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Abstract. A rigorous construction of new super-selection sectors —so-called
“soliton-sectors” — for the quantum “sine-Gordon” equation and the (¢-¢)*-
quantum field models with explicitly broken isospin symmetry in two space-
time dimensions is presented. These sectors are eigenspaces of the charge
O=[dx(grad¢)(x) with non-zero eigenvalue. The scattering theory for
quantum solitons is briefly discussed and shown to have consequences for the
physics in the vacuum sector. A general theory is developed which explains
why soliton-sectors may exist for theories in two but not in four space-time
dimensions except possibly for non-abelian Yang-Mills theories.

In quantum field theory a great deal of attention has recently been paid to the
construction and analysis of new super-selection sectors orthogonal to the vacuum
sector. Most authors — and this is not an accident (see Section 6) — have studied
Bose quantum field models in two space-time dimensions such as the quantum
“sine-Gordon” equation [3, 8, 14, 15] and the ¢*-model [4, 8, 21, 35]! which are
known to exist and to define relativistic quantum field theories [12, 36, 15, 17].
A deep axiomatic analysis of super-selection sectors in the framework of algebras
of local observables has earlier been presented in [9]. (Some of the results of [9],
e.g. the analysis of the statistics of a super-selection sector, do however not apply
to two space-time dimensions.)

For the two dimensional models these new sectors are expected to contain
states describing somewhat unusual collective phenomena which may be related
to the “soliton”-solutions of the c-number, non-linear partial differential field
equations, the “sine-Gordon” equation [8, 14], or the equation

(O +m)p(x, t) = — Ad(x, 1), m* <0 ;
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ETH, Ziirich.
L See also Remark 7, Section 6.



270 J. Frohlich

see [21,8,35]*. See also [31, 14, 35] and refs. given there for interesting results
about these field equations. For such models this paper attempts to clarify on a
mathematically rigorous basis the existence question of new sectors and of states
with the property that the expectation value of the field operator in such states
is similar to the classical soliton-solution (for this reason these states are called
“soliton-states” in this paper).

Technically a soliton-sector is defined by the following two properties:

— It is space-time translation covariant.

— It is an eigenspace of the charge Q= [dx(grad ¢)(x) with non-zero eigen-
value (here ¢ is an n-component, canonical scalar Bose field).

Our analysis intends to explain the general mechanism which is responsible
for the occurrence of new sectors in two dimensional models: It is related to the
spontaneous breaking of an internal symmetry of the dynamics (of determinant
+1). We prove that, within the framework of the models considered in this paper,
soliton-sectors are connected with the vacuum sector by certain Bogoiubov
transformations. Some connections with the analysis of [9] and with results of
[42] are explained.

Sections 1-5 are devoted to the analysis of specific models and their super-
selection sectors; Section 6 contains abstract conclusions derived from Sections
1-5: A general theory of “soliton-sectors”.’

In this paper we explain the main results and present or at least outline their
proofs. Some of the technical details appear in forthcoming papers: [15,20].
Whereas we have written this paper following the natural order of thoughts we
recommend that (for an overall view) the reader first read Sections 1, 2, 1', 2/,
and 6 and only then proceed to the more technical Sections 3-5.

We will mainly be concerned with the discussion of two specific models which
we now define in terms of their formal Lagrangians.

§ 1. The cos e¢p,-Theory

This model describes a neutral, scalar, relativistic quantum field ¢ in two space-
time dimensions. The total Lagrangian density is

L(x)=2L o(x)—A:cos(ed(x,0)+6):, (1)

where % (x) is the free Lagrangian density with bare mass m=0, the colons
denote Wick ordering with respect to bare mass 1 [3, 15]; the coupling constant A
is an arbitrary, real number, and 0e [0, 27) an arbitrary angle.

This model has only been shown to exist for ¢2<d4n, [15,16,17]. If e*=4n
it is easily seen to be equivalent to the one describing a free, massive Dirac field
[3,15]. For &* <4n it has been shown to be isomorphic to the massive Thirring
model [3]. For ¢2>4r it has non-trivial, non-superrenormalizable ultraviolet
divergencies which are not well understood, yet, [15].

The coseg,-theory has been extensively discussed in [8] and from a mathe-
matical point of view in [15,17]. The reason why we briefly discuss it in this
paper again is that it is the simplest (and in some sense the only) model which
has infinitely many (rather than only finitely many) super-selection sectors labeled
by an integer charge. This is connected to the fact that . is invariant under shifts
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of the field ¢ by 2mne ™', meZ. The vacuum sector contains states of pairs of
oppositely charged particles but no charged one particle states. Needless to say
that the model is of some interest to physics, e.g. in non-linear optics [31]. Other
(closely related) models of this category are discussed in [15].

§ 2. The (¢ ¢)3-Theory

Let¢=(¢,, ..., ¢,) be an n-tuple of neutral, scalar fields and £, the free Lagrangian
density for ¢ with bare masses m,; =...=m,=1. The total Lagrangian density is

L(x)=Lo(x)—2:(¢(x, 0)- $(x,0))*: +.Zn ai:hx, 0)%: @

& is invariant under the n substitutions ¢;— —¢,, i=1,...,n. The mass terms
0,:¢(x,0)*: break the O(n)-invariance, unless ¢, =...=0c, As we will see this
theory has only non-trivial super-selection rules if some sub-symmetry group of
the symmetry group O(n) is spontaneously broken. If o, =...=0, the theory is
O(n)-invariant and, as a consequence of the Goldstone theorem [13], no such
sub-symmetry group can be broken in this theory. For, it is obvious that the
spontaneous breaking of a discrete sub-symmetry group (which is possible in two
dimensions) would imply the breaking of O(n): some polynomial in ¢ not invariant
under O(n) would necessarily develop a non-vanishing vacuum expectation value
which proves our assertion. This however is impossible in two space-time dimen-
sions [13]. Hence, in order for the (¢-¢)3-theory to have non-trivial super-
selection rules, at least one of the coefficients of the mass terms must be different
from the others. If 6,0, i=2,...,n, the ¢~ — ¢, symmetry may be broken
spontaneously, and this is actually to be expected if 6;>0, i=2,...,n, on the
basis of the classical Goldstone picture or an approximate calculation of the
effective potential. A rigorous proof follows from recent results of Glimm, Jaffe,
and Spencer [28] and will be presented elsewhere. If the ¢, — ¢, symmetry is
spontaneously broken we are able to construct (at least) two non-trivial super-
selection sectors consisting of soliton states; see Theorems 3 and 4. The existence
of soliton states is related to the invariance of % under the following substitutions
of determinant +1:

(@15 ..o P> (=4, ..., e,0,), Wwhere e;=—1, 3

for some j, and e;=1, for i#1,j. Soliton-states occur if one of these symmetries
is spontaneously broken.

n
If the classical Goldstone potential (x-x)*— ) o¢,x; has only finitely many
i=1
absolute minima, it has at most two. We therefore expect that the ¢;—~ —¢;-
symmetry is broken for at most one i and hence that there exist no more than
two non-trivial super-selection sectors. Without loss of generality we may therefore
set n=2, 6, =0, 6,=0 throughout most of the rest of this paper. A more general
situation is met if one considers e.g. a (¢-¢@)5-theory or the coupling of several
independent systems with broken symmetries.
In a P(¢),-model with one single, neutral, scalar field ¢ the substitution
¢+ — ¢ has determinant — 1. We show in Section 5 that this forces us to consider
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a tensor product theory of two identical copies of the usual P(¢),-theory which
has an internal symmetry of determinant + 1. Starting from the (artificial) tensor
product theory we are able to construct soliton sectors for the ordinary P(¢),-
theory. Our construction is quite different from recent more heuristic proposals.

The (¢- ¢)3-theory is a model for a one-dimensional anharmonic, anisotropic
dielectric chain: The field ¢ (with two or three components) is then interpreted
as the polarization field which is bound by anharmonic, anisotropic (¢, >0a,=0!)
forces. In order to understand what “soliton-states” are we must consider the
effect of a spatially extended twist (torsion) of the dipole chain by a total angle .
Our techniques extend to the case where ¢ is coupled to some modes of the
electric field. The expectation value of the electric field in a soliton-state has the
shape of a pulse. Such a model may be relevant in quantum optics.

We now discuss the existence of a vacuum sector for the cosed,-theory with
¢* <16/ and the (¢ - ¢)3-theory.

Theorem 1. (a) For the cos e ,-theory with ¢* < 16/n there exists a vacuum sector
H (A is a separable Hilbert space) such that the theory on the vacuum sector
satisfies all Wightman axioms [30] with the possible exception of uniqueness of the
vacuum.

(b) For ¢ =(¢p;, .... ¢, n=1,20r 3,0, =0=0, 6,=05=0 there exists a vacuum
sector A for the (¢-p)3-theory such that on A this theory satisfies all Wightman
axioms with the possible exception of uniqueness of the vacuum. (For 0 i< A,
0<0q, where 1o and o, are small positive numbers, the vacuum is unique and there
exists a mass gap and one particle states.)

(c) Under the assumptions of part (b) the (¢ - §)3-Wightman theory on the vacuum
sector # of part (b) coincides with the theory obtained from the C*-algebra construc-
tion of Glimm and Jaffe [22,24]; see also Section 3.

Proof. (a) is proved in detail in [15, 16] (the restriction &* < 16/ rather than
g2 <4n is presumably an artefact of our way of estimating).

For n=1 (b) is well known. For a proof see [36] and refs. given there. For
further results see [37, 20]. For n=2, 3 the proof of (b) is due to the author [20].
It is based on Spencer’s “large external field” expansion [ 38] which yields existence
of the [(¢-¢)* — 63 — ud,1,-model for large |u|. The Lee-Yang theorems of [39]
and [11] permit us to continue the Euclidean Green’s functions of the model
analytically in p to arbitrary p=+0 and to construct limits as p\0, x 0. The part
of (b) within brackets (weak coupling) follows from the cluster expansion [12, 38].
Part (c) follows from combining (b) with the ¢-bounds of [20] — see also [25, 26] —
which yield selfadjointness of the quantum fields on # and then applying a
general result of [26]. Q.E.D.

Remarks. We would like to emphasize that the C*-algebra construction of
quantum fields in two space-time dimensions as developed in [23, 24] is particu-
larly useful for the purposes of this paper: the analysis of superselection rules.

Theorem 1, (b) has various generalizations including simple proofs of existence
and analyticity for lattice systems such as the Heisenberg model, [20].

Since the time when this manuscript was completed Glimm, Jaffe and Spencer
[28] have established spontaneous ¢ — — ¢ symmetry breaking under the condi-
tions of Theorem 1, (b), o> 1, n=1. Thanks to correlation inequalities proved in
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[11] and results of [20] the author could extend this result to the (¢-¢)3-theory
with 0> 1 and n=2. This removes the last unproved assumption in Sections 2’
and 3.

For the coseg,-theory some interesting, heuristic results on the mass spectrum
are presented in [8]. In [15, 16] it is proved that the cose¢,-theory is mathematical-
ly isomorphic to the theory of the classical, two-component, neutral Coulomb
gas in two space dimensions. The well-known scaling properties of the Coulomb
gas [33] are used in [16] to prove?:

Pl )= F(@)lAI2/2 =, m (e, A)= Gl 2|2, (4
91D (x, () =uP(9 ', 97 11), 90, o), 5)

8=-23
where p(a, 4) is the vacuum energy density, m (o, 4) the physical mass and u$?(x, 1)
the truncated two point Euclidean Green’s function of the field: e*?:(x, 1) of the
cosed,-theory; o= ¢e?/4n. Scaling equations similar to (5) hold for all the truncated
n-point Euclidean Green’s functions.

Notice that for a=1p, m, and u'® have a branch point singularity at 1=0.
For o< 1 this singularity is caused by infrared divergencies (second order perturba-
tion theory is infrared divergent). For o« > 1 the singularity is caused by ultraviolet
divergencies. Equations (4) imply that for a>1 the cose¢,-theory is not super-
renormalizable, and for o =2 it is presumably meaningless (see also [3]). By the
equivalence of coseg, with the massive Thirring model Eq. (5) proves that the
short distance singularities of the massive Thirring model are identical to the
ones of the massless Thirring model.

The isomorphism between cose¢, and the classical Coulomb gas suggests
that the physical mass m,, is positive. This is interpreted as Debye screening in the
Coulomb gas. One knows that G(a=0)"'=0 and G(a=1)"'=0 or 2 — depending
on the choice of the renormalization scheme — see [16]. This suggests that G(x) !
is bounded for a sufficiently close to 0 or 1 and therefore m (e, 1)>0 for all real
A#0, i.e, the mass gap is positive, for A=0.

