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Abstract. We estimate the canonical and grand canonical partition function
in a finite volume and prove stability and existence of the thermodynamic
limit for the pressure of two component classical and quantum systems of
particles with charge +ε interacting via two body Yukawa — or Coulomb
forces. In the case of Coulomb forces we require neutrality. For the classical
system in two dimensions there exists a critical temperature Tc at and below
which the system collapses. For the classical Yukawa system the correlation
functions exist for arbitrary fugacity and the general structure of the pure
phases can be analyzed completely.

1. Introduction

a) Definition of the Problem; Connections to Euclidean Field Theory

In this paper we construct the thermodynamic limit of the pressure for systems
of classical point particles in two space dimensions with charge ±ε interacting
via Yukawa - or Coulomb — two body forces (or forces which can be "dominated"
by these). The same result for the analogous systems in one dimension [6] and
for the corresponding quantum systems in (one and) two dimensions then follow
as rather simple corollaries, at least if one borrows certain estimates and tech-
niques from [19] for the analysis of the quantum systems.

The two dimensional classical systems we are considering are not if-stable
[26], the classical Hamilton function is not bounded below, and we should there-
fore not be surprised that there exists a critical temperature Tc depending on the
strength of the forces, i.e. the charge ε, at and below which these classical systems
collapse. This is due to the lack of a sufficiently strong centrifugal barrier below
Tc. Also notice that the Coulomb potential in one and two dimensions is ex-
tremely long range (~r, logr, respectively, where r is the distance between two
charges). It is therefore not tempered. If the total charge is 0 there is screening,
and the long range character of the Coulomb forces disappears. That is why we
only consider neutral Coulomb systems in this paper. Results on the classical
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Coulomb system in a finite volume have previously been obtained in [4]. Their
estimates are essential for this paper.

Our approach towards a solution of these problems consists in viewing a
system of classical point particles in two space dimensions with charge + ε inter-
acting via Yukawa — or Coulomb forces as a particular model of Euclidean field
theory (EFT; see [7,28] of one neutral, scalar Bose field in two space-time
dimensions [6,1]. (This paper is actually motivated by an analysis of a two dimen-
sional quantum field model.) This permits us to combine estimates from sta-
tistical mechanics with estimates from Euclidean field theory. The correct de-
pendence of the grand canonical partition function on the volume, to mention
one example, is obtained by using EFT methods.

Let s denote the number of space - and d the number of space-time dimen-
sions. Let CSM be an abbreviation for "classical statistical mechanics of point
particles interacting via two-body-forces". The following isomorphisms have
recently attracted a great deal of attention (the reader not very interested in or
not familiar with quantum field theory should ignore what is described under
C, C, or even under B, B, below):

A B C

/CSM, Coulomb\

\forces, s = 2 j
:sin]/βεΦ(x,t):, | =

d = 2

Massive Thirring \

model (+ Yukawa

interaction), d = 2

Here • is the two dimensional d'Alembertian, Φ is a neutral, scalar quantum
field of bare mass 0, z is a coupling constant, and 0<βε2<4π, :—: denotes Wick
ordering. The isomorphism i\ identifies β with the inverse temperature, ε with
the charge, z with the fugacity; in CSM language :—: corresponds to ignoring
selfmteractions of particles. The isomorphism /x makes powerful EFT techniques
applicable in A and vice versa.

The massive Thirring model ( +Yukawa interaction) is described in [2] and
refs. given there. (See also [18,20].) Its existence is established in [8,9]. It is a
Fermion (-Boson) model with current-current ( +Yukawa) interaction. The iso-
morphism 12 has been discovered by Coleman [2]. Results proven in this paper
for A have turned out to be essential for an existence proof of the field theories
defined in B and C [8].

CSM with Yukawa forces has turned out to be isomorphic to the following
quantum field models:

A

CSM, Yukawa\

forces, s = 2 j

B c

:sin]//?εΦ(x,ί):J ^

d = 2

Massive Q E D +

Thirring interaction,

/
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Here Φ is a neutral, scalar quantum field of bare mass m > 0. ϊx yields the same
identifications between A and B as 7\ between A and B if one replaces Coulomb -
by Yukawa - potentials.

Massive Quantum Electrodynamics (QED) in two space-time dimensions is
a pure Fermion quantum field model with a one dimensional Coulomb force
producing a self-coupling of the charge density. The Thirring interaction is a
current-current interaction. The construction of the isomorphism ϊ2 can es-
sentially be reduced to the one of I2 (see [2]) combined with the Schwinger
mechanism [27] and is given in [9]. It might be a rather easy and pleasing
occupation to find many more isomorphisms of the type of I2,12 i n o n e dimen-
sional field theoretic models of solid state physics; see [18, 20]. In [9] we propose
a "machine" which generates such isomorphisms systematically.

The critical temperature Tc at and below which the CSM systems A and A
collapse is given by

or βε> = 4n,

where k is the Boltzmann constant. This collapse can be interpreted as a complete
formation of pairs of oppositely charged particles. After a suitable renormaliza-
tion of the average energy per particle the system at and below Tc is identical to
a free, classical gas of neutral particles (the pairs) and Tc becomes a critical point.

To the collapse catastrophe there corresponds the fact that for βε2^4π the
field theories described in B, B, C and C do no longer exist, at least without
ultraviolet renormalizations; see [8, 9].

The classical correlation functions for the CSM system defined in A (and the
Euclidean Green's or Schwinger functions of the field theories defined in B
and C) can be constructed for small \z/m2\ and for arbitrary, real z, provided

βε2< — . They are analytic in z in some neighborhood of z = 0 which implies
π

absence of phase transitions for small fugacity. The space-translation invariant
pure phase correlation functions are Euclidean invariant and have the cluster
property, even in the multiple phase region.

b) The Physics of the Two Dimensional Coulomb System

Statistical mechanics of the two dimensional Coulomb system is the theory of
inifmitely long, parallel, charged wires - or wires conducting a current + ε * - in
thermal equilibrium. To a reasonable approximation such systems exist in nature.
E.g. the strongly magnetized, real plasma in thermal equilibrium can approxi-
mately be described by a two dimensional, neutral Coulomb system in the grand
canonical ensemble; see [4]. For such a system we expect Debye-screening so
that the classical Ursell functions decay presumably exponentially in the separa-
tion of two of their arguments. In field theory language this would imply that
the energy - momentum spectrum of the field theories B, C has a mass gap. The
classical neutral Coulomb system has a simple scaling behaviour which we use to

1 Or e.g. vortices.
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rigorously derive explicit expressions for the pressure and the correlation length
as functions of the fugacity z and to provide a complete proof of the equation
of state

8π

found earlier in [21]. (Here Q is the density.) Our results prove absence of phase
transitions in the classical, neutral Coulomb gas at a fixed temperature T> Tc, as
one varies the density of the gas.

The quantum theory of the strongly magnetized, real plasma in thermal
equilibrium approximated by the two dimensional, neutral quantum Coulomb
gas in the grand canonical ensemble is expected to have a phase transition at
T&TC and should describe interesting phenomena such as pair condensation
below Tc.

Acknowledgements. I am indebted to E. Lieb and E. Seiler for many fruitful discussions and
useful hints during the course of this work and to E. Lieb and A. Wightman for their enthusiasm and
encouragement.

2. The Connection between Classical Statistical Mechanics and Euclidean Field
Theory

In this section we explain the basic connection between CSM and Euclidean
field theory (EFT) used in this paper. See [7, 28] for extensive information about
EFT. We show how estimates in EFT yield estimates in CSM and vice versa.
See [6,1] for earlier discussions of the CSM-EFT connections explored below.

a) Basic Definitions and a CSM Estimate

In the following K is the universal symbol for a constant; its value may vary from
estimate to estimate. The class of potentials V(x, y) we consider in this section is
characterized in

Definition 2.1. Let SR be a sphere in IRS of radius R^co centered at the origin.
Let V(x, y) be the kernel of some positive operator V on L2(SR, dsx) and assume
that V(x, y) is continuous in x and y and that

sup \V(x,y)\^K. (2.1)

χ,yeSR

Specifically, let s = 2, R = oo and think of V(x, y) as being given by

V(x, y) = VκJx-y)=$ d2x'd2y'hκ(x-x')hκ{y-y')Cm{x'-y'), (2.2)

where Cm(x — y) is the kernel of ( — z l+ra 2 )" 1 , A is the two dimensional Laplacian,
ra>0, and hκ is a positive, continuous function (the charge distribution of a
particle) with

4 , κ() = hκ(-x),
Kl I (2.3)

\hκ(x)d2x=l and hκ(x)-*δ(x), as κ->oo.
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Here δ is the two dimensional (5-function, and the convergence in (2.3) is on C(SR),
the space of continuous functions over SΛ; R ^ oo.

