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Abstract. We estimate the canonical and grand canonical partition function
in a finite volume and prove stability and existence of the thermodynamic
limit for the pressure of two component classical and quantum systems of
particles with charge +e¢ interacting via two body Yukawa — or Coulomb
forces. In the case of Coulomb forces we require neutrality. For the classical
system in two dimensions there exists a critical temperature T, at and below
which the system collapses. For the classical Yukawa system the correlation
functions exist for arbitrary fugacity and the general structure of the pure
phases can be analyzed completely.

1. Introduction

a) Definition of the Problem; Connections to Euclidean Field Theory

In this paper we construct the thermodynamic limit of the pressure for systems
of classical point particles in two space dimensions with charge +e¢ interacting
via Yukawa — or Coulomb — two body forces (or forces which can be “dominated”
by these). The same result for the analogous systems in one dimension [6] and
for the corresponding quantum systems in (one and) two dimensions then follow
as rather simple corollaries, at least if one borrows certain estimates and tech-
niques from [19] for the analysis of the quantum systems.

The two dimensional classical systems we are considering are not H-stable
[26], the classical Hamilton function is not bounded below, and we should there-
fore not be surprised that there exists a critical temperature T, depending on the
strength of the forces, i.e. the charge ¢, at and below which these classical systems
collapse. This is due to the lack of a sufficiently strong centrifugal barrier below
T.. Also notice that the Coulomb potential in one and two dimensions is ex-
tremely long range (~r, logr, respectively, where r is the distance between two
charges). It is therefore not tempered. If the total charge is O there is screening,
and the long range character of the Coulomb forces disappears. That is why we
only consider neutral Coulomb systems in this paper. Results on the classical
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Coulomb system in a finite volume have previously been obtained in [4]. Their
estimates are essential for this paper.

Our approach towards a solution of these problems consists in viewing a
system of classical point particles in two space dimensions with charge +¢ inter-
acting via Yukawa — or Coulomb forces as a particular model of Euclidean field
theory (EFT; see [7,28] of one neutral, scalar Bose field in two space-time
dimensions [6, 1]. (This paper is actually motivated by an analysis of a two dimen-
sional quantum field model.) This permits us to combine estimates from sta-
tistical mechanics with estimates from Euclidean field theory. The correct de-
pendence of the grand canonical partition function on the volume, to mention
one example, is obtained by using EFT methods.

Let s denote the number of space — and d the number of space-time dimen-
sions. Let CSM be an abbreviation for “classical statistical mechanics of point
particles interacting via two-body-forces”. The following isomorphisms have
recently attracted a great deal of attention (the reader not very interested in or
not familiar with quantum field theory should ignore what is described under
C, C, or even under B, B, below):

A B ¢
I, & |
Od(x, 1) Massive Thirring
- ]7258 ssin |/ fed(x, 1):, | = | model (+ Yukawa
o interaction), d =2

I

(CSM, Coulomb
forces, s=2

Here [] is the two dimensional d’Alembertian, @ is a neutral, scalar quantum
field of bare mass 0, z is a coupling constant, and 0 < fe* <4n, :—: denotes Wick
ordering. The isomorphism I, identifies § with the inverse temperature, ¢ with
the charge, z with the fugacity; in CSM language :—: corresponds to ignoring
selfinteractions of particles. The isomorphism I; makes powerful EFT techniques
applicable in 4 and vice versa.

The massive Thirring model (+ Yukawa interaction) is described in [2] and
refs. given there. (See also [18, 207].) Its existence is established in [8,9]. It is a
Fermion (-Boson) model with current-current (4 Yukawa) interaction. The iso-
morphism I, has been discovered by Coleman [2]. Results proven in this paper
for 4 have turned out to be essential for an existence proof of the field theories
defined in B and C [8].

CSM with Yukawa forces has turned out to be isomorphic to the following
quantum field models:

A B C
h(m+wwuo
’ Massive QED +
= % :sin |/ fed(x, t):,| = | Thirring interaction,

d=2

e

(CSM, Yukawa)

forces, s=2
d=2
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Here @ is a neutral, scalar quantum field of bare mass m>0. I, yields the same
identifications between 4 and B as I, between 4 and B if one replaces Coulomb —
by Yukawa — potentials.

Massive Quantum Electrodynamics (QED) in two space-time dimensions is
a pure Fermion quantum field model with a one dimensional Coulomb force
producing a self-coupling of the charge density. The Thirring interaction is a
current-current interaction. The construction of the isomorphism I, can es-
sentially be reduced to the one of I, (see [2]) combined with the Schwinger
mechanism [27] and is given in [9]. It might be a rather easy and pleasing
occupation to find many more isomorphisms of the type of I,, I, in one dimen-
sional field theoretic models of solid state physics; see [18, 20]. In [9] we propose
a "machine” which generates such isomorphisms systematically. .