Next we describe our construction of new super-selection sectors for the
theories described in Sections 1, 2, and Theorem 1.

§ 1'. The Sectors of the cose¢@,-Theory

In the discussion of the cose¢,-theory we choose as our basic observables the
following selfadjoint fields [15]:

:cos[ed(x, t)+ B]:, fe [0, 2n), 0. ¢(x, t), m(x, 1), (6)

where 0, denotes derivative in x and n is the momentum operator canonically
conjugate to ¢. Note that 0,.¢(x, t) is the density of a conserved charge

Q=(e/2m)[dxa.(x,1); see[3,15]. (7)

Let A(®) denote the usual local von Neumann algebra [9, 22] generated by the
bounded functions of the fields defined in (6) smeared with test functions that are

2 In order to prove the equation for m, and (5) we must assume that m,(e, 4)>0, for some A=0.
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supported in a bounded open region O CIR? (e.g. a diamond). We let U be the
C*-algebra of all local observables [2] obtained by taking the closure of | | (0)

©
in the operator norm, where {(} is a covering of IR? by bounded, open diamonds.
We set ¢(x)=¢(x,0) and n(x)=mn(x,0). A local *-automorphism g, of U is
defined by

0,(:cos[e(x)+ f]:) = :cos [e(p(x) +g(x)) + B] : }
04(0xP(x)) = O P(x) + g(x)); 04(m(x)) =7(x) .
It is known, though not quite trivial to prove that the automorphism g, is deter-

mined on all of A if we know how it acts on the time 0-fields, i.e. by (8); see [15].
Here we let g(x) be a continuously differentiable function on the real line with

@

lim g(x)=0, lim g(x)=g,, supp(d,g) compact. )

Such a function is called a kink function. When restricted to A(0), Oe {0}, ¢, is
unitarily implemented by e, where g, is a continuously differentiable function
with g,(x)=g(x) on 0O, suppg, compact. The operator intertwining the representa-
tions of A and of ¢ (A) on # [ie. the representations of A on # and on the
Hilbert space obtained from (U, {Q, g,(-)2)), where Q is the vacuum in 5#, by the
Gelfand-Naimark-Segal construction] is denoted by T, Formally T,=e™.
Under the automorphism g, the dynamics of the coseg,-theory transforms as
follows:

Y G BT ' (10)
where
6H(g)= 0,¢(0,9) +7 10,9113
+ A [ dx[ :cos(ed(x) + 0):(cos eg(x) — 1)
+ :cos(ep(x)+ 0 —m/2):sineg(x)] . (11)

Inspection of the r.h.s. of (11) shows that §H(g) is a tiny form perturbation of the
Hamiltonian H if and only if (coseg(x)— 1) and sineg(x) have compact support, i.c.

&g =2mn,meZ, (“soliton-condition”). (12)

The proof of this assertion is based on a straightforward generalization of the
Glimm-Jaffe ¢-, :¢':-, and 0O.¢p-bounds [24,25,26] for the (cosed+m*d?),-
theories, for all m>0, and is given in [15]. Clearly the :¢’:-bounds of the P(¢),-
models are replaced in the coseg,-theory by :cos(ep + f):-bounds.

On a formel level (11) is an immediate consequence of (1), (8), and (10). The
rigorous proof of (11) involves first studying the (coseg +m?*@?),-theory [15, 17]
and the automorphism g, _,,, where g satisfies (12) and g,=g(x—¢). Then g—g.
has compact support, and g, is unitarily implemented on J# by e™9799 The
proof of (11) with g replaced by g —g, is then quite easy. One then lets m tend to
0, decomposes the limiting theory into its pure phases — using a theorem of [19] —
and then lets ¢ tend to oo. This limit exists because of the cluster properties of a
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pure phase theory (it is interpreted as “sending the anti-soliton to behind the
moon”). For details see [15]. Using the quadratic form estimates described
above and path space techniques one can show that

eit(H + 6H(g))Qg(A)eit(H +d0H(g)) — Qg(eitHAeitH) , all AE QI ,

where H+ 0H(g) is the Friedrichs extension of the corresponding quadratic form.
We have now sketched the proof of

Theorem 2. All vectors of the form {T,V|¥Ye #, eg,,=2mn} span a new Hilbert
space H . The time-translation automorphisms of W are implemented on H#,, by a
continuous unitary group {e"/teR}:

ST P =T Oy | gl Pep (13)

and
QT.Y=mT Y. (14

For all vectors ¥ in a dense subspace of #
litP (LY, o(x, )T,)¥)>= lim <{T,¥, ¢(x,)T,¥> +2mn (15)

(the limits on both sides of (15) exist; |¥| =1). For m=n the representations of U
on H,, and S, are unitarily inequivalent, i.e. #,, and S, are orthogonal sectors. []

Remarks. (14) is an immediate consequence of (7) and (8). Concerning (15)
notice that

Jim (T (0T, 9= lim (T2, §9T, %>, by (13),

= lim <P.0,@()¥>= lim (¥,$(x)¥>+2mn,
and
lim (LY, ¢, 0T, ¥>=...= lim (¥, 0,(p(x)¥>

= lim (¥, 9()¥>= lim (¥.6()¥).

The orthogonality of #, and #, for m=%n is a direct consequence of (15).
(Heuristically it also follows from the selfadjointness of Q on the total Hilbert
space () A, the spectral theorem and (14).) The rigorous proof follows slightly

melZ

different lines; see [15]. It is easy to show that for all m the space-translations of 2
are unitarily implemented on 5,

States in 4, for m=0, are interpreted as “soliton”-(m>0) and “anti-soliton”-
(m<0) states; <T,¥, p(x,)T,¥) seems to be related to the soliton-solutions
[14, 8] of the classical “sine-Gordon” equation.

The super-selection sectors #,, must be identical with the charged sectors
of the massive Thirring model [3]. It is an interesting open problem to construct
local fields with non-vanishing matrix elements between ¢, and . : the
Fermion fields of the massive Thirring model.

In the massless Thirring model there are uncountably many super-selection
sectors labeled by a pair (g, k), where h,, is a real number [42]. There is no
restriction on the value of g .. The “soliton-condition” (12) can thus be interpreted
as a dynamical charge quantization (which is enforced by the mass of the Fermions).
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§ 2'. The Sectors of the (¢ ¢)3-Theory

Since we have broken O(2)-invariance in this theory explicitly by a mass term,
we have no reason to restrict the algebra of local observables to O(2)-invariant
(bounded) operators. We may therefore choose as our basic observable fields the
selfadjoint time 0-fields

¢1(x), (%), p2(x)  and  7y(x), (16)

where 7; is the momentum canonically conjugate to ¢, j=1, 2.

Let A(A) be the usual local von Neumann algebra generated by all bounded
functions of ¢, 7, ¢,, and 7, smeared with test functions supported on a compact
interval A of the real line (U(A) is identical with the local von Neumann algebra
A(0O), where O is the diamond with base A, and () is defined in the usual manner,

[22]).
We let U be the C*-algebra obtained by taking the closure of U A(A) in the

operator norm ({A} is a covering of the real line by compact 1ntervals) The
construction of the algebra A(A), Ae {4}, can be done on the Fock space of the
free, charged scalar field ¢ because of the “locally-Fock” property — proved in
[23] for the ¢3-model — which holds for the (¢ -@)3-theory, as well.
Let « be a continuously differentiable, bounded function on the real line.
The following equations define a *-automorphism g, of the algebra :

2{P2(x)) = —sina(x)- ¢y (x) +cosax)- Py(x) , (17)

plus identical equations for 7,(x) and 7,(x).

2u{1(x))=cosxx)- 1 (x) +sine(x)- 5(x) }

For g a continuously differentiable, integrable function on the real line we define

Lig)=Jdx[1(x)my(x) —m1(x)h(x)1g(x) - (18)

Obviously L(J,) is the charge density. On the Fock space of the free, charged
scalar field L(g) is known to define a selfadjoint operator (also denoted by L(g)),
provided g is real; then e“®@e A (suppg). This is shown in Lemma 1, below.

It then follows from the “locally-Fock™ property that ¢ is unitary on the
vacuum sector i, for g real and of compact support.

From the theory of quantum mechanical angular momentum or of the free,
charged scalar field we know that, formally, o, is implemented by ¢®. Given
Ae {A}, we can choose a function «, with

suppa, compact and ¢ =0 on A . (19)

The local action of g, and e*# — see Lemma 1, below — and the “locally-Fock”
property then imply that for all xe A

Qa(¢j(x)) = eiL(aA)(pj(x)e —iLl(xa)

(T (x)) = e (x)e T =)
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j=1, 2, in the sense of operator-valued distributions on #. Therefore g, has a
unique extension to the von Neumann algebras A(A), Ae {A}:

0fA) =€t ge~iLea) - for all AeW(A), (17)

[ie. o, A(A) is unitarily implemented by L],
We conclude that ¢ is a well-defined *-automorphism of ( ) 2(4) and hence

{4
can be extended to a *-automorphism of 2 by continuity. Let 2 be the vacuum
in & and set

o(A)=<L,AQ),
and
woQ,(A)=w(g,(A4)), forall AeU.

The vacuum sector # of the (¢-¢)3-theory is the Hilbert space obtained from
(U, w) by the Gelfand-Naimark-Segal (G.N.S.) construction [23, 32]. We denote
the Hilbert space obtained from (2, weg,) by G.N.S. construction by #,. The
representations of U on # and #, are intertwined by an isometric mapping

T, H—H,.

We may therefore write {T,Q, - T,Q) for weg,(-), etc.

Space-Time Translations. It is an important result due to Glimm and Jaffe
[22] — they consider the ¢3-model, but their results extend to (¢-¢)3 — that for
arbitrary 4e A

ei(tH—xP)Ae—i(tH—xP) iS iIl QI ,
so that

Tr,x(A) = ei(tH —xP)Ae —i(tH — xP) (20)

defines a *-automorphism group (the space-time translations) on 2. In the
following a detailed analysis of the space-translations 7, (xeIR) may mostly be
omitted, since it is trivial. We may then write 7, for 7, ;.

Definition 0. Let a* be a continuously differentiable, bounded function on the
real line with

X — 00

lim o*(x)=0, HIP at(x)=a,=n
(21)

supp(d,a*) compact .

We set o~ (x)=a™(—x); af(y)=a*(y—x). For reasons that will become clear
shortly we call (21) the “soliton-condition”
We now state our main result:

Theorem 3. All vectors of the form {T,.W/PeH, a,=n} span a Hilbert
space #E.
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The space-time translation automorphisms of the algebra U of all local ob-
servables are implemented on #* by a strongly continuous, unitary group

{ei(tH; —xP; )/(t, X)E R? }

with

T W=T,. ey (22)
where H(a™) is a positive, selfadjoint operator on #, and

PR T, W =T, eklax—0gixPyp (23)
moreover

eixP,?r eitH,*, =eitH$, eixP,*, . O (24)

Before we turn to the proof of Theorem 3 we want to make some remarks
and indicate its somewhat surprising consequences.

Remarks. (1) The first part (G.N.S. construction of #%), (23) and (24) are the
easy portions of Theorem 3. The hard part is (22).

(2) Theorem 3 also applies to the Hilbert spaces spanned by {T,.¥/¥e #,
a,=2mn} and {T,.¥Y/PeH,0,=02m+1)n}, meZ. But these are of course
identical to #, #'~, respectively. We come back to this point below.

(3) As one might guess now we expect that the Hilbert spaces #F represent
new super-selection sectors consisting of “soliton states”. It turns out that in order
to decide whether #Z is orthogonal to the vacuum sector 5 or not (i.e. whether
the representations of 2 on #'F and # are inequivalent — more precisely disjoint —
or not) we must know whether or not the ¢, —¢, symmetry of the (¢-@)3-
Lagrangian is spontaneously broken on .

¢, — ¢, symmetry breaking is predicted for sufficiently large ¢ on the basis
of the classical Goldstone picture. A proof follows from recent results of [28].

Let #, be the vacuum sector of a pure phase (¢-¢)3-theory (i.e. the vacuum
Q, in # , is unique) with the ¢, — ¢, symmetry spontaneously broken. If this
symmetry is broken there exist at least (and presumably only) two such sectors.

We may assume at this point — see however Theorem 4 — that

<‘Qp’ ¢1(x> t)'Qp> E¢c>0 .
Then
(T2 ¢1(x, )T, Q) =<, 0,+(P1(x, 1))2,)
= (eI, 0,y (x))e TR,
_){:Fqﬁc, as x— 4o, (25)

+¢., as x—>—o0.