In Section 3 we study the potentials VKtm and show that one can let tend τc->oo
(corresponding to replacing particles with charge distribution hκ by point par-
ticles). In Section 4 we investigate the case where m = 0.

Definition 2.2. Let Xn = (xί9...,xn) and Yn=(yv...,yn) be points in IRS" (particle
configurations). Let

n

dXn=\[dsxi9 etc.
i = l

We set

-ε2 Σ V{xityβ. (2.4)

Let g be some positive function in L 1 ^ , dsx) and

^")=IΪ^) (2-5)

We set

ρΛ(x)= Σ ε{δ(x-Xj)-δ(x-yj)}. (2.6)

In the following we may set β= — =1 which can always be achieved by
K1

redefinition of the charge ε.
The classical, canonical partition function for n positively and n negatively

charged particles with two body potential V in an external potential \ogg(Xn) +
log#(Yn) is defined by

Zn(V, g)=

ε Σ {V(Xi,Xi) + V(yi,yι)}

= fdX n dY n g(X n )g(Y n )e- ί d x d y e n i x ) n x > y ) e M e ι = 1 . (2.7)

Conventionally g(x) = χΛ(x), where χΛ is the characteristic function of some (open)
region /ίClRs with volume \Λ\. (We must be a little more general here; see [8,9]
for the reasons.)

Lemma 2.1. Suppose that for arbitrary, signed measures ρ with J dxρ(x) = 0,
i.e. total charge 0, suppρgS κ ,

f dxdyρ(x)V(x, y)ρ(y)^ J dxdyρ(x)W(x9 y)ρ{y) (2.8)

and that sup {V(x9 x)- W(x, x)}^K.
S
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Then

KZn(W,g). (2-9)

Proof.

Zn( K g) = j dXnd Yng(Xn)g( Yn)e " Vw{χn>γn)

~l dxdyρn(x) (V - W) (x,y)ρn(y)

-eι=1

^ e2nK J dXndYng(Xn)g(Yn)e~Uw{χn>γn), (2.10)

since sup {F(x, x ) - W(x, x)} ^ K and by (2.8). Q.E.D.

Remark. Since the signed measure ρn [see (2.6)] satisfies j dxρn(x) = 0, i.e.
ρM(0) = 0, Lemma 2.1, (2.8) hold for certain non-positive operators V. That is why
Lemma 2.1 permits us to bound the Coulomb - from above by the Yukawa par-
tition function, although the two-dimensional Coulomb potential is not the kernel
of a positive operator; see Section 4. (I owe this remark to Seiler.)

Definition 2.3. The grand canonical partition function Z(V,zg) for neutral sys-
tems is defined by

l)= Σ ^2Zn(V,g). (2.11)

The r.h.s. of (2.11) is known to converge absolutely for all z if the potential V
satisfies Definition 2.1 and g is in L 1(SΛ, dsx). This is essentially the same estimate
as (2.10). For details see e.g. [26]. In subsection (c) we prove an estimate going
in the opposite direction of the one proved in Lemma 2.1:

For

^W^O Z{W,g)<,Z{V,2g). (2.12)

b) The EFT Formalism

Without loss of generality we may assume that the null space of the operator

F i s { 0 } . (2.13)

(If not it can always be factored out.)
Let

f o r * < ( X ) > a n d

l r e a l ( ) for R = o o ,

where ^ r e a l(IR5) is the real Schwartz space over W. Let 9" denote the (topological)
dual of 9, Points in 9 are denoted by f,g,h..., points in Sf' by Φ.

Let Σ be the σ-algebra on 9" generated by all Borel cylinder sets; see e.g. [14].
We define a functional Jv on 9:

JAf) = e-i{f vf). (2.14)
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The functional J is normalized, i.e. JF(O)=1, continuous on Sf and of positive
type [14, 22]. By Minlos' theorem [22] it is the Fourier transform of some prob-
ability measure dμv on {£f\ Σ), i.e.

Jy{f)= \ dμγ{Φ)eiφ^ .

The measure dμv is the Gaussian measure on (&", Σ) with mean 0 and covariance
operator V.

If F is a dμF-integrable function on 9" we set

(F}v= JdMΦ)F(Φ). (2.15)

Wick (normal) ordering of exponentials is defined by

:e i φ { f )\ v = eiφ{f)(eίΦ{f)}y1 = e

ίΦ{f)e*{f>vf). (2.16)

Lemma 2.2. For /i, ...,/„ m ^

-expΓ- Σ ( / ^

//ί/iβ sequence {fJ(x)}fL i converges to £jδ(x — Xj) on C(SR\ as /—• oo, for all)— 1,...,n
then

lim ( Π β^P Λ = / Π leW'hy) = exp Γ- X s^Vix^ ^0 .
Z-*oo \ j = l /F \j=l /F L l ^ ^ J ^ " J (217)

Proo/ The first part is Wick's theorem and follows directly from (2.16) and
(2.14); (2.17) follows from Definition 2.1, (boundedness and continuity of V(x,y)),
and the first part of the lemma. See also [1]. Q.E.D.

Definition 2.4.

: cos εΦ :v{g) = \ {χj (g) + χΫ (g)}.

By (2.7) and Lemma 2.2

Zn(V,g) = <(χϊ(g))n(χ;(g)r>v. (2.18)

For total charge q we define

Zq

2n+q(V,g)=«χϊ(g)γ+«(χy(g)yyv. (2.19)

Obviously

= <(xv(g))"(xv(g)Y>v=zn(K g ) . (2.20)

Using Definition 2.4 we see that

f «χMΪ{XyW>y
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By (2.20) and (2.21)

— — (:cosεΦ:v(g)2n}<, —— Zn(V,g)< —-~Zn{V,g). (2.22)

(2n)! (2n)! (n!)
On the other hand all terms on the r.h.s. of (2.21) are positive by Lemma 2.2.

Hence

^Zn(V,g)S^<:cosεΦ:v(g)2n)v. (2.23)

Definition 2.4 and (2.21) lead us to the following

Definition 2.5. The grand canonical partition function of a system in a heat -
and charged particle - reservoir is defined by

oo ^n

Ξ{V,zg)= ]Γ —<:cosεΦ:v(g)n}v

n = 0 n

= (exp{:cosεΦ:v{zg)}}v (2.24)

(z is the fugacity). Clearly

ω 2 "> F (2.25)

and the convergence of the series on the r.h.s. of (2.25) for arbitrary \z\ follows
from (2.22) and (2.11).

Equations and inequalities (2.18)—(2.25) yield

Theorem 2.3.

(1) Z%(V,g)£ZJίV,g) (2) Z(V,g)^ΞC0Sh(V,2g)

(3) ΞC0Sh(K g)^Z(V, g) (4) For positive g

Remark. The partition function Ξ(V,g) plays an important role in the con-
struction of the field theories described in the introduction under B, B, C and C
if we set V(x, y)=CJx-y); see [8,9].

c) An EFT Estimate (Conditioning)

The following is a special case of a result due to Guerra, Rosen and Simon [16]
called "conditioning".

Theorem 2.4. Let V^ Wj>0. Then for real-valued g
(1) Ξ(V,±g)^Ξ(W,±g),
(2)

X
Proof. Clearly (2) follows from (1) by Theorem 2.3, (2) and (3).
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The idea of the proof of (1) and (3) is: Notice that

Ξ(V,g) = <exp{:cos εΦ:v(g)}yv

= <exp{:cosβ(Φ1+Φ2):κ_Wr, w(9)}>v-w,w> ( 2 2 6 )

and

J y v ^ w (2.26')

where Φx and Φ2 are two independent Gaussian random fields with covariance
operator V—W,W, respectively. Then Φx + Φ2 is a Gaussian random field with
covariance V. Jensen's inequality gives:

^ /exp{ I dμv_w(Φ1):cosε(Φ1 + Φ2)'.v-w,w(a)

= (exp:cosεΦ2'.w(g)yw which proves (1).

Moreover (3) follows by applying the Holder inequality with respect to j dμ(Φx)

to the r.h.s. of (2.26'). For details see [16, 28]. Q.E.D.

Remark. Notice that Theorem 2.4, (2) and (3) goes in the opposite direction
of Lemma 2.1, (2.9) which yields

g), (2.27)

where K= sup {V(xf x) — W(x, x)}.
seSn

d) Decoupling of Nearest Neighbour Cubes

Let R = oo, i.e. SR = ]RS. If B is some region in 1RS χB denotes the characteristic
function of B.

