of the dynamics. If X J {e}, ω breaks the symmetry X.

Definition 8. We denote by σe_χ any automorphism of 31 with the property
that there exists Θ e 3F such that

σe-χ(A) = A, for all A e 2l(0J, and]

suppσ e _ χ is the smallest diamond Θ for which (77) holds; σχ_e and suppσ χ _ e are
defined by exchanging the roles of L and R. Finally σχ = σe_χ or σχ_e.

4) Existence of the Automorphisms σχ, (*): Given arbitrary χeX and (Pe^f
we assume that automorphisms σχ satisfying (77) with suppσ χ = Θ exist.

So far we have not imposed specific properties on the automorphisms σχ

which distinguish whether ω°σχ is a soliton — or a non-translation invariant
vacuum state.

5) Equivalence (*): If σ\ and σ2

χ are two automorphisms satisfying (77), then
ω° σ\ is a vector state of ω° σ ,̂ i. e. σ^ ° (σ^) ~x is unitarily implement able on Jf.

Remark. If the algebraic theory defined by (31, τξ, ω) is derived from the theory
of finitely many canonical Bose fields and 31(0) is *-isomorphic to 3IF(0), the
corresponding local free field algebra, for 0 e # \ then 4) and 5) are theorems. The
proof follows by abstraction of our construction in Section 5 and Lemmata 1, 2
of Section 3.
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Definition 9. An automorphism σχ satisfying 4) and 5) is called covariant
(or a "soliton"~automorphism) if the space-time translation automorphisms
{τξ} on 21 are unitarily implementable on the G.N.S. Hubert space 34?χ reconstruc-
ted from (ω°σχ, 21). The corresponding unitary group on jΊ?χ is denoted by
{Γ|}. If σχ is a covariant automorphism, there exists a unitary group {Tσ

ξ

x} on
^ such that <Ω, (T σ

ξψ σχ (A) T\* Ω> = ω° σχ (τξ(A)).
We define the cocycles

V\*=T\*T%. (78)

Lemma 9. Assume that ί)-5) hold. Let σχ be covariant. Then

(1) V%+ξ2 = V%τξι(V%)

(2) F^e2I(( suppσ^) .

Proof. (1) is an immediate consequence of (78).

(2) Let A e 2Ϊ ( - (supp <rz)ξ). Then

)* = τ\* τξ{A) (Tσ

ξ*)*

= {σχ(A), if τ ξ(^)

\oτ_ξoρ-ίoτξ(A), if

= A, by (76) and (77).

The proof is completed by using assumption 2). Q.E.D.
Given σχ we set

By 5) σχx and σχ are equivalent, and o"χΞcrχ

oσ~J is unitarily implemented on Jf7.
If σχ is covariant and (suppσz)ξx(suppσx>JC)ξ, then Vf=Vγ Vσ

ξ*'x, (*): By 1), 2)
and the Lemma, FJ^ is in 31 (supp σz) v ^(suppσ^J and so is V\x Vσ

ξ

x>x. As in the
proof of part (2) of Lemma 9, one shows that Vf(Vσ

ξ* F | * *)*e(2l(suppσχ) v
2l(suppσz x)y. If we choose Tσ

ξ

x and T | κ * properly and apply 1) we conclude
that Vf{V\^V^-)*=/.

Theorem 6. Assume ί)-5).

Then the following are equivalent:

(1) σχ is covariant.

(2) 7/ (suppσχ)ξ x (suppσ χ ? x) ξ. (79)

Vf=V\ V\, with V\, V\ weakly measurable in ξ on ^ and V\ e 21 ((supp σx)ξ),
2 J ξ ) Λ * ) D

Proof. (1)=̂ >(2) is already proved.

(2)=>(1): Since by 5) σx

χ is unitarily implemented on Jf,

Vψ Tξ = σx

χ(Tξ) is a strongly continuous unitary group on Jf satisfying the relativis-
tic spectrum condition.
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From (79) and 1) it follows that V\ and V\ satisfy the cocycle identity (1) of
Lemma 9, provided ξx and ξ2 are so small that

Hence for \ξ\ sufficiently small V\ Tξ and V\ Tξ are weakly measurable, unitary
groups and hence strongly continuous, since Jf is separable. By letting x tend
to oo we complete the proof by the arguments used to prove Lemma 7, Section 3.