From (25) one can deduce that #; is orthogonal to #, and that the spectrum of
PZ is purely continuous; see Theorem 4.

It is rather striking how much the functions <{T,.Q,, ¢,(x, )T,.Q,) resemble
soliton-solutions of the classical field equations even though they are in general
not strictly stationary in ¢.
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§ 3. Proof of Theorem 3 and More about the Solitons in (¢ ¢)3

Proof of Theorem 3. The proof is given in seven (rather lengthy) steps (Lemmata
1-7).

A general comment on the strategy of our proof seems to be appropriate:
The construction of the vacuum sector of the (¢-¢)3-theory in the infinite volume
limit is based on Euclidean field theory methods and the Lee-Yang theorem
[39, 11] which yield convergence and analyticity properties in bare parameters
of the Euclidean Green’s functions with periodic boundary conditions (“periodic
box-cutoff”’). This construction (see Theorem 1) is given in [20]. It is expected to
automatically yield pure phase theories. (The main technical advantage of periodic
boundary conditions is that they preserve space-translation invariance at each
stage. See [24,27] for an analysis of boundary conditions in the P(¢),-quantum
field models.)

Our construction of soliton sectors and the dynamics on these sectors is
however based in an essential manner on C*-algebra techniques developed earlier
by Glimm and Jaffe [23, 24]. We have two reasons for doing so:

— Although the input we are using might not be very well known to this or
the other reader the C*-algebra techniques are very adequate to the problem
we are studying and they yield elegant proofs.

— They permit us to use powerful techniques such as the “locally-Fock”
property, finite propagation speed [22, 23], duality (for the free field only) [34]
which in a sense have still no equivalent Euclidean counterpart. It is however
quite clear that our main results could be proved in a purely Euclidean setting
— as it is the case in the cose@,-theory (Theorem 2) [15] — mainly based on path
space techniques and the convergence of the lattice approximation [27]. This
assertion can be checked easily for a (¢-¢@)3-theory on a lattice.

Definition 1. Let # denote the usual Fock space of the free, charged scalar
field, and

_%E(@O LAX[—V/2,V/2], dx)®sm)®2 (26)

the Fock space of the free, charged scalar field ¢, with periodic boundary condi-
tions at x= +V/2. The momentum operator canonically conjugate to ¢, is
denoted by ;. For A a finite union of closed intervals (contained in [ — V/2, V/2])
A5, (A) denotes the local von Neumann algebra generated by all bounded func-
tions of ¢, and =, smeared with real (periodic) test functions supported on A4;
see [23,24]. -

We set

~a=liei_y ) e}

(depending on whether we are considering (¢, %) or (¢, F)); {---}~ denotes
the closure of {---}. If W is an algebra of operators on a Hilbert space, A’ denotes
its commutant.

Lemma 1. The free, charged scalar fields ¢, ¢y satisfy duality, i.e.
A(A) =AU(~ A), W(A) =Wy (~4). T (27)
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Proof. For the free, neutral scalar field without cutoffs duality (27) has been
proved in [34]. The method used in Osterwalder’s proof [34] (¢ —n expansions)
works equally well for (¢, n,, F ).

The theory of a free, charged scalar field is a tensor product of two identical
copies of the theory of a free, neutral scalar field. In particular it follows from our
definitions that

QI(V)(A) = m(lm(/l) ® QI(2V)(/1) s

where jy\(4) is the local von Neumann algebra associated with ¢, ;, )
j=1,2, and ® denotes tensor products of von Neumann algebras. Now

QI(V)(A)’ = (QI(IV)(A) ® QI(ZV)(A))'
= QI:V)(A)l @ QI(ZV)(A)I s
by Tomita’s commutant theorem [41]. Duality [34] yields
Q[{V)(A)I = QI{V)( ~A), j= L2,

which completes the proof of (27). Q.E.D.
Next we want to study the *-automorphism g, defined in (17) in some detail.

Let a be a real, continuously differentiable (for V < oo periodic)} (28)

function on the real line with d,xe L*(R).

In the sense of quadratic forms we may define

L(@)=[dx[¢1(x)m,(x) — 7, (x)¢p5(x)]ee(x), and 29

] V)2
Ly(o)= —£/2 dx[py 1(X)my 2 (X) =7y 1(X)Py H(X)]od(x) .

We set
A= {x|oux)+£2mn, meZ}™ . (30)

Let 2, be the dense subspace of finite particle vectors in &, i.€. vectors of the
form

{fo,f1o9f01, ...,fjk, ..,}697([,),
with f;,=0, for all j>M, k> N, for some finite integers M and N.

Lemma 2. (1) Let o be as in (28) and a(x)=2mmn, meZ, for all x<x, with x,
some finite real number (depending on o).

Then L(x) is essentially selfadjoint on 2, e'Pe W(A,), and ™ implements g,.

(2) Let a be as in (28). Then Ly(«) is essentially selfadjoint on D, eLv@e WA (A,),
and v implements ¢, [

Proof. We denote the vector {1,0,0, ...} — the bare vacuum — by £, and set
u(k)=1/k*+ 1. We first assume that a(x)=0, for all x<x, Then

1L (@)1 = | dkdpla(k+ p)|* (u(k) — u(p)*(u(F)u(p)) ~*

is finite under our assumptions on « which imply that |kl&(k) is square integrable.
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It is then standard to show that & is a domain of analytic vectors for L(c)
so that L(x) ! 2 is essentially selfadjoint by Nelson’s theorem. It is easy to see
that for a=2mn, meZ,

eiL(a)___ ei2an=I , (31)

where Q is the charge operator on . We conclude that
iL(a+2 — i 2 i
gillat2mn) — Hi(L(@)+2mnQ) _ ,HiL(a) ,

i.e. we can always choose o such that a(x)=0, for x<x, One can show quite
easily that

QIL@it, (g~ IL) — piex ) = o (id1) (32)

where g,(¢) is defined by (17), plus identical equations for e™; ie. ¢ im-
plements g, unitarily on &.

(On a space lattice Eq. (32) is a computation. To show it in the continuum
limit one proves strong convergence of the lattice approximations of both sides
in (32) following arguments of [27].)

Next let supp f € ~ A, It follows from (32) and (17) that

L@ IL@) — (ids(f)
and similarly for ¢™), Since the operators
(e fe  oR), supp [ S ~ A, =12}
generate 2A(~A,) we conclude that
et A(~ A,y =U(,), byLemmal.

The proof of (2) is similar.

We remark that a direct proof of e“®e(A,) can be given, is however
technically a little complicated in one space dimension. Q.E.D.

Definition 2. (1) Let A be a Hilbert space, 4 an operator on J#. The operator
domain of A is denoted by D(4). We say that A is symmetric (positive,
selfadjoint ...) on # if D(A) is dense in # and A is symmetric (positive,
selfadjoint ...) on D(A). The quadratic form domain of 4 is denoted by Q(A).
In our notations we do in general not distinguish between the operator 4, its
closure, the quadratic form determined by 4, .... The spectrum of A4 is denoted
by spec A.

(2) We let Hy denote the free Hamiltonian of the charged, scalar field (in a
periodic box [—V/2, V/2]) and define the Hamiltonian of the (¢-¢)3-theory in a
periodic box [—V/2, V/2] as the selfadjoint operator determined by

12

H(LV)=Hop+ 24 | dx:(¢y-¢p)*:(x)

-1/2 (33)

12
—o [ dx:¢} :(x)—EQLV),
—1/2
where I<V and E(l, V) is the ground state energy (a unique selfadjoint operator
can be associated with H(/, V) e.g. by means of the Feynman-Kac formula [27]).
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For the Euclidean construction of the infinite volume limit (¢-¢)3-theory
on the vacuum sector we also must consider the Hamiltonian defined by

12

HO,V, = H, V)i ] dxy (9= G,V 1),

“12

with y an arbitrary real number; see [20]. We set H(I, co)= H(l), H(l, o, p)= H(I, 1).
For u=+0 the ¢—> —¢ symmetry is explicitly broken. Hamiltonians similar to
H(l, V, 1) have been discussed in [24] and from a Euclidean point of view in
[12,27]. The results of these references apply to the present model after some
straightforward changes.

Next we summarize some basic facts about the cutoff (¢-@)3-theory.

Fact 1. For all V<00, I<oo, peR the Hamiltonian H(l, V, ) is selfadjoint
and bounded below by 0; 0 is an eigenvalue of multiplicity 1, i.e. H(/, V, ) has a
unique groundstate Q, , ,. We set

Wy, u(')=<QV v, Qy y u>f«7V s (34)

and remark that wy , is a state on 2.
Fact 2. Let A be a finite union of compact intervals. We let QI(V)(A) be the
C*-algebra generated by the operators

{eid;(v)’j(f)ei"(v)’j(f)ljz 1,2, fE yreal(IR)’ Supf gA}
and define g, to be the *-isomorphism ()N, (A) defined by
ol N=dy () ovlmfN=my (f).

If #, is embedded in & as a subspace in the usual way [24] one can easily check
that

slimo,(4)=4, forall Ae¥(A); (35)

see [24] for precise definitions and proofs.
Fact 3. (Convergence of the periodic box cutoff [24])

itH(Lw) __ o 13 itH(L,V,
etHLW — g i ¢™H( u)’

V-

O =g Jim g™ EV-1) | (36)
V=0
n=>0

Fact 4. (Finite propagation speed, [24].) Given A we define A, = {x|dist(x, 4) <

lel}.
For Ae A, (A) and arbitrary p

itH(L,V, —itH(L,V,
eHLY.m g~ itHLV.0 2 QL (A)
If A,Cc[—1/2,1/2] then
eitH(l,V,u)Ae—itH(l,Ku))=eitH(V,V,u)Ae—itH(V,V,u)

is independent of L.
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Fact 5. (Construction of the time-translation automorphism [24].) If A,C
[—1/2,1/2] and AeA(A) then

s-lim e"H“’V’“)QV(A)e —itH(L,V, )
V-

— eitH("“)Ae_itH("“)ET{‘(A) ;

#(A) is contained in A(A,) and is independent of I; t¥ is the infinite volume time-
translation automorphism of 2 constructed by Glimm and Jaffe [22, 24]. Notice
that 7/ has unit propagation speed.

Fact 6. For Ae ] A(A)
)

s-ligl HA)=1'"%A)=1,4).
u—

This follows from Fact 3, (36).
Definition 3. For « as in Lemma 2, (2) we define

HtHEILY 1) — oLy (@) pitH(LV , 1) , — ily (@) ,

and for « as in Lemma 2, (1) we set

eitH(a[l,/,t) = eiL(a)eitH(l,u)e—iL(a)
The following “propagators” play an important role:

Vt(dll, 124 #)EeitH(all,V,n)e—itH(l,V,u) ,

Vz(fx|l, ,u)Ee"H(““’”)e_itH(l’“) .

Fact 7. For o as in (28) and a(x)=2mmn, for some meZ, all x<x,, x=X,, with
X, <X,
iL(a) .

s-limell"@=¢
V-

(Choose ¥ in 2. Then s‘;lim Ly (o) = L(x)? and hence, using Duhamel’s formula,

eLv@W o LAY strongly. Since Z is dense in & the proof is complete.) Combining
this with Fact 3 and the unitarity of ¢'Xv®@ and ¢"#®V-» we obtain

s:im V(L V, )= Vi(olL, ),
s:im Vi(all, V. )= Vi(olL, 0)= Vi(ed))

u=0

Remark. There is no explicit expression for H(«|l, V,u). The domains
D(H(I, V, p)) and D(H(«|l, V, p)) are disjoint. [ The formal expression for H(«|l, V, u)—
H(l, V, p) is ultraviolet divergent.]

However, if one considers the (¢-¢)3-theory on a space lattice with lattice
constant ¢ and lets H(I, 6, u), H(x|l, 8, p) be the corresponding lattice Hamiltonians
one can derive an explicit expression for H(o|l, 5, 1): H(x|l 8, u)=H(l, 6, p)-
0H(a|l, 8, n), where dH(a|l, 6, u)=J5H(a|, w) is independent of 1 if A,C[—1/2,1/2];
O0H(a|d, p) is a tiny form perturbation of H(I, 8, u), uniformly in < co. [An explicit
computation of 0 H(«|d, y) is left to the reader.] As we let § tend to O the perturba-
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tion dH(x|d, 1) develops ultraviolet singularities and the domains of H(l, J, 1)
and H(x|l, 6, p) separate in the limit 6=0.