We now cover IRS with cubes An of unit size centered at the points

with faces parallel to the planes xj = 0, j=ί,...,s.
We then decompose each cube Δn into 2s disjoint cubes Δ\,...,Δ2

n\ each of
volume |zj |̂ = 2~s.

Clearly
2s

:cosεΦ:v(g)= £ £ :cosεΦ:v(gχΔj).
j=l neΈ*

By Holder's inequality

Ξ(V,g)=(exp{: cos εΦ:v(g)}yv

^ Π ( e x P ( Σ :cosεΦ:F(2s^,))\ 2~s

2s

j=l \ ne,
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By Theorem 2.3

2-s

7 = 1

S2Y[Z\V, Σ 2s+1gχΔJn

 2~s. (2.29)

These simple inequalities decouple nearest neighbour cubes. We apply them in
subsections e) and ί) to prove stability.

e) Strongly Decoupling Gaussian Measures

Let B be some cube in IRS and let ΣB denote the minimal σ-algebra on ¥' such
that all functions spanned by {eιφ{f)\fe6f, suppfQB} are Immeasurable.

Definition 2.6. The measure dμv is called a strongly decoupling Gaussian measure
if there exists p = p(V)e [1, oo) such that for arbitrary ΣΔJn-measurable functions

Y\FnJ
neΈs IV

(2.30)
neΈs

for arbitrary j = 1,..., 2s.
If a potential F ^ O satisfying Definition 2.1 has the property that the Gaussian

measure dμv is strongly decoupling then using (2.28) and (2.30)

Ξ(Kg)^ Π ( Π

SU l\Ξ(V,2spgiΛί)2~Sp~\ (2.31)
j=l neZs

and we have used the obvious fact that exp {:cosεΦ:F(25^χzlj!)} is a rfμF-integrable
ΣΔjn-measurable function on &", for geL1(SR,dsx) which follows from (2.24),
(2.25), (2.11).

By Theorem 2.3 and (2.29)

Z(Kg)^ Π Π (2Z(K2s+ίpgχΔβ
2~Sp~i. (2.32)

7 = 1 Π G Z S

If V is translation invariant (R = co\ g = λ-χΛ, for some open region /lClRs,
\Λ\ the total volume of the cubes Δn intersecting A, and

, (2.33)

for arbitrary, positive λ then with Kλ= — log2K2Spλ

For complex z we have

\Ξ(V,zg)\^Ξ(V9Rezg),
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thus

"'M9 (2.34)

and by (2.32)

\Z(V,ZXJ£Z(V,\Z\XA)^21'M. (2.35)

We have proved

Theorem 2.5. // V is translation invariant and dμv is strongly decoupling the
finite volume estimate (2.33) implies the stability estimates (2.34), (2.35).

f) Application to the Yukawa Potential

Let

V(x, y) =VKtJx-y)=S dsx'dsy'hκ(x' - x) Cm(x' - /)ΛK(/ - y), (2.36)

where Cm{x — y) is the kernel of (— A -f m2) ~ x.
Let Φκ = hκ*Φ. The following equation is useful:

<F(Φ)>Kiβim = <F(Φκ)>C m. (2.37)

To prove (2.37) we must only show that

which follows directly from (2.36) and (2.14).

Theorem 2.6. Let m be positive and κ ^ 4 , i.e. supp/zκ£ {x\ | x | ^ i } . Then dμVκ m

is a strongly decoupling Gaussian measure with p = p(Vκm)^p(m)e(2, GO), where
p(m) is independent of K. Theorem 2.5 applies.

Proof. Nelson has shown that dμCm has the Markov property [23], and is
hyper contractive [23, 24] (dμCm is Markovian, since the inverse of Cm, i.e. — A + m2,
is a local operator, see [23], and hypercontractive, since m>0; see [23, 24, 28]).
Let AJ

n be the set of points xeIRs with distance less than or equal to | from Aj

R.
For fixed j the sets Aj

n, A^ars non-overlapping for nφtf Applying Eq. (2.37) we
observe that we must prove the decoupling estimate (2.30) for

f ] Qxp{:coscΦκ\cJzgχAJ

n)}\
cm

(2.38)

Obviously exp{'.cosεΦκ:Cm(zgχΔj)} is Σ^-measurable. Therefore the Markov
property and hypercontractivity for dμCyn imply the decoupling estimate (2.30) for
(2.38). The simple proof of

Markov property + )
. . } => (2.38) satisfies (2.30)

hypercontractivity J

is due to Guerra, Rosen and Simon and is called the "checker board" estimate.
For details see [16, 28]. Q.E.D.

Remarks. Theorems 2.6 and 2.5 show that we have proved stability for CSM
with Yukawa forces in two dimensions once we have proved stability in a finite
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volume, i.e. inequality (2.31). It then follows from Lemma 2.1 and (2.27) by a
simple argument (see Section 4) that the neutral Coulomb CSM system in two
dimensions is stable, too. These results are basic for the construction of the field
theories B, B, C and C, since there is indeed strictly no difference between CSM
A, A in the grand canonical ensemble and the field theories B, B, respectively, in
the Euclidean formulation; see [8,9].

3. The Heart of the Proof: Stability in a Finite Volume

In this section we show that for βε2 <4π (or ε2 <4π if we set β=ΐ) the CSM
system with Yukawa forces is stable. The Yukawa potential is given by

V(x,y)=CJx-y), and ra>0.

It is convenient to first consider CSM for the regularized Yukawa potential
Vκm - see (2.36) - where the cutoff function hκ satisfies Definition 2.1, (2.3), and
to derive estimates which are uniform in K. By the results of Section 2, e) and f),
we are left with proving that Z(Vκm,λχΔ) is uniformly bounded in K, for arbitrary,
fixed, positive λ and A a square of volume 1/4.

The strategy of the proof is to reduce this problem to the one solved by Deutsch
and Lavaud in [4] for the Coulomb system, i.e. to bound the partition function
with Yukawa forces from above by the one with Coulomb-like forces which can
be estimated explicitly. This is possible by using conditioning (Theorem 2.4). Of
course we have to replace the Coulomb potential by one which is the kernel of
a positive operator. It is convenient to work with the grand canonical partition
function Ξ(Vκ>m,g).

a) Reduction to Coulomb-like Potentials

Let zL, A1 be the squares of volume 1/4, 1, respectively, with boundaries parallel
to the coordinate axes and centered at the point (1, 0). Let S = S2 be the circular
disk of radius 2 centered at the origin. Let As be the Laplacian on L2(S, d2x) with
O-Dirichlet data at dS. Finally let Cs

m(x,y) be the kernel of (-zls + m 2 ) " 1 . Notice
that because of O-Dirichlet data at dS —As is strictly positive and hence ( — As)~ι

is a bounded, positive operator with kernel Cs

0(x, y): C^e f] LP(S x S, d2x x d2x).
For all x and y in Ax and m > 0 p< °°

(3.1)

Lemma 3.1. Let F be a ΣΛ-measurable function on ίf'. Then

for some r = r(m, d) which is finite for m>0 and d>0, and d is the distance between
Aγ and dS.

This lemma is proven in [16]. See also [28, Theorems 1.23, VII.2]. For a
general study of Gaussian measures on £f' see [28,10]. We set

VlJx, y) = J d2x'd2y'hκ{x- x')hκ{y-y')Cm{x\ y')
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and

w(x) = e-^c--cs^ <*•*>• χΔι(χ).

Notice that wκ-» w, as κ->oo, in the || H

Let g be a positive function in L}{Δ±., d2x). Then Lemma 3.1 yields

Corollary 3.2.

(3.2)

^ (3.3)

= Ξ(Vκ

s

ιn,r wκ g)1'r (3.4)

^SίKϋcr-w,^)1" (3.5)
s 1 / (3.6)

Proo/ The first equation follows from (2.37). By the definition of Wick
ordering (2.16) and (3.2)

for suppggzL, whence

exp {:cosεΦκ:cJg)}= exp {:

This equation and Lemma 3.1 prove (3.3); (3.4) follows from the definition of
Ξ; (3.5) follows from the inequality (-As)Γ^-zls + m 2 ) " 1 ^ by the con-
ditioning inequality: Theorem 2.4, (1). Finally (3.6) follows from Theorem 2.3, (3)
and (4). Q.E.D.

We are now left with estimating Z(FK

S

O, rwκg\ uniformly in K and (as a result)
showing that

Z(VK,m>0)^Z(Cm9g)9 as K^CO, etc.

by) ,4ft Explicit Representation of the Green's Function Cs

0(x, y)

Letx = (x1,x2)andy = (j;1,j2) be points in IR2. We set z = x1 +ix2 andw = y1 + zy.
4

We let z be the reflection of z at the circle δS, i.e. z = -. If ze 55 then z = z. (3.7)
z

Lemma 3.3.