Q.E.D.

Theorem 7. // σχ is covariant then {Tχ

ξ} satisfies the relativistίc spectrum condi-
tion, and the spectrum of the space-translations is purely continuous. The assertions
of Theorems 3 and 4 remain true in this general context.

Proof. The spectrum condition is derived as in Section 3, Lemma 7, (3). As-
suming covariance of the soliton state, the proofs for the remaining assertions of
Theorems 3 and 4 are model independent. Q.E.D.

Theorem 8. The equivalence classes of covariant automorphisms — see 5) —
form a group (which we call the "soliton group").

Proof Let σχι, σX2 be covariant. By 5) we may assume that for \ξ\ ̂  1

( s u p p σ χ 2 ) ^ C ( s u p p σ χ i ) L . (80)

We claim that for \ξ\£l

Vσ

ξ*2 Vσ

ξ*i Tξ=Tξ*2-χi

satisfies:

ω°σχίoσχ2(τξ(A)) = (Ω,(T^ *ή* σχίoσχ2(A) T^-*2 Ω) ,

for all A e 21.

It suffices to prove this for A e 21(0), any ^ e f .

by (80), (77) and Lemma

<V

9,

oσχ2{A)V°ξχ> vζχ> ay

1 Vξ*> Ω}

= <Ω9σxιoσX2(τξ(A))Ω>. (81)

Proof of (81). For all Ψ e 3/e

σχ2(τξ(A)) ψ = Tξ(Vσ

ξ*>)* σχ2(A) V\^ Tξ Ψ

Since A e 91(0), some Θe^, and by Lemma 9 there exists (fe=f such that τξ{(Vσ

ξ^f
σX2(A) V\**) and σX2(τξ(A)) are in 91(0).
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By 3) and the relativistic spectrum condition, J f contains a separating vector
for 21 (Θ). Therefore

which completes the proof of (81).

Finally, using the group property, we may extend {Tσ

ξ

x^x*\\ξ\f^\} to all

ξeWi2. Q.E.D.

Corollary 9. Assume l)-5).

(1) // X is abelian, the soliton group is abelian.

(2) All states {ω°ρχ\χeX} are vacuum states, (i.e. the relativistic spectrum
condition is satisfied).

Proof. (1) follows directly from (77) and 5), (i. e. "Equivalence").

(2) ωoρχ= J m ^ ω ^ σ ^ ^ .

Using Theorem 7 and the arguments in the proof of Lemma 7, (3), Section 3,
the corollary follows. Q.E.D.

Examples of Soliton-Groups. For the models considered in Sections 3-5 we
obtain the following abelian soliton group:
Set e = ρe, s = ρa+, s = ρa-, and i = ρa+°ρa-. Then the multiplication table of the
soliton group is given by

e

s

s

i

e

e

s

s

i

s

s

e

i

s

s

s

i

e

s

i

i

s

s

e

For the cosεφ2 theory (see Sections 1, Γ) the soliton-group is TL. A more detailed
analysis of the soliton-states for the cosε</>2-model and a class of related models
is of considerable pedagogical value for the understanding of the general theory
outlined in this section. It appears in a forthcoming paper, [15].

Remarks. 1) It is easy to conceive two dimensional models with a non-abelian
soliton group. Consider e.g. a scalar Bose field φ = (φi, ...,φn), n^.3, with self-
interactions given by

with m2/g<l. Assuming existence and φ^ — φi symmetry breaking, i=ί, ...,n,
this model has a non-abelian soliton-group. It follows from the Goldstone
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theorem [13] that in two dimensions neither X nor the soliton group can be
continuous Lie groups but are typically (subgroups of the) permutation groups.

2) As a heuristic principle we derive from our analysis that an automorphism
σχ satisfying 4) and 5) is covariant if and only if the cocycle Vξx is a local observable.

If extended to arbitrarily many space-time dimensions this principle tells us
that our constructions in Sections 1-6 ought to break down in three or more
space-time dimensions. If σχ is a (soliton-) automorphism of the kind introduced
in Definition 8 we define suppσ^ to be the intersection of all diamonds & with the
property that for A e 21 (~ Θ) there exists a positive number r (A) such that

τξoσχ(A) = σχoτξ(A), for all \ξ\<r(A).