It is easy to check that {e~"H@!#/t>0} is a positivity preserving contraction
semigroup on L2(¥,,(R)*?, du)= F which can be extended to L2}, (R)* 2, dw),
1 <p<2. [Here du is the usual Gaussian measure on the Q-space ¥, (IR)*? of
the charged scalar time 0-field.] Therefore it ought to be possible to replace our
algebraic proof of Theorem 3 started in Lemmata 1 and 2 and pursued below by a
Euclidean proof using path space techniques — as it is possible in the case of the
cosegp,-theory.

After this break let us again do some work. The following lemma is the basic

ingredient for the proof of Theorem 3.

Lemma 3. (1) Let « be as in Lemma 2, (2) and suppose that A, (S[—1/2,1/2],
for some s>0. Then for all |t|<s, V(all, V, ))=V(V, p) is contained in WAy (A,
and is independent of | it is strongly continuous in t.

(2) Let o be as in Lemma 2, (1) and assume that A, ;S[—1/2,1/2], for some s> 0.
Then for all |t| <s, V(a|w) is contained in W(A, ;) and is independent of . It is strongly
continuous in t.

(3) Let u=0 and define

A, = {x|o(x) £ mm, me Z} .

Then V(all) is contained in WA, ). If A, S[—1/2,1/2] then for all |t|<s, V{all)=
V() is independent of I. V(o) is strongly continuous in t.
_ (4 Let u=0, a=0y +a, with ay, ay such as in Lemma 2, (1) and assume that

Ay 0 Ay, =0
Then
ZCIERZCAIIZEAI
with

Vioie (4, ), j=12. O
Proof. (1) By Lemma 2, (2) e*Zv®@eQ(A,). Thus
eitH(l,V,u)e— iLV(a)e— itH(l, V,/t)e mV(Aa t) ,

by Fact 4. Therefore . VL, V, ,q)e QIV((L;,:)- If A4,,C[—12,12] then
ALY Woilv(@ o= itHLV, 1) — pitH(V, V1) p ~ilv(@) o~ itH(V. V.1 ig independent of I, by Fact 4,
and hence so is V(all, V, u). Finally Vi(«|l, V, p) is strongly continuous in ¢, since
{e"HEV-m|te R} is a strongly continuous unitary group and e’V is unitary on % ..
The proof of (2) is identical (the only difference being that « need no longer be
periodic).

(3) Let g, be the *-automorphism on A defined by

0 e )=~ ibsN) |

ey 12}

Clearly ¢ =1.
If Ae A(A) and a(x)=(2m+ 1)x, for all xe A, then by Lemma 2, (1)

eiiL(a)AeIiL(a)=Qi_a(A)=Q”(A), (38)

(37
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For u=0 and all Ae A
eitH(')Qn(A)e TiHG) Qn(e"H(l)AeitH(l)) ’ (39)

by the ¢— — ¢ symmetry of H(l). (The operators H, and H(l)— H, are obviously
invariant under ¢+ — @, (39) follows therefore from the Trotter product formula.)
Now let Ae A(~ 4, ,). Then

e—itH(l)AeitH(l)e QI(N/I_a) ,

by Fact 5 (unit propagation speed).
Thus, using (37)—(39)

ViedDAV ¥ (@ll)

— L@ itH(D) p =L@y~ itH (1) 4 itH(1) oiL(®) = itH(I) o = iL(@)
= oL@ itH)y (o= itH(D) 4oitHD)p = itH() o ~iL@)

iL —iL
=g (A)e” " =g (0(A)=A.

Therefore V (al)e W(~A, ) =WA,,), by duality (Lemma 1). Next let W(l)=
H(l)— H,, be the spatially cutoff (¢-¢)3-interaction. We set

W(l, )= e “HoW/(l)ei*Ho ,
By the Trotter product formula — see [22, 24] —

eiL(a)eitH(l)e - iL(az)e —itH(l)

-1 .t J
— s-lim e'L®gitHo "n e‘?"’(’r(l )

n— oo Jj=0

—tL(a)n iy W(l ) —xtHg' (40)

We let @’ >a and define
W', a,1)=W(d,1)—W(a, 7).
For all @', a and 1, @49 is }

I 41
invariant under the substitution ¢— —¢. (41)

- aa

N Cl—=, =

ow for AM_[ >3
eiW(a’,a,r)em(NA'a’r)

and therefore it commutes with e *® by Lemma 2, (1), Definition (17) of g,

and (41).
Finally
eV@tnatno  commutes with @, (42)
Let ay=min{a|A,C |- 4 N Since It] d A, Ll +t <l
ay=minjal4,C |- 3,5 <sand 4, < 53] %0 )
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Thus by (41) and (42)

~-1 ;¢ J
oiL@gitHo nl—[ e’;"’(’»(l ‘_n)‘)e —iL(@)
j=0

-1 ;1 g J
— oL@ itHo nl—[ e w(ao+(1=5)0(1 ) t)e ~iL(®)

j=0
-i_;W(a0+T{t,%z)

% 1—[ e e—itllo . (43)
Jj=1

The r.h.s. of Eq. (43) is obviously independent of I. By Eq. (40) it converges strongly
as n—o0. The limit is denoted by V,(a); V(o) is strongly continuous in ¢ by (40)
and Lemma 3, (2). This completes the proof of (3).

(4) By Lemma 2, (1), Definition (17) of g, and the fact that SO(2) is an abelian
group we have

eiL(on + az)Ae —iL(a1+az) _ eiL(al)eiL(az)Ae—iL(az)e— iL(ay) ,
for all Ae . Since A acts irreducibly on &, this equation is true for all bounded
operators on & . Thus

eiL(au + az)eitH(l)e —iL(ay+ az)e —itH(l)

:eiL(m)(eiL(az)eitH(l)e—iL(az)e~itH(l))

x (eitH(l)e-iL(ou)e—itH(l)eiL(au))e—iL(ax)

= MY V(o e

__ il —iL

=MWV — oy [V (ol =
by Lemma 3, (3) and the fact that

(A, )CUA,,,), for A, nA,, ,=0.

Clearly eM0VH(~a,|l) = Vy{a, |))e’™ .
Since A, N4, ,=0,
i - VidoolD), or
ezL(al)V o ”)e zL(a1)={Qn( AP
2 VialD),

depending on whether a,(x) is an odd or an even multiple of © for xe A,, .. As a
consequence of the ¢— — ¢ invariance of H(l) we have
0(Vi{oa| D) =Vifa D),

as one easily checks.
Therefore
eiL(ou + az)eitH(l)e —iL(oty + az)e —itH(l)
= Vifary eV (ol e~
= V(o4 [DV(02]])

which completes the proof of (4). Q.E.D.
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Definition 4. We abbreviate (I, V, 1) by 7. A point (z, x)e R? is denoted by &, and
Tg = pl(tH) = xP(¥)) ,
where P(y)=P(V) is the momentum operator on F (=%, for V =o00). We set
T A)= TLA(TY*, Acd,
TV=T),0
Lialy)=Ly(o)(=L(x) for V=oc0),
and
Vg(ah’) = piL (Y pitH() ~ xP(7)

x ¢~ i@l —itH) ~ xP(3)

=V aly)ti(em =), (44)
where o, (y)= oy — x).
Notice that 7}(e™* =) e W (4, _, ). (45)

Lemma 4. For all | < oo, V < o0 and arbitrary p
(1) Ve, TE Ve, (aly) TE,
= Vql(ab’)T{l(ng(aW))Tfl +&
= Vél*"éz(ab))Til +&at
) VEayeLA)Vdaly)
=1l L A)). O
Proof. This lemma is an immediate consequence of Definitions 3 and 4; e.g.
VEINQLAV{aly) = T T o~
X 0, (A)e T O Tl AT,
=Tl (A)e T,
=1H0.(t- {A))) . Q.E.D.

Next we construct the infinite volume limit ¥ —oo and then pass to the limit
u=0.

Definition 5. Let o™ satisfy the soliton-condition (21), i.e. «* is continuously
differentiable and

hm ot (x)=0, 11m o™ (x)=m, supp(d,2*) compact . (46)

We define o~ (x)=a*(—x); aé(x)=a*(x), for e= +1,
a®M(x)=o(x) —o’(x—n),

where n is some integer.
The cutoff vacuum states wy , have been defined in Fact 1, (34), the iso-
morphism gy : 9191, in Fact 2.
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Lemma 5. For u=+0

(1) 1im oy (oUW 05 (Vea= ), < slor(B)
=0 AV, ("W T% Ve, (2" W) TE,B)
= wu(A Vei+ gz(o‘e’n]ﬂ)T'é 1+ ng) >

for all A and B in 9.

@) lim oy (V10w Ao AV )
=0, (VIO 1)gge ( A)V (" |10))
= 0,(Que. (T2 {A))) -

(3) There exists a decreasing sequence {i;};%, converging to 0 such that
}Lrg @4, (AVe (0" £ 1) T.E"L,‘“ V(" + ) Tgisz)
=, (AV, (@*"T,,V,, (") Ts,B)
=604_r(AV§1+§2(°‘e’n)T¢1+¢zB)

(@) 1im 0, (VOO 2 10,0, (A)V " 4 1)
= 04 (VEE 000 A)V ")
= 04(QuenlT- {A).

(5) For ¢=(¢y, ..., d,) with n=1 or 2 the limits in (3) and (4) are independent
of the choice of the sequence {y}>,. [
Proof. This lemma looks complicated but is easy. We use the locally Fock

property — more precisely the local norm-compactness of the family {wy . |V < o0,
120} of states [23, 24] — to transfer the relations of Lemma 4 to the limits V' = oo,
u=0.

(1) It suffices to prove (1) for 4 and B in ﬁ(A), for some arbitrary, but bounded
interval A. The convergence of g, to the identity, as ¥ — oo, on such operators
follows from Fact 2, (35). The convergence of the vacuum states wy ,, as V-0,
is a consequence of [ 20] [ see also Theorem 1, (b) and (c)] and [24, 26]. By Lemma 4,

(1)
Ve, @ 0t (Ve (e [))7E, + e, (@v(B))

=V, 15, (0" I9)7E, + 5 (0v(B)) - 47)

Next we use Fact 2, (35), Facts 3 and 4, Fact 7, Lemma 3, (1) and (2), and (44)
and (45) to conclude that

$-limoy(A)V o p)e (Ve (e "7))eE, + 2,(0v(B))
= AV, 0" )7e, (Ve (2" )T, + (B) »

and
SV'l_{g} oAV, 1 &, (0 P)TE, 4 £, (0w(B))

=4 Vet 52(058’"!#)’5/51 + {z(B) .
Lemma 5, (1) now follows from (47) and Theorem 3.1 of Ref. [24].
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(2) By Lemma 4, (2)
VE@"17)0ge. @A ANV 0 "]7)
=T0u[ 7" lov(A))]) . (48)

By Fact 2, (35), Facts 3 and 4, Fact 7, Lemma 3, (1) and (2), and (44) and (45) the
left and the r.h.s. of (48) converge strongly on & to

VEQ@® " 1)@ge (AW ™" |11) 5
T4(0.[ T (A)]), respectively, as V— o0 .

Application of [24, Theorem 3.1] and the convergence of the states w, , [20]
completes the proof of (2). The proofs of (3) and (4) are similar to the ones of (1),
(2), resp.: We combine Facts 3—7 and Lemma 5, (1) and (2), with a straightforward
extension of [24, Theorem 3.1, (3.5)].

(5) This follows from correlation inequalities of [27] for the case n=1 and of
[11] for the case n=2. Some details are given in [20]. For n=3 the relevant
correlation inequalities (yielding uniqueness of the limit x—0) are not known.

Q.E.D.

Remark. The theory reconstructed from the limiting states w, satisfies all
Wightman axioms with the possible exception of the cluster properties; see
Theorem 1, (b) and (c), and [20].

Next we want to let n tend to co. The states w . cg,.,» represent “soliton-anti-
soliton states”. The limit n—oco can be interpreted as “sending the soliton (or
anti-soliton) to behind the moon”. It has not been proved that the vacuum states
. have spatial cluster decomposition properties — i.e. are pure states — and thus
the limit n— oo might not be meaningful. Therefore we must first decompose the
vacuum states w,. into pure phase states which do have spatial cluster properties.