= - — {ln |z-w|+ln |z-w|- ln |z-w|- ln |z-w|} . (3.8)
4π

Proof. In order to show that Gs(z, w) defined by (3.8) is the Green's function
of -As we must show that Γ) for z or w on dS Gs(z, w) = 0, and 2°) for wφdS
— AStZG(z,w) = δ(z — w), where

δx1)2 (δx2)2
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with O-Dirichlet data at dS. Obviously for z or w on δS the r.h.s. of (3.8) vanishes
by (3.7), whence 1°).

Gs(z, w)= — — {ln|z — w|— ln|4 — zw|+ln4}, by a trivial computation. If
2π

1
wφ dS then — ln|4 — zw\ +ln4 is a harmonic function on 5; — — ln|z — w\ is the

2π
two dimensional Coulomb potential, hence by Green's theorem

- AsjZGs(z, w) = — J s > z In | z - w\ = δ(z- w), i.e. 2°). Q.E.D.

n

We are now ready to estimate Z(V^0, rwκg). Let fκ = r wκ-g,fκ(Xn)= Y\fκ(Xj),

n

Άnάhfn®h®n{Xn, Y")= Π hκ{x})hκ(yj). Then

= jdXndY"fκ(X")fκ(Y")e

by Jensen's inequality.

Definition 3.1.

(3.9)

Λ r 3 - , ; = « + l,...,2n.

Notice that z/ =vv / + π and wJ = zJ +π, for j=ί,...,n.
We set Z" = (zί, ...,zn) and dZ" = ίίZ",

FK" = (w1 ; . . . ,w n ), etc.

Finally we define Hκ(g\Zn, W) = (hfn*fK)(Zn)(hf "*fκ){W") and observe that

Hκ(g\Zn,W")^(Wg)(Z")(wgW), as K^OO; (3.10)

we let aL = ί-(=^-) for jS= lV Then by Definition 2.2, (2.4) and (3.8)
4π \ 4π /

11

fi ι̂ -w/

ft IZj-Wj + nΠWj-Zj + X (3.11)
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and the second factor on the r.h.s. of (3.11) accounts for the fact that according
to (3.8) a charged particle at Zj does not interact with its image (with respect to dS)

By assumption suppgQA^. Hence [by Definition 2.1, (2.3) and the definition

,Wn)QAf2n, for κ^4.

Notice that A x does not contain the origin and that the maximal distance between
points in A A and in its image Aί (with respect to dS) is therefore bounded. Hence

Π l -7
\ZJ~

7 = 1

i l
j + n\

(3.12)

on suppHκ(g\ •), for some finite constant Kv

c) The Main Estimate

By a lemma of Cauchy's - see [4] and refs. given there -

In

Π
Det

1
(3.13)

where
1

denotes the 2n x 2n matrix with matrix elements

Equations (3.13) and (3.11), (3.12) enable us to prove

ieTheorem 3.4. Let a< 1 [i.e. ——<1 . Let p ^ l be any real number such that

OC'P< 1. Let p' = and let g be a function in LV\A¥ d2x). Then

\Zn(V^rw^S((2nVrKl\\g\\2

p

h, (3.14)

uniformly in κ^.4.

Proof. Let HeLp'(A^ 2", dZndWn). Then by (3.12) and Holder's inequality

\dZndWnH{Z\ Wn) Det
1

Π \zj-τ Ί + n\ \Wj-

J dZ"dW
A ϊ 2 n

Det
α p

Since oφ<l, [][

π<=γ2n A ϊ ly

2n 1

(3.15)

— is dZndWn - integrable on A12\ and

I dzrdW
In

i—W,
(3.16)



248 J. Frohlich

for some constant K2(p) which is finite for a p< 1, independent of the permutation

Hence

Γ 1 1 α n

\dZndWnU(Z\ Wn) Det Π \zj-wj+n\
a\wj-zj+}

lZi~Wj\ 7 = 1

For H(Z\ W^ = r2n(h®n*wKg)(Zn)(hfn*wKg)(Wn) we get for p'<oo

\\H\\p^r2n\\hκ(wκg)Yp

n

Sr2nK"3\\p

by the Hausdorff-Young inequality and the facts that \hκ(k)\^$hκ(x)dx=l, and
| | j | / ^ , for some finite constant K3; see (3.1) and (3.2).

If we set K p Ξr 2 X 1 K 2 (p)K 3 ? (3.14) now follows from (3.9), (3.15) and (3.16).
Q.E.D.

Combining Theorem 3.4 with Corollary 3.2 we get

Corollary 3.5. (Stability in the grand canonical ensemble.)
Let α<pα<l, ra>0 and /c^4.

(1) Let geLp'(Δ,d2x) with p'>- (i.e. poc<l), for some square A of finite

volume. Then {Ξ(VKtm9zg)}κ<O0 and {Z(Vκm, zg)}κ<O0 are families of entire functions
of z which are bounded by

for some constants Kp, Kp which are finite for a<poc<l and uniformly in K.
(2) Let A be an open set in IR2 with the property that the total volume of a

covering of A by unit squares is bounded by some constant times \A\. Then

and

for some constants Kp, Kp which are finite for α < p α < l , and uniformly in K.

Proof. The first part is a direct consequence of Corollary 3.2 and inequality
(3.14); (2) follows by combining (1) with Theorems 2.5 and 2.6.

Corollary 3.6. (Stability in the canonical ensemble.)

Let a<poί<l, κ^4 and set ρ = -—-. Then

(3.17)
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and

|<{ :cosεΦ κ : C M (z .χ j r> c J^^ |zr(^)"n! ? (3.18)

for all ρ > 0 and uniformly in K. Here Kp are constants which are finite for α <pα < 1.

Proof. By Corollary 3.5 Z(VKdn,z χΛ) is an entire function of z the absolute
value of which is bounded by Kpe

Kp^P/P~^ΛK Choose as a contour Γ in the z-plane
the circle of radius ρp~1/p centered at the origin and apply the Cauchy integral
formula for Γ to compute the 2nth derivative of Z(Vκm,zχΛ) at z = 0; (3.17) now
follows immediately; the same argument applied to Ξ(Vκm,zχΛ) yields (3.18).

Q.E.D.
Theorem 3.7. (Removing the cutoff κ.J Let ot<poc<l and m>0.

(1) Let ge Lp'(A,d2x) for some p'>-z (i c poί<l) and some square A of

finite volume. Then

]imZn(VKtm9g) = ZJίCm,g) (3.19)
κ-+ oo

lim <{:cosβΦ, e: c»}">C m = <{:cos6Φ:Cm(fif)}">Cm (3.20)
κ-+ oo

\imΞ(VKim,z g) = Ξ(Cm,z-g), etc. (3.21)
K-> oo

(2) The bounds of Corollaries 3.5 and 3.6 hold for Ξ(VK m, ) replaced by Ξ(Cm,-),

Zn(VKtm9') replaced by Zn(Cm9-)9 etc.

Proof. Under the hypotheses of Theorem 3.7

-Ucm(Xn,Yn) -PUCm{Xn,Yn)

g(Xn)g(Yn)e and e (3.22)

are dXndYn-intQgmble for all p with poc<l. (Notice that CJx) -—In(m2 |x|2),
\ 4π

as x-vθ. . See also [4]. We now show that

-UVκm (Xn,Yn) ~UC {Xn,Yn)

g(Xn)g(Yn)e ' -^g(Xn)g(Yn)e m , (3.23)

as κ->oo, in L\Δ x 2\ dXn>dYn).
By the Holder inequality this follows from

-UVκ,m {Xn,Yn) -UCm (Xn,Y")

e -+e , as κ-+oo, (3.24)

in U(Δ x 2n, dXndYn). Thus we must show that

-pUvκtm {Xn.Yn) ~pUc (Xn,Y")

Iκ= J dXndYn\e -e m | . ->0, as κ-+ao.
A x 2 n

Now

Iκ^ \ dXndYn]dse-{spUv- +{1~s)pVc-){χn'γn) p\(UVκm-UcJ{X\Yn)\
Δ x 2 n 0

%p sup j dXndYne~{spUv— +{1~s)pUc~){χn>γn}\(UVκm-UcJ(Xn,Yn)\
s e [ 0 , l ] ^ x 2 n

gp sup We-""*-- Wl+sWe-^^Wl+txWUy^-UcJ^ (3.25)
se[0, l] 1+3
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by the Holder inequality, and δ >0 is picked so that pa(l + δ) < 1 which is possible,
since p α < l . The first and the second factor on the r.h.s. of (3.25) are bounded
uniformly in κ<oo and se[0,1] by Jensen's inequality - see (3.9) - and (3.22),
since pa(l + δ)<l, and the third factor is easily seen to tend to 0, as /c->oo. This
proves (3.19); (3.20) follows by almost identical arguments. Finally (3.21) follows
from the uniform bounds of Corollary 3.5, (1) and (3.20). This completes the proof
of (1). Obviously (2) follows from (1) and Corollaries 3.5, 3.6. Q.E.D.