In three or more space-time dimensions suppσ χ always contains an unbounded
diamond, provided σχ is not unitarily implementable and the theory has no
gauge symmetry. Hence - if it existed - the cocycle V\x would not be a local
observable. In a physicists language: The state ω°σχ has infinite energy with
probability 1. Therefore, by our principle, σχ is not covariant.

3) This situation changes if we consider local morphisms [9] or gauge trans-
formations. In this case we may assume that there exists a compact diamond
Θ such that

σχ(A) = A, (82)

and

τξoσx(A) = σχoτξ(A), for all AeM(~Θ)9 (83)

σχ is not unitarily implementable on 2tf . (84)

If we consider the action of σχ on unobservable (charged) field operators localized
in ~Θ then (82) and (83) imply that σχ is just a (spacedependent) gauge trans-
formation. Therefore we call σχ a gauge (auto-) morphism.

If the gauge invariance of the theory is dynamically broken in the state ω
then there may exist gauge automorphisms σχ satisfying (82), (83) which also
satisfy (84). They are accompanied by "topological quantum numbers," [14, 35]
and refs. given there. A field theory constituting a model for this situation in four
space-time dimensions is necessarily a non-abelian Yang-Mills theory. We
would e.g. study a scalar pi on field interacting with an SU(2) Yang-Mills field.
We summarize our speculations as follows:

Theory for which gauge
automorphisms satisfying
(82)-(84) exist

Theory is a Yang-Mills theory,
gauge invariance is dynamically
broken in the vacuum sector;
occurrence of "topological
quantum numbers".

4) In more than two space-time dimensions there may exist automorphisms
σχ satisfying Definition 8, (77) which have, however, the property that ω°σχ
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is time-translation invariant. The state co°σχ should then not be called a soliton-
state. It is rather a non-translation invariant vacuum state. Such states are known
to exist in the three (or more) dimensional Ising model.

In the case of the φ4 quantum field model non-translation invariant vacuum
states may exist in three or more space-time dimensions: The field equation

(O + m2)φ(x,t)=-λφ(x,t)3

has the solution

Φc(^) = (m/]/λ) tanh (mx1/]/!), [35] .

Assuming that λ and m are chosen such that we are in the two phase region we
may then introduce a new quantum field

Φ'&t) = Φ(x,t)-φc(x1) (85)

and compute the φ4-Hamiltonian as a functional of φ', [35]. It turns out that
the substitution (85) introduces a space-dependent bare mass term in the Hamil-
tonian density which is very large for |xt|^> 1. Therefore a cluster expansion of
the kind announced in [28] ought to be a suitable tool for the construction of a
vacuum sector for the Hamiltonian expressed as a functional of φ' and the field φ'.
The vacuum expectation value <</>(x, ί)> would then resemble φci would, however,
be modified by quantum corrections; it is independent of t. (Compare this to
Section 5.)

5) One might conjecture that the spontaneous breaking of a symmetry in a
quantum field model in more than one space dimension is usually accompanied
by the formation of new bound states: "Bound states" of two or more "would be
solitons" which are confined, by the arguments of Remark 2. A verification of
this conjecture might be of interest to the problem of confinement.

The phenomenon discussed here should also occur in one space dimension
in theories like [g(φ φ)2 — σφ\ — μφί]2 '• Choose g and σ such that for μ = 0 the
Φi^ — Φi symmetry is spontaneously broken and there exists soliton-sectors.
Then for small | μ | φ θ this model is expected to have a rich particle spectrum of
bound states of two "would be solitons". At present there is no rigorous proof for
this conjecture.

6) The author has recently proven that the Lorentz automorphisms are
unitarily implemented on the soliton-sectors of the [g(φ- φ)2 — σφl']- and the
P(Φ)i®P(Φ)i-theories, i.e. the soliton-sectors of these theories are Poincare-
covariant. This and Theorem 4 prove that the spectra of P* and H^ are purely
continuous (on each soliton-sector). This result seems to confirm that our
construction of soliton-sectors is the correct one. The proof will appear elsewhere.

7) Final Remark. Due to several reasons the appearance of this paper has been
delayed. The manuscript was, however, essentially complete before many of the
recent papers about the quantum soliton appeared. Therefore we may not have
given credit to this or the other author at places, where he might wish it. We
apologize for that, but we have otherwise no reason to revise any parts of this
paper.
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