Lemma 6. There exists a compact Hausdorff space X (points in X are interpreted
as pure phases), and a regular Borel probability measure v, on X such that

wi(A)z)j; dvi(pwi(A), forall AeA,

and for v, almost all ye X, w% is a pure state on W satisfying spatial cluster prop-
erties, i.e.

| lliinoo % (Ae™FBe™ *P)= X (A)w% (B) ; (49)
the theory reconstructed from w% satisfies all Wightman axioms; w% is locally Fock.

Proof. For the Wightman theory determined by w., the lemma has been
proved in [18, Theorem 2.197] and [19, Theorem 1.4]. Since the Wightman theory
coincides with the theory obtained from (e, ) by G.N.S. construction [20, 26],
Lemma 6 follows from [19, Theorem 1.4, (3)]. See also [2]. The arguments proving
the stability of the locally Fock property under the decomposition of Lemma 6
are standard. See [18, Section 2] for related results. Q.E.D.

Conjecture. The states w, and w_ are pure. They are the only pure vacuum
states of the (¢-¢@)3-theory at u=0.
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It follows from the techniques of [28] that for large o, w, +w_, and the
¢,— —¢, symmetry is broken in the pure phases reconstructed from w,, w_.

We now let w be an arbitrary pure vacuum state satisfying the cluster property
(49) obtained from Lemma 6. For such a state we may let n tend to co and complete
the proof of Theorem 3.

Lemma 7.
(1) im oV EEE 0,0 (A)Va)
=0(VE@®)gue(A)V {2%))
=0(Q4e(7 - (A))) -
2 }1_1’130 W(AV {a*")T;B)
=w(AVo*) T:B)o(V— ) .
() {Vda)T|éeR?} is a continuous unitary group on the vacuum sector A

reconstructed from (e, N), the infinitesimal generators of which satisfy the relativistic
spectrum condition. [

Proof. (1) It suffices to prove (1) for Ae U A(A). Then there exists a bounded
interval A, such that Ae A(A,). Ae{4}
By Eq. (44), Fact 5 and Lemma 3, (2)

Vﬁ(ae,n) — Vt(ae,n)tt(eiL(ae) noagm)
We let |n| be so large that
Aye " Aye =0, }
Age—yg 1N Aye ,=10.
Then by Lemma 3, (4)
V(e (e " e ™)
= V(@) V{ — o)z (e~ ®)g (el it o)
— V,(oce)rt(e”“(“e - a,%)) Vz( _ aﬁ)r,(e”“( —af+ o + x))
=V )W —o). (51)

Let d, be the smallest real number such that A,C[ —d,, d,] and d,. the smallest
real number such that

e d,e
e C _ a 41__
supp 0.6, € |5 +x, 5 - x

and (50)

Now pick n such that (50) holds and
n=d,+d,. (52)
Then A, thus g,...(4), commute with V/0); moreover g,e..(4)=g,.(4). Hence
VE@® ™)@ AV Lor*7)
=VEa)EH—03)gz(A)V A — ) V()
=VEe)0,e(A)V (7). (53)
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Due to the locally Fock property of w and Lemma 3, (3), the operator on the
r.h.s. of (53) can be further studied on the Fock space # using the spatially cutoff
(¢-¢)3-Hamiltonian H,. If we choose the cutoff I large enough

VE@)0uo AV %) =V (e Do AV (o1 ,

by Eq. (44), Lemma 3, (3), Lemma 2, (1), and Fact 5. Using Definition 3 and Eq. (44)
it is then trivial to show that

VEDqe( AV ol]) = T05e(t - {A))) -
Since o is invariant under 7, this yields (1).

(2) By (50) and (51)

V") =VAa)W—oy) .
Thus

lim w(AV (") T;B) = lim w(AV (o) VA — o) t4B))

=w(A) V:(O‘e)'fé(B))w( V{( —a),

as a consequence of the cluster properties (49).

This proves (2).
(3) We first verify the group property for {V(x®)T,/le R?}:

(AV, ()T, Ve, (2°) T, B)
=w(A Vg,(o‘e)fgl(ng(“e))Tg, + gz(B)) .

For the proof of the group property it suffices to choose 4 and B in (A) for some
bounded, but otherwise arbitrary interval A, since V/x°) and T, are unitary
operators on #.

We may then apply Lemma 3, (3) the locally Fock property of the state w and
Facts 4 and 5 to conclude that we may further analyze

A Vél(ae)Téx(Viz(ae))Tél + iz(B)

as an operator on the Fock space & using the spatially cutoff Hamiltonian H,
and choosing [ so large that

AV (@)t (Ve ,(0°1D)ts, + ¢,(B)

= AV, (0°)T (Vi (0°))Te, 4 ,(B) is independent of | .
We then get immediately

AV (0)e, (Ve (@)Te, + &(B)

=AVy 4 (07, 1+ ,(B) .
Thus

W(AVe, (0%) Ty, Ve (%) T, B)

=w(AVe, + £,(2°)T, 1 ,(B))

=w(AVe, 1+ ()T, +¢,B)

(by the invariance of w under 7).
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This proves the group property.

Next we prove continuity of V(a)T; in ¢ on #. Continuity of T in { on #
is known. By Eq. (44) and the locally Fock property

Vo) = V(o) e =)
Strong continuity of V,(«°) in ¢t on & has been proved in Lemma 3, (3). For / large
enough

Tt(eiL(aE—af’c ) — eitHz(eiL(oz‘-’ —a;—’c))e—itﬂl
which is obviously strongly continuous in ¢t and x on . Thus V(«) is strongly
continuous in ¢ on #, and, since V (x°)e A(A) for some bounded 4, it is thus
strongly continuous in ¢ on s, by the locally Fock property.

Finally we must show that the infinitesimal generator of {V(a%)e"H|te R} is
positive.

We let 4 and B be operators in 1(A), for some bounded, but otherwise arbitrary
interval A and set

B,=e "PBe""
Consider the expectation value
FAB(t)=w(AB,V(a*")e" B A*)
=w(AB,V(a*")t(By A¥)).

The set Ae,n=A,0_,¢ is bounded for all [n| <oo. Hence by Lemma 3, (2) and our
assumptions on A and B

C,=AB,V (")t (ByA%)e W(4,) ,

for some bounded interval A,.

By the locally Fock property of w we may further analyze C, on the Fock
space & using the spatially cutoff Hamiltonian H; with [ sufficiently large. Using
Definition 3 and Lemma 3, (2) we obtain

C,=AB, e Mg (e~ L") (BX A*)
— AB, et g (o~ LB 4%)
Since eM** e A(Aye. ), we conclude that
FAB())=w(AB,V,(a¢")e B A%)
= (C,) = (A, o " (o~ 1L Bk 4¥))
Since €™ is unitary on # for all |n|<oco and H is a positive operator, the
Fourier transform of F#:3(¢) is supported on the positive half line. We now let n

tend to co:
Using the cluster property (49) and Lemma 3, (4) we get

lim Fii-%(t)= lim &(AB,V{(o)V(—)t(BF)r(4%)

=w(AV ()t A*)(BV(— o)t (B*))
=w(AV (o)™ A¥)w(BV(—a®)e" P B*).



New Super-Selection Sectors in Boson Models 293

Since the Fourier transform of lim F2-3(t) is supported on the positive half line

for arbitrary A and B in () (A) the Fourier transform of w(AV,(a%)e™ A*)
) Ae{4)
and of w(BV,(—af)e™B*) are supported on the positive half line, as well, for
arbitrary A and B. The relativistic spectrum condition for the generators of
{VAa9) T R?} follows by similar arguments. This completes the proof of (3).
Q.E.D.
Proof of Theorem 3. Let w be an arbitrary pure phase state at u=0 or a direct
integral of such states.
1°) From (weg,., A) with e= +1, we obtain a Hilbert space #; and a re-
presentation 7,. of A on ¢ by the G.N.S. construction.
2°) By Lemma 7, (1) the state weg,. is space-time translation covariant; for

020,:(T4A) = (g,e(z A A))
= o(VE ()0l AV - ).

By Lemma 7, (3), {Va)T:¢e R?} is a strongly continuous unitary group on #
so that weg,°1, is a vector state of B(#7) — the algebra of all bounded operators
on #¢ — and is continuous in ¢ in norm. Therefore there exists a unitary group
{e'H==xPR)|(t x)eR?} which implements the space-time translation auto-
morphisms of A on #%, and

lUHE PO W T V{a)T:¥,

for all ¥e A, which [with Eq. (44)] proves (22) and (23). Since {V(x)T|¢e R?2}
is an abelian group, we obtain (24).
3°) By Lemma 7, (3)

FA(t) = (,OOQae(A*eiIH%A) = w(@ae(A*eitH%A))
— QA AN T g, A)
= 0(0ue(A)*V(a¥)e™ 9,0(A))

has a Fourier transform which is supported on the positive half line, for all Ae U,
so that H:>0. In the same way we obtain

spec(HS, POCV, . Q.E.D.

Remark. The procedure for the proof of Theorem 3 outlined in Lemmata 3,
6, and 7 can be applied in a much more general, largely model-independent
context, as will be indicated later.

Next we study the structure of the super-selection sectors constructed in
Theorem 3. The main question is whether these sectors are really disjoint from
the vacuum sector.

Let w, be a pure vacuum state of the (¢-¢)3-theory satisfying the cluster
property (49) such as obtained in Lemma 6.

Let {o }/©" be kink functions satisfying the soliton-condition (46), (21).
We set

m+n

atm=Y of and o (M= Y o .
j=1 j=m+1
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The group law of SO(2) and definition (17) give
Qa}' O.. 'DQat“OQa;w 10 v ‘OQa;H.,. = Qg*(m)+1‘(n} . (54)
Let s, be the vacuum sector reconstructed from (w ., 20).

Lemma 8. If m and n are even numbers, the automorphism

Qu* (m)+a~ ()
is unitarily implementable on # .. [

Proof. Since m and n are even numbers and the functions {o;;" }7" satisfy the
soliton-condition,

Ay +-omy= 112" (m) +2 7 (m)](x) % 2mm, me 2}

is a compact set.
Therefore, by Lemma 2, (1)

Lo () + -
et (m)+ &= (m) Q[(Ag+(rn)+g"(n))'

This operator implements g, + ) + - ( Unitarily on #. By the locally Fock property
of the state @ (see Lemma 6), e’2@" "+~ ) determines a unique, unitary operator
T+ omy+a-on€ WA+ my + 2 - () IMPlementing @, + )+ 5 - (» UNitarily on #,. Q.E.D.

Due to the composition law (54) and Lemma 8, it now suffices to study the
automorphisms g, and g,- with «™ satisfying the soliton-condition.

A priori it is not clear whether the automorphisms 0,+ are unitarily imple-
mented on J#, or not—they are implemented on the Fock space #. Ifthe ¢, — — ¢,
symmetry of the (¢-¢)3-Lagrangian is spontaneously broken by the vacuum
state o, we can prove that ¢+ and g,- are not unitarily implemented on J#,.
Thanks to the new results of [28] one may show that if the coefficient ¢ of the
term :¢?: in the Lagrangian is large enough the ¢,— —¢, symmetry is spon-
taneously broken by w, and that w,(¢,)>0. This is assumed henceforth. By
Lemma 6 we may suppose that w, is a pure phase state satisfying the cluster
property (49) and we may also assume that

@4 (P1(x, ) =<{Q., 1(x, )2, >=.>0. (55)

The state w_=w,og, is then a translation-invariant pure phase state satisfying
(49), and

(4%, 1))= —¢,<0. (56)

If o and o satisfy the soliton-condition then ¢,°0,:°0,- is unitarily imple-
mented on J#,, by Lemma 8.

Therefore there exists a unitary operator T,: ,,- on the vacuum sector # -
reconstructed from (w_, ) such that

(Tt a: Qs Ty 1@y =010 14 (0) (57)

We define the Hilbert spaces
H g =A{T, W\ Vel ay=n}, (58)
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and
H, ={T,-P|VPeH, , ol =n}
={T,.¥|\PeH_,0l=n}. (59)

Theorem 4. Assume that 6> 1 and that the vacuum state w, is chosen such as
described above.

Then the (¢ - P)3-theory has four orthogonal super-selection sectors H ., H_,
HY, and K. The representations of the algebra W on H ., H_, HT, H are
pairwise unitarily inequivalent (more precisely disjoint).

The spectrum of PZ is purely continuous. For all vectors ¥ in a subspace dense
in .,

(T, ¥, §y(x. t)Tamp{i“" o as xo =

+ <'Pa lfl>¢c, as x— + oo (60)

i.e. parity is spontaneously broken on #=3.  []

Remarks. Obviously the behaviour qualitatively described in (60) reminds one
very much of the behaviour of the soliton-solutions of the classical, non-linear
field equation, even though {T,. ¥, ¢(x, t)T,- ¥ is never strictly stationary in ¢.
That is why we call #; the “soliton-" and #, the “anti-soliton” sector.