We are now prepared to prove the existence of the thermodynamic limit of
the pressure (grand canonical ensemble).

d) Existence of the Thermodynamic Limit

Theorem 3.8. (Thermodynamic limit for the pressure.)

Let α < l , i.e. /?ε2<4π, land we set β = —— = l\,andm>0. Let Λιxtbe an ar-
\ kl I

bitrary rectangle with sides of length I and t.
Then for all real z

lim — logΞ(Cw, zχΛι x t) = p(Cm, z) exists and is convex in z.

ί~>oθ

Proof. By Theorem 3.7 and the Markov property of the Gaussian measure
dμCm (see Section 2, ί), Theorem 2.6; [23]) there exists a Hubert space J-f with
scalar product ( , ), a vector ΩoeJf and (for real z) a transfer matrix e~tHι{z)

generated by a densely defined, selfadjoint, operator Ht(z) on J f which is bounded
below such that

These equations were first proved by Nelson [24] in the framework of the
well known P(φ)2-models. For a proof see also [28, Chapter 5]. By Theorem 3.7
these results extend trivially to the case at hand.

By the spectral theorem

for some probability measure ρlz supported on [α, oo), where a = inϊspecH/(z)>
— 00.

Let 0 < p < l . Then by the Holder inequality

Therefore

^ l o g ( Ω 0 , e - ^ ( z ) O 0 ) ^ ^ l o g ( O 0 , e~tH^Ω0) (3.27)

(by the monotonicity of the logarithm). This inequality proves that

—ΛogΞ(Cm9zχΛιxt) is monotone increasing in t. By (3.26) t and / play symmetric
ιι
roles which yields monotonicity in /, as well.
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Thus — logΞ(Cm9zχΛlxt) is monotone increasing in t and Z, and by Theorem

3.7, (2) it is uniformly bounded in t, I. This proves existence of the limit p(Cm, z).
Remark. These arguments are just a rephrasing of arguments due to Guerra

[15].
We now prove convexity.

Ξ(Cm, λzχΛ) = <exp {:cos sΦ:cJλzχΛ)})Crn

JzχΛ)}yλ

Cm = Ξ(Cm, zχΛ)
λ,

by the Holder inequality applied to < >Cw = \-dμcJΦ). Hence p(Cm, λz)^λp(Cm, z).

{:cos εΦ: Cm(λ(z - zo)χΛ)}

Next we apply the Holder inequality to e integrated with
the measure

{:cosεΦ:Cm(zoχΛ)}

e dμcJΦ)

and conclude that

for λe [0,1] which proves convexity; see also [28, Chapter 6]. Q.E.D.
Remark. For a proof of the existence of the thermodynamic limit of the free

energy (canonical ensemble) based on the stability estimates of Corollary 3.6
and Theorem 3.7 we refer to the standard methods; see e.g. [26, Chapter 3], and
refs. given there.

It is then an easy exercise which we leave to the reader to show that the
canonical and the grand canonical ensemble for our CSM system are equivalent
in the sense of [26, Section 3.4]. The proof follows by adapting the arguments of
[26, 3.4.5] and using Corollary 3.6.

Theorem 3.9. (Thermodynamic limit for correlation functions.)
4 16

Letoc< —T— ί.e.βε2< andm>0.
π π

Let z be an arbitrary, real number, n a positive integer, e }= ± 1, j= 1,..., n, and
Qn = (xί,ei9...,xn,en).

Then
(1) The classical correlation functions in the grand canonical ensemble in a

region /LcIR2 are given by

(2) Let {At}ieI be an increasing family of open regions in IR2. Then

lim ρz

Λι(Qn) = ρz(Qn)
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exists in the sense of convergence of measures on IR2". The correlation functions
Qz{Qn) are Euclidean invariant.

(3) There exists a Hausdorjf measure space (X, Σ) and a regular Borel probability
measure dμ on (X, Σ) such that

ρz(Qn)=\dμ{χ)ρz

χ{Qn), for all n,
x

where the measures ρz

χ are the pure phase correlation functions; (sets in Σ correspond
to measurable sets of pure phases). For μ-almost all χeX,ρz

χ(Qn) is Euclidean
invariant and has the cluster property, (in particular the equilibrium state determined
by {£χ(βn)}Γ=o z s evgodic under the action of the translation group). The Φh> —Φ
symmetry is broken in a set A of pure phases of positive μ-measure, meaning that
a single particle with charge ±ε in a pure phase χsA has a non-vanishing, constant
potential energy, provided there exist at least 2 pure phases.

Proof. (1) follows from Lemma 2.2 and [26, Section 4.2].
(2) is proven by noticing that the classical CSM system with two body Yukawa

forces is equivalent to a generalized ferromagnetic Ising model with nearest
neighbour interactions [16, 28, Chapter VIII] and then using the second Griffiths
inequality [13,16] to prove convergence, as Λ-+1R2. The complete proof is
patterned after the one of Nelson [16, 25] of an analogous result in the P(φ)2

quantum field theory. Additional technical lemmas are required to obtain uniform
bounds on the correlation functions ρz

Λ and due to the fact that one has to replace
the random variables :eiβjεΦ: by the field Φ to make Nelson's argument work.
For a complete proof of (2) the reader is referred to [8].

(3) follows from (2) by applying the isomorphism ϊ1 and a general theorem
about the decomposition into pure phases proved in [10,11]. Q.E.D.

Remarks. 1) Obviously, for βε2^4π, e-βucm{xn,Yn) j s n o ^ integrable with respect
to dXndYn which is trivially checked for n=ί; Ξ(Cm,z χΛ) = oo for zφO, Λ + 0,
and the correlation functions ρz

Λ(Qn) do not exist. This is the collapse catastrophe
(formation of pairs) described in the introduction.

The more severe restriction, namely βε2 <—rather than /fe2<4π, required
π

in Theorem 3.9 (in contradistinction to βε2 <4π required in all previous results
of Section 3) is presumably an artefact of non-optimal estimates; see [8].

2) For βε2<4π and m > 0 the correlation function ρz{Qn) are analytic in z for
\z/m2\ < rβεi (with rβε2 >0 for βε2 < 4π) and they have exponential cluster properties
(the interval 0 < z < m2rβε2 is thus contained in the single phase region). In addition
to the chemical potential for the number of particles ( — log z) one can also introduce
a chemical potential μ for the charge. If \z/m2\ and e~μ are small the correlation
functions still exist and have exponential cluster properties. These results are
based on the Glimm-Jaffe-Spencer cluster expansion; see their contribution in
[7] and refs. given there. The proof is given in [9].

3) Applying the isomorphisms ϊ1 and I2 described in the introduction Theorem
3.9 establishes existence and Poincare-covariance of the quantum field theories,
(the Sine-Gordon equation with a mass term and Quantum Electrodynamics +
Thirring interaction in two space-time dimensions), listed in B and C.
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4. Stability and the Thermodynamic Limit for the Coulomb Potential

In this section we establish all the results of Section 3 for two component, neutral
CSM systems with two body Coulomb potentials with one proviso: A precise
analogue of Theorem 3.9 can only be proven under the assumption that Debye
screening forces the classical, neutral Coulomb system in the thermodynamic
limit to have a finite correlation length - i.e. no long range order. (Without this
assumption one can still prove existence of correlation functions in the thermo-
dynamic limit but their uniqueness is then an open problem; see [8].) Applying
the isomorphisms 71? I2 described in the introduction our results in Section 4
imply existence and Poincare covariance of the field theories defined in B and
C - the quantum Sine-Gordon equation and the massive Thirring model (in the
vacuum sector); see [8].

a) Approximating and Estimating the Coulomb-by the Yukawa CSM System

We define

VJx -y) = Cm(x - y) + ^ In (cm2), (4.1)

where c is a numerical constant, and

(4.2)
2π \x-y\

It is easy to prove that

l im[F m i (x)-F m 2 (x)]=0; (4.3)

this is well known; see e.g. [2, Formula 2.7].

Lemma 4.1. Let β=ί, s2 <4π and ε2 <pε2 <4π. Let g be a positive function in
Lp (A, d2x\ for some square Δ of finite volume.