As a consequence of Lemma 8 and (58) we have: For Ye 5, and m, n arbitrary

+
T omyva-omPEH 1 Tyt omety+a-@nPEA 5 }

Z (61)
Tg+(2m)+g‘(2n+1)ql€ Hrs Tg+(2m+ 1)+a~(2n+ 1)'116 H

Proof of Theorem 4. The fact that #, and #_ are orthogonal and that the
representations of A on #, and H#°_ are disjoint is well known [2].

Let f be some positive test function on R* of compact support and let f ,(y,s)=
f(y—x,s—t). Then for all Y,

lim (P, e U=0py = lim (¥, eU=0p,

=¥, ¥H{Qy, e"NQ, 5, (62)

which is an immediate consequence of the cluster property (49). However for
all Vet
lim (T,. P, V=T P>

= lim (T,.V,e V=0T, P (63)

X — 0

=<T’ 'I/><Q+’ e¢i¢1(f)Q+> ’

by definition (17) of g, and T,., the unitarity of {¢""~|teR} on #F — see
Theorem 3, (22) — and by (62). Obviously the r.h.s. of (63) is independent of t.

The factor (¥, ¥) on the r.h.s. of (63) is real, but the second factor on the
r.h.s. of (63) is not, since w, breaks the ¢, —» — ¢, symmetry [see (55), (56)]. Thus,
for 'P=|=6,

lim (T,. ¥, V=0T, ¥y % lim (--->. (64)

3 Lorentz covariance of #2 has recently been proven; see Remark 7, § 6.
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From (49) and (55) we conclude that for all ¥ in some subspace dense in .,
{T,+: ¥V, (x, )T, - V>

F<Y, Y, x—
R X Lo N AN

Formulas (62) and (64) obviously prove that #, and #+, and #~ and #* are
orthogonal. The orthogonality of #; and # , follows from (63) (and, alternatively,
from the one of #, and #_). In more precise terms, formulas (62)—(64) prove
that the representations of 2 on #,, # and A, are pairwise inequivalent. It is
known that the representations of U on #, and #_ are irreducible, see [2].
Since g, are invertible *-automorphisms of 9, the representations of 2 on
and 3 are irreducible, as well. Hence the representations of W on ., # ., #_,
and #; are pairwise disjoint. The breaking of parity on #* follows directly
from (64).

Finally we learn from (63) and (64) that for all O+ ¥e#, and a positive test
function f of compact support

lim (T,. ¥, e xPx git 1N tixPi T gy

X0

=lim <Tai qj, ei¢1(fx’ O)Taj: !I/>

X 00

#: hm <Taigl, ei¢‘(f"’°)Tai'P>

X —
= lim (T,.¥,e*F= ..
X~ — oo
Therefore PF does not have any discrete spectrum. Q.E.D.

Remarks. If the (¢-@)3-theory is Lorentz-covariant on the sectors # % then
it follows from the continuity of spec P¥ that specHY is purely continuous, as
well. Although the functions @,. w(x, )=<{T,. ¥, ¢(x, )T, ¥) [see Theorem 4,
(60)], remind one of the soliton-solutions of the classical field equation there is
one essential difference: If the (¢-¢)3-theory is Lorentz-covariant on #F it
follows from the continuity of spec H; that the function ¢, (X, t) is never strictly
Stationary in t.

There may exist states ¢ on U with the property that (¢ ,(x, t)) is similar to
the function @,. g(x, t) but is independent of t [o(¢4(x, 1)) is the strict analogue of
the time-independent, classical soliton solution]. The state g is then, however, a
non-translation invariant vacuum state which has to be sharply distinguished
from a soliton state: see Section 6.

§ 4. The Scattering of Solitons

Next we examine the consequences of assuming the existence of one-(anti-) soliton
states with discrete mass for the physics on the vacuum sector.
Definition 6. We define as the physical Hilbert space of the (¢-@)3-theory

A,

p

s =HOH_DH DA (65)
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The total energy-momentum operator is given by

(H, P)=(H, P\(A+ @A _)®(H;, P)| A 7 ®H,, P A7 .

297

(66)

Let o™ be a kink function satisfying the soliton-condition (see Definition 5) and

let o~ (x)=a"(—x). We define soliton- and anti-soliton fields s, 5 by

S(X, t):ei(t]]-[—xﬂ’)T +e—i(tll-[—le)
- a

E(X, t)Eei(tlH—xIP)Ta_e—i(tlH—le) ,

and 56— s, fore=+1
T 5 fore=—1.
Clearly

) =T, V) =T, Via3), with &=(x,1).
From Eq. (68) we may derive locality properties: Suppose that
/I—aex‘ ,tn/l_at?/ ,t = ﬂ .
Then
s SN = Tr +az, 0 (V0 ) Vir(03?)
=Ty a0 VI Vi(052),
since by (69)
Vo), or
oVie))
and ¢ (V(a))=V(e), by the ¢+ — ¢ symmetry of (IH, IP). Therefore
s L) =Ty 42 Vi0ZV(ae?)
=Tz Tg VeV (05, by (69) and Lemma 3, (3)
= Taf;: Q—;;(Vt'(aaec’z))Tai‘ V,(O(;‘)
=Tz Vi) T Vi)
=15°%(&)s°1(£), by (68).

0u (Ve = {

(67)

(68)

(69)

(70)

Since supp(d,«") may be an arbitrarily small interval, the soliton- and anti-
soliton fields may be chosen so that they are almost local relative to each other.

They are, however, “anti-local” relative to the fundamental field ¢:
In general

S(EPUE) = € H DT (& — e~
= [ei(t ]H_x]P)Taed),‘(é,— &) T::ee—i(tll-[—xﬂ’)]
X [ei(tH—le)Taee—i(tﬂ-l—xu))]

=740 oe(Pd& =N -
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Therefore if {x'}, m/l_ai’t =0

—P(&)sE) if a®=m on {x'}, -
G{(E)s%&) if a=0on {x'}, .

Clearly the soliton- and anti-soliton fields are almost local relative to even, local
functions of ¢.

We now consider arbitrary vacuum expectation values (v.e.v.’s) of the fields
5,5, ¢, ¢,. For the purposes of scattering theory we must define the truncated
v.e.v.’s, too. The truncation is more complicated than in the case of a field theory
with local fields and a unique vacuum. This is because according to (61) odd
numbers of soliton- and of anti-soliton fields map . onto J#., so that when
defining truncation we always have to take into account two possible intermediate
vacua, 2, and Q_.

Let = be an arbitrary product of s, 5, ¢, and ¢, fields, n in number. We consider
arbitrary proper partitions p of z into disjoint clusters CY, ..., CE, where some
of these clusters may be empty, and such that each cluster contains an odd or an
even number of s and of 5 fields. We write

n=¥%(1)...¥?(n),

where ¥(]) is an s, 5, ¢, or ¢, field, and P%() belongs to cluster C?.
We set

qlé(l)= ei(tn—l—xlp)q;(l)e—i(tn-l—xu)) .

Suppose that © has non-vanishing matrix elements between ', and #,,, where
e(n)= + if = contains an even number of s and 5 fields and e(n)= — if = contains
an odd number of these fields. Assume that the physical mass

m, =dist(0, specH\ {0})

is positive. Let y,(&) be a Schwartz space function whose Fourier transform is
supported on {(p, p°)lp*+(p°)* <m,/n+1}, and 7,(0)=1.
We now define

Q. nQe(n)>T= Qy, ﬂ:ge(ﬂ)>

+ 2 (=) (pl =1t | ]i A Ex(E<RL P (1.8 o (WL, (73)

s8¢ = {

where |p| is the number of non-empty clusters in p.

It is to be noticed that because of the commutation relations (71) the truncated
v.e.v.s as defined in (73) do in general not decay to 0, as the separation between
two of their arguments tends to oo. This can be seen by considering e.g.

(Q4,8(E)1(E)s(E2) QDT

and letting £, tend to =+ co.

If there exist one-soliton and one-anti-soliton states with discrete mass it is,
however, consistent to assume that the Fourier transforms of the truncated v.e.v.’s
have sufficient smoothness properties in some neighbourhood of the mass shells
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to permit us to construct the scattering theory on # . a la Haag-Ruelle for
non-overlapping test-functions [29] vanishing at the origin in momentum space.
At this point no new concepts are required, and (on a formal level) one may
proceed as in [29]. Since the analysis of spec (IH, IP) has not advanced enough,
details are deferred to later investigations.

We now assume that such a scattering theory for solitons, anti-solitons and
mesons exists. Let N, be the number of solitons and N; the number of anti-
solitons in a scattering state of A, .

From the discussion above and from Lemma 8 and (61) we obtain

Corollary 5. (1) For every scattering state in the soliton-sectors # %, Ny— N
is odd.

(2) For every scattering state in the vacuum sectors A 4, N;— N<is even.

(3) Without taking into account solitons and anti-solitons, the scattering theory
on . does not satisfy asymptotic completeness.

soliton

Remarks. Even if #Z do not contain one-( ) states with discrete

anti-soliton
mass, we consider it as likely that 2, . contains vectors describing resonances
(the solitons and anti-solitons) of such a long life-time that they may undergo
scattering.

A scattering theory for solitons of zero rest mass exists, as follows from the
interesting results of [5]. The existence of solitons with zero rest mass can, however,
presumably be excluded for o> 1 on the basis of announced results [28].

The commutation relations (71) confirm that parity is spontaneously broken
on #'%. Space reflection is the conjugation mapping #'F to #T. #F and #
have opposite Q-charge [where Q = f dx (grad @) (x)] .

§ 5. The Solitons in the P(¢),-Models

Let ¢ be a neutral, scalar field in two space-time dimensions and let P be an
even polynomial with positive, leading coefficient. The quantum field models
with interaction Lagrangian :P(¢):, where the double colons denote Wick ordering
with respect to some fixed bare mass, e.g. 1, are presently the best understood
models of a relativistic quantum field theory; see [12, 36, 28, 40]. It has recently
been proved that the ¢— —¢ symmetry of the Lagrangian is spontaneously
broken by some pure vacuum states if the coefficient of the :¢?:-term in :P(¢):
is sufficiently large and negative, [28], [at least if P(¢)=A¢*—c¢p*]. Under
these circumstances we now show how to construct soliton- and anti-soliton
sectors.

We want to emphasize here that the situation met in the analysis of the P(¢),
models is quite different from the one in the (¢ - #)* —o 7 model, since in the
former we are dealing with only one scalar, neutral field so that there is no obvious
choice for a*-autormorphism g, with

2(P(x)=¢(x), for x<x,
and

Qa(¢(x))= _¢(x)’ for x>fa>2§a (74)



300 J. Frohlich

and such that weog, is a space-time translation covariant soliton-state. Let w ..
be a P(¢), vacuum state with

@4 (¢(x’ t)): ¢c> 0.

We let g, be the *-automorphism determined by

2:(P(x, 1) = —¢(x, 1),
and
W_=W;°0,.

As in Sections 2, 3 (#,,Q.) and (# _, Q2_) denote the G.N.S. (=Wightman-)
Hilbert spaces and vacua reconstructed from w ., @ _.

Definition 7. (tensor product P(¢),-theory)
H=H QN _,0()=(Q, R®R_, 2, RQA_>
$1=pR1,p,=I1®¢ and ¢=(dy, d,),

where ¢ is the interacting P(¢), quantum field.

On the basis of this seemingly unnatural tensor product P(¢),-theory [which
we denote for short by P(¢), ® P(¢),] we may now construct soliton- and anti-
soliton states.

Let ot be a kink function satisfying the soliton-condition (see Definition 5).
We define

Qo+ (1 (x))=cosa™ (x) ¢ (x) + sina™ (x) - p,(x)
2 (5 (x)) = — sina™ (x) - ¢ (x) + cosa™ (x) 5 (x),

plus identical equations for the corresponding canonically conjugate momenta;
see also (17).

Let A be the C*-algebra of all quasi-local observables generated by bounded
functions of ¢4, ¢, and their conjugate momenta; the precise definition is as in
Section 2. Let #* be the G.N.S. Hilbert spaces associated with (weg,=, ),
and T,. the isometry: # —# F intertwining the representations of 2 on #, #' =,
respectively.