Then for all

Zn(Vm, g)SZn(Vu g) = c*« Zn(Cl9 g). (4.4)

Proof This is Lemma 2.1, i.e.

Zn(Vm9 g)=S dX"dYng(Xn)g(Yn)e
-UVι(X",Yn)

= J dXndYng(Xn)g(Yn)e .g-ί^^M^c^-Fo^-^^ω ^ ^

n

where ρn(x)= Σ ε{δ(x — xj) — δ(x — yj)}, and by (4.3) the constant occurring in

Lemma 2.1, (2.9) is equal to 0. The existence of J dxdyρn(x)(Vm—V1)(x — y)ρn(y) is



254 J. Frόhlich

obvious. Since J dxρn(x) = 0 - neutrality -
A

μ2xd2yρn(x)(Vm-V1)(x-y)ρn(y)

= j d2xd2yρn(x) (Cm - C,) (x - y)ρn(y)

1 1

k2+m2~~F+

The lemma follows from (4.5) and (4.6). Q.E.D.

Lemma 4.2. Let e} = ± 1, j = 1,..., n. Under the assumptions of Lemma 4.1

(4.6)

(1) lim ( Π : = lim/
Vm m->0

0 if ]Γ βj Φ 0 ("in particular if n is odd)

e-ϋ(Qn), if Σ ^ = ° '

where Qn = (x\,e1,...,xn,i

(2) lim

Σ
1

\Xi-Xj\

q = O \Q.

Oifn is odd

n
Znβi^Qi 9) if n ΐs even, and in this case

7

0,g)= \imZnj2(Vm,g).

(3) Zn(V0,g)£Zn(Vl9g).

Proof Part (1) of this lemma is well known from the theory of the free, massless
quantum Klein-Gordon field in two space-time dimensions. It is discussed e.g. in
[29,2]. The proof follows directly from Lemma 2.2, (2.17), (2.16), and (4.1), (4.2).
Part (2) is an immediate consequence of formulas (2.21), (2.18), and of Lemma 4.2,
(1). Finally (3) follows from (2) and Lemma 4.1. Q.E.D.

Corollary 4.3.

HmΞ(Vm, 2zg) =
m->0

^Ξ(V0, 2g).

Proof The corollary is a consequence of Lemma 4.2, (2), of (4.4) and Lemma
4.2, (3) and of the bounds established in Corollary 3.5, Theorem 3.7 which guar-
antee that the power series expansion of Ξ(VX, 2zg) in z converges absolutely for
al lzeC. Q.E.D.
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Theorem 4.4. (Stability of the classical Coulomb system.)
Under the assumptions of Lemma 4.1 and Corollary 3.5,(2)

( n ! ) 2 ,

where Kp,Kp are constants which are finite for ε2 <pε2 <4π.

Proof This follows from Lemma 4.2, (2) and (3), from Corollary 4.3 and from
the bounds proved in Corollaries 3.5, 3.6, Theorem 3.7. Q.E.D.

b) Existence of the Thermodynamic Limit

Theorem 4.5. (Thermodynamic limit of the pressure.)
Let ε2<4π and {Λ>xt} a family of rectangles such as in Theorem 3.8. Then

for all real z

lim — logS^Fo, zχΛι x t) = p(V0, z) exists and is convex in z .
1 - 0 0 "

ί-> oo

Proof This is the analogue of Theorem 3.8 and follows from Theorem 4.4,
Corollary 4.3 and the arguments used in the proof of Theorem 3.8 (i.e. mono-
tonicity in / and t). Q.E.D.

Remark. For a direct proof of the existence of the thermodynamic limit of the
free energy (canonical ensemble) we refer the reader to the techniques of [19]
which apply to the case considered here. The equivalence of the canonical and
the grand canonical ensemble remains true. (See also (4.16) below.)

Definition. Let Qz

m(Qn) be the classical correlation functions in the thermo-
dynamic limit associated with Yukawa two body forces with potential Vm. Here

Qn = (xl9eί9...9xn,en); ej=±l, for j=l,...,n. These correlation functions were

constructed in Theorem 3.9 for all m>0, arbitrary, real z and ε2< — .
π)

Let z be a positive number. We define

ξ(m,zy"= lim - i
ξ(m, z) is the correlation length. As a consequence of correlation inequalities [16]
one can show that ξ(m, z) increases, as m decreases; see [8].

Theorem 4.6. (Existence of the m = 0 correlation functions.)

r 2 1 6 j

Let ε < — and suppose that
π

ξ(09 z)= sup ξ(m,z)< oo. (4.7)
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Then for all positive integers n

ρ
m->0

exists in the sense of measures on R2"; the measures {£o(β")}«°=o a r e Euclidean
invariant and have exponential cluster properties (with decay rate ξ(0, z)~γ).

Remarks. This theorem is a consequence of correlation inequalities [16, 8] of
the type of the second Griffiths inequality and uniform bounds on the measures
{Qm(Qn)}m>o i n m It i s proved in [8], where two equivalent constructions of the
correlation functions ρz

0(Qn) are given, one of them being the one described above.
Debye screening and the isomorphism between the classical, neutral Coulomb
gas and the massive Thirring model suggest that ξ(0, z) is finite for some values
of z (see also [3]). If this is true then ξ(0, z)< oo, for all zΦO which we prove belov.
(Since z determines the average density ρ and yρ'1 has the dimension of a length
the conjecture ξ(0, z)<oo is certainly not absurd.)

A weaker form of Theorem 4.6 which is not based on the conjecture (4.7) is
proved in [8]. In this case the uniqueness of ρz

0(Qn) is however unknown.
We now explore the scaling behaviour of the canonical partition function of

the classical, neutral Coulomb gas in order to derive some explicit expressions
for the pressure p and the correlation length ξ as functions of the fugacity z and
to rigorously prove the well known equation of state [21,17]

)

βε2

Let a= —— (and we set β= 1 in the following); let p(α, z) = p(V0, z)|ε2 = 4 π α. We
4π

first prove that the pressure p(α, z) in the grand canonical ensemble has the form

By Theorem 4.5

p(α, Z) = lim — log Ξ(α, zχΛι x t ) , (4.9)
ί - + o o l ' 1

ί-> oo

where Ξ(α, zχΛixt) = Ξ(V0, zχΛιxt)\ε2 = 4πa is the grand canonical partition function
for a rectangle with sides of length / and t. From Theorem 4.5 we know that
p(a, z) is a non-negative, convex function of z.

By definition

oo 72no 72

J= Σ 7Γ
n = o \ni)

and

Π \χι-χj\2"\yt-yj\2"

Zn(«,XΛιJ= ί Ud2xjd2yj^^^-n - . (4.10)
iΛ'*'y2n ; = 1 Π \*i-yj\2*
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We now change variables:
We let l = λl09 t = λt0, and

xt \->λ2d2xi

ΛλloXλto\-*ΛloXto.

Then by (4.10)

and hence

ώ ( α > zXΛλlo x λ t 0 ) = ^(oί,λ azχΛι x t ) .

By (4.9) and (4.12)

2 2 !

= lim logΞfα, A2

(4.11)

(4.12)

0 * * Ό

2-cc

- <x« v \

= p{a,λ2-"z). (4.13)

The non-negativity and convexity of p(α, z) as a function of z combined with
(4.13) now yield

2

Theorem 4.7. (1) p(α, z) = F(α)z2"α, /or some positive function F(<x) which is
finite for α< 1. /n ί/ie variable μ= lnz f chemical potential)

(2) For α < 1 ί/zβ neutral, classical Coulomb gas has no phase transitions as one
varies the density ρ of the gas on (0, oo).

Proof We have already proved (1); (2) is a direct consequence of (1). For the
convenience of the reader we compute the Legendre transform of p(α, μ) with
respect to μ, i.e. the free energy f(oc, ρ) as a function of the density ρ of the gas:

We get

2 m . ^

2-α'

i.e.

and

2F(α)

f(oc,ρ)=μ(ρ)'Q-p(ot,μ(ρ))

2 - α
din

(2-φ"
. 2F(α) .

- 1 (4.14)



258 J. Frόhlich

Since F(α) is positive /(α, ρ) is analytic in ρ on (0, oo) which is interpreted as
absence of phase transitions as one varies ρ. Q.E.D.

Notice that

(4.15)

This is the equation of state of the classical, neutral Coulomb gas. It was earlier
derived in [21,17], where, however, (4.9) remained an unproven assumption.
Theorem 4.7, (1) shows that for the Coulomb gas an expansion of the pressure
p(α, z) in powers of z is impossible (it is easy to see that the explicit expressions
for the coefficients of such an expansion are infrared divergent).