With these definitions Theorem 3 remains true for the P(¢), ® P(¢),-theory,
and the proof is almost verbally the same as the one in the case of the (¢ - ¢)3-
theory. (We notice that for the P(¢$), ® P(¢),-theory on the vacuum sector
A all Wightman axioms are known [19, 36] and that the cluster properties
(49) — see Lemma 6 — hold in almost all pure phases [19].)

The spatial cluster properties imply that the vacuum Q, ®Q_ is unique.
From this and results of [2] we conclude that the weak closure of 20 on # . @ H# _
coincides with B(# , ® s _). As in Section 3 it then follows that the weak closure
of A on H# 7 is equal to B(# %). By the P(¢), ® P(¢), version of Theorem 3 the
space-time translation automorphisms of 2 are implemented on #* by a unitary

group
{2 P 1, ) R

which satisfies the relativistic spectrum condition.
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We now construct a soliton-state for the P(¢),-theory whichisa factor state.

Let U, be the C*-algebra of all quasi-local observable generated by bounded
functions of ¢, and 7, ; see Section 2. Let A" denote its weak closure on #%.
Since the weak closure of 2 on # 7 is a factor of type I, AT is a factor, as well.

For Ae s

T{(A)_:.ei(tH,*t xPE) g o~ iHE ~xPR) ¢ QU

By a theorem of Borchers [7] there exists a continuous, unitary group
{e!tHr1—xPr ) (2 e R2} C A which satisfies the relativistic spectrum condition
and implements 7.1 2,.

Thus w ! A, is a space-time translation covariant factor state and, by con-
struction, it is a soliton-state for the P(¢),-theory.

We conjecture that 2 is a factor of type I_,. If this is true there exists a tensor
product decomposition

+ + £
%E =%n,1 ®%n,2
+ *
U =B )BT
ei(zH;,l—xP;,i)zei(tH:,l—xP;,l)r%il ®1I tyffz .

We can then drop the trivial factor #° % ,. The vectors in # < | are pure, space-time
translation covariant soliton-states, for the P(¢),-theory. Let IT wz 1 I, denote
the representation of A, on H#* 1» 4, respectively. Still assummg that our
conjecture is true one can show, using a theorem of [43], that

H;ff,,lznyffgi >

for some *-automorphism Q+ of UA,.

With (U, #°7, (Hzy, Pry) [y, #%,, (Hz . Pr ) resp.] replacing (U, 47,
(HZ, PF)) Theorem 4 remains literally true for the P(¢),-model. Parity is spon-
taneously broken on the soliton sectors #% ;). The analysis of Section 4 applies
to this case, as well. It follows from announced results of Glimm et al.
[28], that for > 1 the spectrum of (H, P) on ¢ , and # _ has a mass gap which
excludes soliton-states of rest mass 0!

Concluding remarks: By considering the P(¢), ® P(¢),-theory we are able
to construct soliton-states for the P(¢),-theory that are factor states, and pre-
sumably they are pure states of the form w,°g., for some *-automorphism
04+ of A,.

By using a different Bogoliubov transformation we can easily construct pure
P(¢),-states with non-vanishing charge Q= [dx (grad¢)(x). However these
states are presumably not space-time translation covariant. For the (1¢*),-model
on a space lattice in the two phase region we can prove existence of pure, charged
space-time translation covariant soliton-states.

§ 6. Soliton-Sectors and Soliton-Automorphisms: An Outline of a General Theory

In this section we draw abstract conclusions from what we learnt in the previous
sections about soliton-sectors by studying specific models. The setup we are
going to use must be placed in the framework of algebraic quantum field theory
[9, 6].
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According to our personal taste we would like to present the following general
results within the framework of local morphisms on the algebra of all local
observables [9]. This would, however, go beyond the purposes of this paper.
Therefore we rather make the framework of [9] somewhat more concrete so
that the typical properties found for the soliton-states in the models are still
present in this general setup and the peculiarities of two space-time dimensions
remain apparent. We remark, however, that most of the following results can be
proved in the more general situation considered in [9]. Some of them are scattered
about different places of [9]. We hope to present a summary of such results
elsewhere. In the following a hypothesis which becomes a theorem for the models
considered in Sections 1-5 is marked by (*).

Let (U, 7., w) be an algebra of local observables, a space-time translation
automorphism group on A and a state on 2 which is invariant under {r.}=
(e R, E=(x, 0},

The G.N.S. Hilbert space, the cyclic vector, the scalar product and the unitary
space-time translation group implementing {t.} reconstructed from (2L, 7, w)
are denoted by #, Q, (-, ) and { T} respectively.

We assume that /# is a separable Hilbert space and {T} satisfies the relativistic
spectrum condition. In this case w is called a vacuum state and Q a vacuum. Through-
out the following we may assume that w is a pure vacuum state so that the re-
presentation of A on # is irreducible [2]. Let & be the family of all compact
diamonds in R? with non-empty interior. We suppose that

A= (] A(0O) norm,

VeF
where {U(0)|0 € F } is a family of local von Neumann algebras with the properties:
1) If0, and 0O, areinF
W(0O,) A WO)=W(O, N O); (*)

Merely as a matter of convenience we also assume that for 0 € &, U(0) is a factor.
(Since o is pure, such an assumption is possible.)

If O is an unbounded region, e. g. a cone, we define

A(0)= | ) A(0) norm.

OeF
0c@

If B is an algebra of operators on #, B’ denotes its commutant and B” its weak
closure.
Given any diamond or cone ¢/ we define

O,={IE—(x,0)e O}

@,: the smallest diamond containing all points
{{=(x913(n5)e0 with |[x—y =[]}
0:=(0,),, with ¢=(x,1)

~ (: causal complement of 0.

We notice that for O € &, ~O0=0, U Oy, where O, and O are two disjoint
cones opening to the left, the right, respectively.
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If two regions 0, 0, are space-like separated, we write O, x (0,. The standard
locality hypothesisis: For 0 € , A(0) C A(~ O

We assume furthermore:

2) Duality: For Oe &

A0y =A(~0)";

See [6] for the problems connected with locality and duality and for the construc-
tion of local algebras satisfying duality (*).
3) Finite Propagation Speed: If 0 is a diamond or a cone,

T(A(0) CA©,).

We let G be the class {g,|x € X, X some index set} of local *-automorphisms
on U such that

0,(A(0)) CA(O), for all diamonds (cones) ¢, (75)
T-fo Qx(A)= onfé(A) 5 forall AeU. (76)

Clearly all states {w°g,/x€ X} are space-time translation invariant, and G is
a group; X becomes a group if we associate with y,, y, the element y, -y, € X
with the property that ¢,,°0,,=0,,.,,- Then y, - x, is uniquely determined: All
states {weg,|x € X} satisfy the cluster property — see (49) — , since w is pure and
by (76). Thus if weg, is a vector state of weg, then g, =g,. The group G is a
representation of X on 2.

We let e be the identity of X, i.e. ¢,(A)=A4, all A€ A. By (76) X is a symmetry
group of the dynamics. If X 2 {e}, w breaks the symmetry X.

Definition 8. We denote by o,_, any automorphism of 2 with the property
that there exists ¢ € & such that

0o, (A)=A, for all 4eA(O,), and} e

0., (A)=0,(A), for all A e WAW(Op);

suppo,_, is the smallest diamond ¢ for which (77) holds; o, _, and suppo,_, are
defined by exchanging the roles of L and R. Finally 0,=0,_, 0or g,_,.

4) Existence of the Automorphisms o, (*): Given arbitrary y€ X and Oe 7
we assume that automorphisms o, satisfying (77) with suppo, =0 exist.

So far we have not imposed specific properties on the automorphisms o,
which distinguish whether weo, is a soliton — or a non-translation invariant
vacuum state.

5) Equivalence (*): If ¢} and o} are two automorphisms satisfying (77), then
weay isa vector state of wea7,1.e. g;°(07) ! is unitarily implementable on # .

Remark. If the algebraic theory defined by (2, 7., w) is derived from the theory
of finitely many canonical Bose fields and (¢) is *-isomorphic to W.(O), the
corresponding local free field algebra, for @ € &, then 4) and 5) are theorems. The
proof follows by abstraction of our construction in Section 5 and Lemmata 1, 2
of Section 3.
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Definition 9. An automorphism ¢, satisfying 4) and 5) is called covariant
(or a “soliton”-automorphism) if the space-time translation automorphisms
{t:} on A are unitarily implementable on the G.N.S. Hilbert space 5, reconstruc-
ted from (weg,, ). The corresponding unitary group on #, is denoted by
{T%}. If ¢, is a covariant automorphism, there exists a unitary group {7%*} on
A suchthat (Q, (T?)* 0,(A4) Ti*Q) =we0,(t:(A4)).
We define the cocycles
Vix=Ti TE. (78)
Lemma 9. Assume that 1)-5) hold. Let ¢, be covariant. T hen
) Viie=Veat.(Vg)
(2) Vire U((suppo,)y) -
Proof. (1) is an immediate consequence of (78).
(2) Let AeA(~(suppa,),). Then
Vir A(VER)* =Tex 1,(A) (Tex)*
=T¢ 0,00, o1 A) (TP *=0,°1_s00; "o1(A)
_ {ax(Ax i 7.(4) e A((suppa,),)
0,°T_:00, 'otA), if T(A)eU((suppa,)p)
=4, by (76) and (77).
The proof is completed by using assumption 2). Q.E.D.
Given o, we set

0, x=7(x, 000,07, o

By 5) ¢, . and g, are equivalent, and o} =0,°0, 1'is unitarily implemented on #.
If o, is covariant and (suppa,) X (Suppa, ). then Vi =Vix Vix= (*): By 1), 2)
and the Lemma, V% is in A(suppo,) v A(suppo, ) and so is Vix V==~ As in the
proof of part (2) of Lemma 9, one shows that V§(Vix Vi=*)*e(A(suppa,) v
A(suppoa,, ). If we choose T¢* and T¢»~ properly and apply 1) we conclude
that V#(Vie~ Vinx*=].

Theorem 6. Assume 1)-5).

Then the following are equivalent:

(1) o, is covariant.

(2) If (suppo,)e X (supp oy, e - (79)
VZ=V} Vi, with V}, Vi weakly measurable in & on A and Vi e A((suppa,),),
V:eU((suppo, ), (¥). O

Proof. (1)=(2) is already proved.

(2)=(1): Since by 5) o7 is unitarily implemented on #,

Ve T,=0%(T,) is a strongly continuous unitary group on J# satisfying the relativis-
tic spectrum condition.
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From (79) and 1) it follows that ¥} and V7 satisfy the cocycle identity (1) of
Lemma 9, provided ¢, and &, are so small that

(SUPP G ), +, X (SUPP T, e+, -

Hence for |¢| sufficiently small V! T; and V T; are weakly measurable, unitary
groups and hence strongly continuous, since S is separable. By letting x tend
to co we complete the proof by the arguments used to prove Lemma 7, Section 3.

Q.E.D.

Theorem 7. If o, is covariant then {T%} satisfies the relativistic spectrum condi-
tion, and the spectrum of the space-translations is purely continuous. The assertions
of Theorems 3 and 4 remain true in this general context.

Proof. The spectrum condition is derived as in Section 3, Lemma 7, (3). As-
suming covariance of the soliton state, the proofs for the remaining assertions of
Theorems 3 and 4 are model independent. Q.E.D.

Theorem 8. The equivalence classes of covariant automorphisms — see 5) —
Sforma group (which we call the “soliton group”).

Proof.Leta,,,0,, be covariant. By 5) we may assume that for |{| <1

P4t
(suppo,,): C (Suppa,,)y, - (80)
We claim that for |£]| <1
Vgxz Vg": T%ET?‘Z TxXy
satisfies:
®°0,,°0,,(t:(4)=<Q,(Te» %)*0,,°0,,(A) Tg*1 % Q),

for all 4.
It suffices to prove this for A € AW(0O), any O € F.

(Q,(Tgx =)*6,,°0,,(A) T % Q)
=(Q (Ve )* (VE2)* 0,,°0,,(A) Vi Vin Q)
={Q, (V) o, (VEa)* 0,,(A) Vim) Vin Q)
by (80), (77) and Lemma 9,
=L@, 0,,(t;(VE=)* 0,,(4) V=) @)
={Q,0,,°0,,(t:(4) 2) . (81)
Proof of (81).Forall ¥ e #
0o (Te(A) W=TE (V) 0,,(A) Ve T, ¥
(V) 0, (A) V) W

Since A € A(0), some O € ¥, and by Lemma 9 there exists 0 € # such thatt ((Vem)*
0,,(4) Ve=)ando,,(t:(4)) arein A(0).
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By 3) and the relativistic spectrum condition, #’ contains a separating vector
for A(0). Therefore

0, (Te(A) =1 (VE=)* 0,,(4) V=)

which completes the proof of (81).
Finally, using the group property, we may extend {T¢= =[[{[<1} to all
celR?, Q.ED.