Next we want to derive an explicit expression for the correlation length
ξ(m,z) when m = 0. Let α be fixed. For the following we must assume that there
exists some z0 =f= 0 such that

sup ξ(m, zo)\ε2 = 4 π α < oo . (4.16)
m>0

It is convenient to change notations:

We let ul=Qz

m = 0{xΛ) = ρz

m = 0{0,±ΐ), \ (4.17)

and ttl(x) = ρ^ = 0 ( ^ l , 0 , - l ) - ( i i ί )

Using a slight generalization of the scaling relations (4.13) proved under the
hypothesis (4.16) in [8] one can show

λ2«u?~2zo(x) = uz

2°(λ-1x). (4.18)

Similar, explicit scaling - ("Callan-Symanzik"-) equations can be derived for the
rc-point Ursell functions uz

n(x1,...,xn_ι), for all n; see [8]. We do not use them in
this paper.

It is well known that

ξ&zoy'= lim - i - i o g w | o ( x ) , (4.19)
|x|->oo \x\

see e.g. [8].
Thus, by (4.18)

r ^ C ^ I™ - ^-logu?-2z°(x)
|x|->oo 1*1

= lim --i-log[A2αMf"2zo(x)]

IXI

lim -
|x|-oo Λ

= λ ~1 ξ(a, z0), for arbitrary λ > 0 .
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Therefore
_J_ i

ξ(λz0,oή=G(oή(λz0Γ
2 or ξ{z,a) = G{ά)z«-1, (4.20)

for some measurable function G of α.
We remark that G(α = 0) = 0. Continuity of G near α = 0 would imply that

ξ(z, α) is finite for all z φ 0, provided α is sufficiently small. A Lee-Yang type theorem
in a would imply that ξ(z, α) is finite for all zφO and all but at most countably
many αe[0,1). We have not yet been able to prove either of these conjectures;
(a proof may require some sort of "large z-expansion"). Certainly Eq. (4.20) is
consistent with our conjecture of Debye-screening and makes it more precise.

c) Pair Condensation as

Here we construct a renormalized limit for the pressure, as α ^ l (i.e.
using some preliminary estimates of [4]. Let A be a square of area ^ in 1R2.

We define z(α) = Zx(α? χΔ)~*.

Lemma 4.8. There exists a finite constant c{^.l such that

(α, z(a)-z) = c1z
2 . (4.21)

Proof. (1) Because of scaling - Theorem 4.7 - it suffices to prove (4.21) for
small |z|. It then extends to arbitrary z, by Theorem 4.7, (1).

(2) Therefore we only must prove that

\Ξ(a,z(a)zχΛ)\<Keκ^, (4.22)

for all α < 1 and sufficiently small z, with constants K and K independent of α.
By Lemma 4.2, (3)

Ξ(α, z(ά)zχΛ)<>Ξ(Vl9 z(oc)zχΛ)\ε2 = ^πa

= Ξ(Cuz(oί)c2zχΛ)\ε2==4rπa

where c is the constant defined in (4.1).
By Theorem 2.5 and Corollary 3.2

Ξ\Cuz(a)c2zχΛ

* π 2 = 4πα
ΔnΛ*V)

K-\Λ\
p r

^{Ξ[Cs

0,z(oc)rpc2zwχAipε2 = 4πa]ί

K \Λ\

^lΞ(Cs

0,z(a)zχΔi)\ε2 = 4πa]*'\

where Ax. is the square introduced in Section 3, (a), CQ is defined in Section 3, (b), and

z = r p |z| max(c*, 1) sup|w(x)|.
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Thus we are left with estimating Ξ(CQ, z(a)zχAJ\ε2 = 47ta, uniformly in α < l .
(3) This estimate can be reduced to

(4.23)

for all α < 1, with K1 a constant independent of α. For the proof of estimate (4.23)
we use (3.8) and (3.11)—(3.13) to derive (our notations are as in Theorem 3.4):

J dZndWn Det
1

Yl\zj-wj+n\
a\wj-zj+n

SKn

2 J dZndWn

ί = 1

In

SKn

2 £ J dZndWn

πey2n Δζ 2n

n

^Kn

3(2n^ J dZndWn \\

In

^(n\)2Kn

1z{(x)-2n, which proves (4.23).

See [4, Section 3] for related estimates.
Thus

Ξ Σ
n = 0

(4.24)

Since zoc|z|, the r.h.s. of (4.24) converges provided \z\ is sufficiently small. This
completes the proof of (4.22), and (1) and the next result - which shows c1 ^ 1 -
yield Lemma 4.8. Q.E.D.

Theorem 4.9.

lim inf p(α, z(α)z) = z2 .

Proof. Let

x
i= <x

1) lim infp(oc, z(α)z) = lim inf lim -^logΞ(α, z(a)zχAJ .

Clearly

inf - l o g £ ( / M / 0 z χ , )

is increasing (more precisely non-decreasing) in α (trivially) and in 2 by Theorems
4.5 and 3.8.
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Therefore

lim inf lim -^ logS(α, z(a)z^A)

= lim ^ Dim inf log S(a, z{φχΔJ\. (4.25)

2) From (the proof of) Theorem 4.7 we get

Ξ(cc,z(a)zχΔΛ) = £ l ^ L _ Z B ( a , χ j A )
n = o v * J

oo ^ 2 n

3) It suffices to prove Theorem 4.9 for small z. We may let z be so small that
(4.22) and (4.24) apply.

It then suffices to show that

This is proved in
Thus

lim Ξ(cc,z(φχ
α si

and hence

[4, Section

00 (λ

3].

2 2\«

n!

T J lim log £(α, z(α)zχ^ J - z2

which completes the proof of Theorem 4.9.

Lemma 4.8 and Theorem 4.9 tell us that as α ^ l , i.e. T ^ Tc> the contributions of
interactions between pairs of particles of opposite charge are dominant. This is
interpreted as a pair condensation process [4]. This interpretation is rigorous if
the constant cx in Lemma 4.8 is equal to 1; (a proof would require additional
estimates). Physically the correct pressure of the classical Coulomb gas for T < Tc

is then p(<x, z) = z2 (up to a factor associated with the kinetic energy of particle
pairs); Tc has the significance of a critical temperature.

The renormalization procedure for the classical, neutral Coulomb gas de-
scribed in Lemma 4.8 and Theorem 4.9 is certainly rather artificial. What these
results really suggest is:

— The classical description is only valid for 7 > Tc.
— For T > Tc quantum effects are important.
— The quantum Coulomb gas presumably has a phase transition (associated

with pair condensation) at TπTc (a rigorous proof has not been found).
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Obviously Lemma 4.8 and Theorem 4.9 can be extended to the classical
Yukawa gas (m>0), (at least for small enough |z|). Furthermore the methods and
results of Sections 3 and 4, a) and b) can be adapted to one dimension.

Our results in Section 4, b) and c), in particular Theorem 4.7, (1) and (4.15),
suggest some interesting conjectures for the field theories described in the intro-
duction under B and C:

For 1< —- < 2 the field theories B, C are probably renormalizable; see also
4π

[2]. It follows from Theorem 4.7, (1) that they are not superrenormalizable. For
ε2 = 4π they are known to be superrenormalizable and to be equivalent to a free
Dirac field of mass z; see [2]. For further discussion see [8,9].

5. Stability of the Quantum Yukawa- and Coulomb System

Physically this section is possibly the most interesting one; it is certainly the

shortest one. We prove that the quantum system consisting of infinitely many

non-relativistic fermions of arbitrary spin and charge ±ε interacting via a two

body Yukawa- or Coulomb force is stable. The thermodynamic limit of the free

energy or the pressure can then be constructed in a standard manner - in the case

of Coulomb forces one uses the powerful methods of Lieb and Lebowitz [19].

The basic idea for the proof of stability is the following: Use the Golden-

Thompson inequality (Tr(eA+B)^Tr(eAeB)) and Fermi statistics which when com-

bined with Hadamard's inequality for determinants gives the Gibbs factor ——^

to reduce the stability estimate for the quantum systems to the one for the classical
systems established in Sections 3 and 4.

It should not be very difficult to prove stability for the quantum systems when
only one species of charged particles are fermions and the other particles have
arbitrary statistics by adapting the methods of Federbush [12] or Dyson and
Lenard [5] developped for the stability of matter problem in three space dimen-
sions. It is well known that it suffices to prove stability for Yukawa forces. The
difference between Coulomb- and Yukawa potential is an H-stable interaction in
the sense of [26]. This is proved by arguments similar to the ones used in
Lemma 2.1 and 4.2.

Definitions and Preliminary Results

Let A be an open region (e.g. a rectangle) in R 2. We define the Hubert space for k
particles of positive and n particles of negative charge in the region A by

JίTA(k9 n) = (<£ι®L2(A, d2x))®ak®{^ι®L2{A, d2x))®«n, (5.1)

where <Cι®L2(A, d2x) is the one particle space associated with A - C* accounts
for internal (e.g. spin) degrees of freedom - and (χ)α denotes the antisymmetric
tensor product required for Fermi statistics.
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The kinetic energy is given by

% } • * • (5.2)

where M is the mass of the particles, μ^O is the chemical potential, and A Λ is
the two dimensional Laplacian with some selfadjoint boundary conditions at dΛ.
For the sake of concreteness we choose O-Dirichlet data at dΛ; we could instead
use periodic or Neumann boundary conditions without any difficulties.

The potential energy is given by

U$ϊl(X\ Yn) = ε2 Σ Vm(Xi - Xj) + ε2 £ VJy, - yj)

- ε 2 Σ VJiXi-yj), (5.3)

where m^O and Vm has been defined in (4.1).
If m = 0 we require neutrality (k = n).
The total Hamiltonian is

H°AJk, n) = H°ΛJK n) + U$pm . (5.4)

It is standard to prove that Hε

Λ μ(k, ή) is densely defined, selfadjoint and bounded
below on J^Λ(k,n) and e~βHΛ>μ\k,n) j s t m c e c j a s s

The Hubert space and the Hamiltonian for arbitrarily many particles in the
region Λ are given by

00

*Ά= Θ XΆ(k,n), and
M = o \ (5.5)

oo v '

HεΛ,μ= Θ HΛ,μ(Kn), respectively.
k,n=O

For the purpose of (somewhat unnecessary) mathematical rigor we also introduce
a regularized Hamiltonian Hε^μ :

with

Hχμ(K n) = H°Λ>μ(K n)+U&lκ (5.6)

where

and hκ is the cutoff function defined in (2.3).
potential Uε2Vm κ is bounded and stable, i.e.

lj (5.7)

for some Bv> — oo.
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Our goal is to prove that

H*£μ^-K(ε,μ)\Λ\, (5.8)

for some finite constant K(ε, μ), and uniformly in K and m^O. Let Tr^ denote the
trace with respect to J^Λ(k, ή), or 34?Λ (the superscript / indicates Fermi statistics).

Lemma 5.1. The following are equivalent
(a) Given ε there exists some positive β0 such that

^ * ( 5 . 9 )

uniformly in K and m^.0.
(b) For arbitrary ε and β

uniformly in K and m Ξ̂ O.
(c) For arbitrary ε

μ (5.11)

uniformly in K and m^O.

Proof We show: (a)=>(c)=>(b)=>(a).

Obviously (a) is a special case of (b), so that (b)=>(a) is trivial. To prove
(a)=>(c) we notice that

^Kμ)>e~βoE*>Kμ ,

where Eε^μ= inf spec(Hε^μ) is the groundstate energy of H%*μ.
Using (5.9) and taking logarithms we obtain

Po

, for K(ε, μ) = J-K^ε, μ).
Po

This proves (c).
For the proof of (c)=>(b) we decompose H^κ

μ:

rjε,κ 2 . r j O ι i l ,
nΛ,μ — 3 n Λ , μ ">~ 3 nΛ,μ

Applying the Golden-Thompson inequality we get

Ίrf(e ~ βH^) £ e *EZε'κ Ύrf(e ~ τβH°Λ>μ)

and cβ is some constant determined below. Instead of the Golden-Thompson
inequality we could also use the Trotter product formula and the Holder inequality
for the trace. Q.E.D.

Next we want to verify (a) by reducing this inequality to the estimates of
Sections 3 and 4.
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Theorem 5.2. For βε2 <4π

where Ξ is the classical partition function in the grand canonical ensemble estimated
in Sections 3 and 4, eμ is the fugacity, and

2Md2p =β d2p = 2Mnlβ~1

with I the number of internal degrees of freedom. (Notice that Ξ depends on βε2.
This dependence was suppressed in the notation of Sections 3 and 4.)

Proof. Let Pj(x9 y) denote the kernel of e - ^ ( - ^ / 2 M ) . By the Golden-Thompson
inequality

< V
k,n=O

o (]pμ\{ )

= Σ (Jτrr ί dχk ί

GO (]pμ\(k + n) k

£ Σ (-Ίj-Γ f dχk ί drΎ[

and we have used Hadamard's inequality for determinants of positive definite
matrices2.

Since we are working with the Laplacian ΔΛ with O-Dirichlet data at dΛ,

PA

β{x, x)<\e-βp2/2Md2p = 2Mπβ~' .

(Similar, but slightly worse bounds which are independent of A also hold for
periodic or Neumann boundary conditions.) Therefore

00 (r
dXk J

k,n=0 k\n\ Λχk

Our proof covers the case m = 0, but then terms with k + n vanish by Lemma 4.2,
Corollary 4.3. Uniform estimates on Ξ are given for m>0 in Corollary 3.5 and
for m = 0 in Theorem 4.4. Q.E.D.

2 I thank E. Lieb for suggesting to apply Hadamard's inequality which simplified matters con-
siderably.
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Corollary 5.3.

(a) Jrfίe-βHΛ,ή<eK2(ε,β,μ)\Λ\

(b) lim ̂ - l
Λ-R2 \Λ\

βε2

exists here z = eμ and α = ——.
4π

Proof, (a) It suffices to prove (a) for the potential Vm with m > 0. For, if m = 0
and k = n (neutrality)

T7(n,n) ^. Tj{n,n)
U ε2V0

> Uε2Vrn -

It is easy to see that on some dense domain in &?Λ

Hence lim E<A*^E'A μ = Mspec(Hε

Λ μ),

i.e.

(5.12)

by Lemma 5.1 ((a)=>(c)), Theorem 5.2, Corollary 3.5 (and Theorem 4.4). For
fixed m>0, arbitrary finite k and n, a bounded region A and arbitrary /l>0

—-\ln(cm2)\δ{2)(p) (λp2/2M + Kλ

< 1, provided we choose Kλ large enough.

It is well known that this estimate implies

- β H ° Λ t μ { k , n ) = s Λ i j £ ^

4π'

(5.13)

e

It is easy to show that this equation and the Holder inequality for Ύrf yield

By (5.12)

Summing (5.15) over all k and n we therefore obtain

completing the proof of (a).
(b) For the proof of (b) we refer the reader to the methods of [26] and [19]

which apply to our case with minor changes. Q.E.D.
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Remarks. 1) Using estimates (5.13) and equation (5.14) a direct proof of the
Golden-Thompson inequality in the limit κ = co and for ra^O can be given:

Let m = 0 and k — n. Since A is a bounded set

\V0(x)-V1(x)\<KΛ, for all xeA,

i.e.

for some finite constant KΛ.
Therefore estimate (5.13) and hence (5.14) extend to the case where m = 0 and

k—n yielding a direct proof of the Golden-Thompson inequality for κ=oo,
m=0, k — n.

Let βε2<4π. Applying then the Golden-Thompson inequality and repeating
the arguments given in the proof of Theorem 5.2 we get (using Corollary 3.5 and
Theorem 4.4)

Tτf(e-^'ή^Ξ{βε2

9 Vm9 cβe»χΛ), (5.16)

for arbitrary m ̂  0.
Let pcL denote the pressure of the classical gas (including the contribution of

the kinetic energy) and /?qu the pressure of the quantum Fermi gas. We derive
from (5.16) by taking logarithms that

2) For m>0, βs2<4π and large μ it seems to be rather straightforward to apply
the Glimm-Jaffe-Spencer cluster expansion [7] with modifications due to
Federbush [12] to construct the Euclidean (temperature-ordered) Green's
functions for the quantum Yukawa gas. If this is true we may apply a theorem
proved in [11] (and refs. given there) to conclude

Quasi-Theorem. For m>0, βε2 <4π and μ large enough the Euclidean Green's
functions for the two component quantum Yukawa gas with Fermi statistics
exist, are holomorphic in the time differences on a tubular domain — see [11]
and refs. given there - and have tempered boundary values on the real time region
satisfying the KMS condition.

This will possibly be proved in a future publication.
3) Sure enough the two component quantum Coulomb gas has scaling

properties, too:
Using the obvious scaling properties of the Laplacian and the existence of the

thermodynamic limit (Corollary 5.3, (b)) we may prove as in Section 4, (c)

whence
2 2

P(β,a,z) = z2-«F(oι,β'Z2-«). (5.18)

I thank I. Herbst for pointing out to me (5.17) in a slightly different context.
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