Corollary 9. Assume 1)-5).
(1) If X is abelian, the soliton group is abelian.

(2) Al states {w°g, |y € X} are vacuum states, (i.e. the relativistic spectrum
condition is satisfied).

Proof. (1) follows directly from (77) and 5), (i.e. “Equivalence”).
Q) wog= lim oo, ..

Using Theorem 7 and the arguments in the proof of Lemma 7, (3), Section 3,
the corollary follows. Q.E.D.

Examples of Soliton-Groups. For the models considered in Sections 3-5 we

obtain the following abelian soliton group:
Set e=g,, s=0,+, 5=0,-, and i=g,+°g,-. Then the multiplication table of the

soliton group is given by

e N s i
e e S S i
S s e i 5
s s i e S
i i s S e

For the cose@, theory (see Sections 1, 1) the soliton-group is Z. A more detailed
analysis of the soliton-states for the cose¢,-model and a class of related models
is of considerable pedagogical value for the understanding of the general theory
outlined in this section. It appears in a forthcoming paper, [15].

Remarks. 1) It is easy to conceive two dimensional models with a non-abelian
soliton group. Consider e.g. a scalar Bose field ¢ =(¢y, ..., ¢,), n=3, with self-
interactions given by

y,=g(¢¢)2m—%g Z : 12 12':m9

1gi<jsn

with m?/g<1. Assuming existence and ¢,— —¢; symmetry breaking, i=1,...,n,
this model has a non-abelian soliton-group. It follows from the Goldstone
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theorem [13] that in two dimensions neither X nor the soliton group can be
continuous Lie groups but are typically (subgroups of the) permutation groups.

2) As a heuristic principle we derive from our analysis that an automorphism
o, satisfying 4) and 5) is covariant if and only if the cocycle V¢~ is a local observable.

If extended to arbitrarily many space-time dimensions this principle tells us
that our constructions in Sections 1-6 ought to break down in three or more
space-time dimensions. If ¢, is a (soliton-) automorphism of the kind introduced
in Definition 8 we define supp o, to be the intersection of all diamonds ¢ with the
property that for A € A(~ O) there exists a positive number r(4) such that

100, (A)=0,°1:(4), forall [{]<r(4).

In three or more space-time dimensions suppa, always contains an unbounded
diamond, provided ¢, is not unitarily implementable and the theory has no
gauge symmetry. Hence — if it existed — the cocycle V> would not be a local
observable. In a physicists language: The state weo, has infinite energy with
probability 1. Therefore, by our principle, o, is not covariant.

3) This situation changes if we consider local morphisms [9] or gauge trans-
formations. In this case we may assume that there exists a compact diamond
O such that

o, (A)=4, (82)
and

1:00,(A)=0,°71:(4), forall AeWA(~0), (83)

o, 18 not unitarily implementable on J# . (84)

If we consider the action of ¢, on unobservable (charged) field operators localized
in ~(O then (82) and (83) imply that o, is just a (spacedependent) gauge trans-
formation. Therefore we call 5, a gauge (auto-) morphism.

If the gauge invariance of the theory is dynamically broken in the state w
then there may exist gauge automorphisms ¢, satisfying (82), (83) which also
satisfy (84). They are accompanied by “topological quantum numbers,” [14, 35]
and refs. given there. A field theory constituting a model for this situation in four
space-time dimensions is necessarily a non-abelian Yang-Mills theory. We
would e.g. study a scalar pion field interacting with an SU(2) Yang-Mills field.
We summarize our speculations as follows:

Theory is a Yang-Mills theory,

Theory for which gauge gauge invariance is dynamically
automorphisms satisfying ; = < broken in the vacuum sector;
(82)—(84) exist occurrence of “topological

quantum numbers”.

4) In more than two space-time dimensions there may exist automorphisms
o, satisfying Definition 8, (77) which have, however, the property that weo,
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is time-translation invariant. The state woo, should then not be called a soliton-
state. It is rather a non-translation invariant vacuum state. Such states are known
to exist in the three (or more) dimensional Ising model.

In the case of the ¢* quantum field model non-translation invariant vacuum
states may exist in three or more space-time dimensions: The field equation

(O+m)o(x, )= —Ao(x,1)°

has the solution

¢o(x")=(m/)/2) tanh (mx'/)/2), [35].

Assuming that A and m are chosen such that we are in the two phase region we
may then introduce a new quantum field

¢ (X )= (x, 1) — Pc(x") (85)

and compute the ¢*-Hamiltonian as a functional of ¢', [35]. It turns out that
the substitution (85) introduces a space-dependent bare mass term in the Hamil-
tonian density which is very large for |x,|> 1. Therefore a cluster expansion of
the kind announced in [28] ought to be a suitable tool for the construction of a
vacuum sector for the Hamiltonian expressed as a functional of ¢’ and the field ¢'.
The vacuum expectation value {¢(x, t)> would then resemble ¢, would, however,
be modified by quantum corrections; it is independent of t. (Compare this to
Section 5.)

5) One might conjecture that the spontaneous breaking of a symmetry in a
quantum field model in more than one space dimension is usually accompanied
by the formation of new bound states: “Bound states” of two or more “would be
solitons” which are confined, by the arguments of Remark 2. A verification of
this conjecture might be of interest to the problem of confinement.

The phenomenon discussed here should also occur in one space dimension
in theories like [g(¢ - #)* —odp? —pd,],: Choose g and ¢ such that for u=0 the
¢,—>—¢, symmetry is spontaneously broken and there exists soliton-sectors.
Then for small |u|+0 this model is expected to have a rich particle spectrum of
bound states of two “would be solitons”. At present there is no rigorous proof for
this conjecture.

6) The author has recently proven that the Lorentz automorphisms are
unitarily implemented on the soliton-sectors of the [g(¢ - ¢)* —o¢?]- and the
P(¢), ® P(¢),-theories, i.e. the soliton-sectors of these theories are Poincaré-
covariant. This and Theorem 4 prove that the spectra of P¥ and HE are purely
continuous (on each soliton-sector). This result seems to confirm that our
construction of soliton-sectors is the correct one. The proof will appear elsewhere.

7) Final Remark. Due to several reasons the appearance of this paper has been
delayed. The manuscript was, however, essentially complete before many of the
recent papers about the quantum soliton appeared. Therefore we may not have
given credit to this or the other author at places, where he might wish it. We
apologize for that, but we have otherwise no reason to revise any parts of this

paper.



New Super-Selection Sectors in Boson Models 309

Acknowledgments. 1 thank A. S. Wightman for his stimulating interest in this work and useful

conversations, and A. Casher for an interesting discussion.

References

1.

Albeverio, S., Hoegh-Krohn, R.: Commun. math. Phys. 30, 171 (1972)

2. Araki, H.: Progr. Theor. Phys. 32, 844 (1964)

12.

13.
14.

15.
16.
17.

18.
19.
20.

21.
22.
23.
24.
. Guerra,F., Rosen,L., Simon, B.: Commun. math. Phys. 27, 10 (1972); 29, 233 (1973)
26.
27.

28.

29.
30.

31
32.

33.
34.

. Coleman, S.: Quantum Sine-Gordon equation as the massive Thirring model, to appear in Phys.

Rev. D.

. Christ,N.H., Lee, T.D.: Quantum expansion of soliton solutions. Columbia University, Preprint

1975 (CO-2271-55)

. Buchholz, D.: Collision theory for waves in two dimensions. CERN preprint TH. 2028-CERN
. Bisognano,J., Wichman, E.: J. Math. Phys. 16, 985 (1975)

. Borchers,H.-J.: Commun. math. Phys. 2, 49 (1966)

. Dashen,R., Hasslacher, B., Neveu, A.: The particle spectrum in model field theories from semi-

classical functional integral techniques. Inst. Adv. Study, Preprint (1975)

. Doplicher, S., Haag,R., Roberts,J.: Commun. math. Phys. 23, 199 (1971); 35, 49 (1974)
. Dobrushin, R., Minlos,R.: Funct. Anal. Appl. 7, 324 (1973); (English Translation)
. Dunlop, F., Newman,C.: Multicomponent field theories and classical rotators, Indiana Uni-

versity, Preprint (1975)

Erice Summer School. In: Constructive quantum field theory, G. Velo, A. Wightman (eds.).
Lecture notes in Physics 25. Berlin-Heidelberg-New York: Springer 1973

Ezawa,H., Swieca,J.: Commun. math. Phys. 5, 330 (1967)

Faddeev, L.: Quantization of solitons, Inst. Adv. Study, Preprint (1975);

Faddeev, L., Takhtajan,A.: Theor. Math. Phys. 21, 160 (1974)

Frohlich,J.: Phys. Rev. Letters 34, 833 (1975), and paper in preparation. See also the authors
Erice lectures, 1975

Frohlich, J.: Classical and quantum statistical mechanics in one and two dimensions: Two com-
ponent Yukawa- and Coulomb systems. Commun. math. Phys. 47, 233—268 (1976)

Frohlich, J., Seiler,E.: The massive Thirring-Schwinger model as the massive Sine-Gordon equa-
tion: Convergence of perturbation theory, Preprint (1976)

Frohlich,J.: Schwinger functions and their generating functionals, II., to appear in Adv. Math.
Frohlich, J.: The pure phases, the irreducible quantum fields. Princeton University, Preprint (1975)
Frohlich, J.: Existence and analyticity in the bare parameters of the [A(¢-p)*—odp?—ud,]-
quantum field models, in preparation

Goldstone, J., Jackiw,R.: Phys. Rev. D 11, 1486 (1975)

Glimm,J., Jaffe, A.: Ann. Math. 91, 362 (1970)

Glimm, J., Jaffe, A.: Acta Math. 125, 203 (1970)

Glimm, J., Jaffe, A.: Commun. math. Phys. 22, 1 (1971)

Glimm,J., Jaffe, A.: J. Math. Phys. 13, 1568 (1972)

Guerra, F., Rosen, L., Simon, B.: The P(¢)* Euclidean quantum field theory as classical statistical
mechanics. Ann. Math. 101, 111 (1975)

Glimm, J ., Jaffe, A., Spencer, T.: Phase transitions for ¢4 quantum fields. Commun. math. Phys.
45, 203—216 (1975)

Hepp, K.: Commun. math. Phys. 1, 95 (1965)

Jost,R.: The general theory of quantized fields, Providence, R. I.: A.M.S. (1965);

Streater, R., Wightman, A.: PCT, spin and statistics and all that. New York: Benjamin 1964
Lamb,G.,Jr.: Rev. Mod. Phys. 43, 99 (1971)

Lanford, O., III.: In: Statistical mechanics and quantum field theory. Les Houches 1970, C. De Witt
R. Stora (eds.), p. 1. New York: Gordon & Breach 1971

May,R.: Phys. Lett. A25, 282 (1967)

Osterwalder,K.: Commun. math. Phys. 29, 1 (1973); see also Refs. 1, 2, and 5 of this paper*

The original proof is due to H. Araki, Refs. 1, 2 of 34.



310 J. Frohlich

35. Polyakov, A.: Isomeric states of quantum fields, L. D. Landau, Inst. for Theor. Physics, Preprint
(1974)

36. Simon, B.: The P(¢), Euclidean (quantum) field theory. Princeton series in Physics, Princeton
University Press, Princeton (1974)

37. Simon, B., Griffiths,R.: Commun. math. Phys. 33, 145 (1973)

38. Spencer, T.: Commun. math. Phys. 39, 63 (1974)

39. Suzuki, M., Fisher,M.: J. Math. Phys. 12, 235 (1971)

40. Spencer,T.: The decay of the Bethe-Salpeter kernel in P(¢), quantum field models. Harvard
University, Preprint (1975)

41. Sakai,S.: C*-Algebras and W*-Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete 60.
Berlin-Heidelberg-New York: Springer 1971

42. Streater, R.F., Wilde, I. F.: Nucl. Phys. B 24, 561 (1970); see also Streater, R., Acta Phys. Austriaca,
Suppl. XI, 317 (1973); Bonnard, P., Streater,R.: ZiF-University of Bielefeld, Preprint 1975

43. Takesaki, M. : Pacific J. Math. 34, 807 (1970)

Communicated by A. S. Wightman

Received October 1, 1975