The critical temperature T, at and below which the CSM systems A4 and 4
collapse is given by

82

_ & 2_
=k or fef=4n,

where k is the Boltzmann constant. This collapse can be interpreted as a complete
formation of pairs of oppositely charged particles. After a suitable renormaliza-
tion of the average energy per particle the system at and below T, is identical to
a free, classical gas of neutral particles (the pairs) and T, becomes a critical point.

To the collapse catastrophe there corresponds the fact that for Pe? =4n the
field theories described in B, B, C and C do no longer exist, at least without
ultraviolet renormalizations; see [8, 9].

The classical correlation functions for the CSM system defined in A (and the
Euclidean Green’s or Schwinger functions of the field theories defined in B
and C) can be constructed for small |z/m?| and for arbitrary, real z, provided

16 .
Be* < = They are analytic in z in some neighborhood of z=0 which implies

absence of phase transitions for small fugacity. The space-translation invariant
pure phase correlation functions are Euclidean invariant and have the cluster
property, even in the multiple phase region.

b) The Physics of the Two Dimensional Coulomb System

Statistical mechanics of the two dimensional Coulomb system is the theory of
inifinitely long, parallel, charged wires — or wires conducting a current +¢ ! —in
thermal equilibrium. To a reasonable approximation such systems exist in nature.
E.g. the strongly magnetized, real plasma in thermal equilibrium can approxi-
mately be described by a two dimensional, neutral Coulomb system in the grand
canonical ensemble; see [4]. For such a system we expect Debye-screening so
that the classical Ursell functions decay presumably exponentially in the separa-
tion of two of their arguments. In field theory language this would imply that
the energy — momentum spectrum of the field theories B, C has a mass gap. The
classical neutral Coulomb system has a simple scaling behaviour which we use to

1 Ore.g vortices.
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rigorously derive explicit expressions for the pressure and the correlation length
as functions of the fugacity z and to provide a complete proof of the equation
of state

2
p= g( _ ﬁi)
p 8n
found earlier in [21]. (Here g is the density.) Our results prove absence of phase
transitions in the classical, neutral Coulomb gas at a fixed temperature T> T, as
one varies the density of the gas.

The quantum theory of the strongly magnetized, real plasma in thermal
equilibrium approximated by the two dimensional, neutral quantum Coulomb
gas in the grand canonical ensemble is expected to have a phase transition at
T~ T, and should describe interesting phenomena such as pair condensation
below T..

Acknowledgements. 1 am indebted to E. Lieb and E. Seiler for many fruitful discussions and
useful hints during the course of this work and to E. Lieb and A. Wightman for their enthusiasm and
encouragement.

2. The Connection between Classical Statistical Mechanics and Euclidean Field
Theory

In this section we explain the basic connection between CSM and Euclidean
field theory (EFT) used in this paper. See [7, 28] for extensive information about
EFT. We show how estimates in EFT yield estimates in CSM and vice versa.
See [6, 1] for earlier discussions of the CSM-EFT connections explored below.

a) Basic Definitions and a CSM Estimate

In the following K is the universal symbol for a constant; its value may vary from
estimate to estimate. The class of potentials V(x, y) we consider in this section is
characterized in

Definition 2.1. Let Sk be a sphere in R® of radius R < co centered at the origin.
Let V(x, y) be the kernel of some positive operator ¥V on L?(Sg, d°x) and assume
that V(x, y) is continuous in x and y and that

sup [V(x,y) =K. (2.1)
x,yeESR

Specifically, let s=2, R=00 and think of V(x, y) as being given by
VX, )=V w(x =)= %' d®y h(x = XDy —=y)C,lx' =¥, 22

where C,,(x—y) is the kernel of (— A +m?) ™1, 4 is the two dimensional Laplacian,
m>0, and h, is a positive, continuous function (the charge distribution of a
particle) with

supph,€ {x/ 51 ] b0 =h(—).

[hdx)d®>x=1 and h(x)>d8(x), as k—oo0.

(2.3)
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Here § is the two dimensional d-function, and the convergence in (2.3) is on C(Sg),
the space of continuous functions over Sg; R<co.

In Section 3 we study the potentials V, ,, and show that one can let tend x— oo
(corresponding to replacing particles with charge distribution &, by point par-
ticles). In Section 4 we investigate the case where m=0.

Definition 2.2. Let X"=(x,...,x,) and Y"=(y,,...,y,) be points in IR*" (particle
configurations). Let

We set
U X" Y=g 2 {(Vxpx)+V(yuy)}
1Si<jsn
—& V(x, y;) - 24
=1

Let g be some positive function in L!(Sg, d*x) and

gX")= lz_[1 g(x) - (2.5)
We set
0= ¥ of0(x =) =)} 26)

1
In the following we may set f= T =1 which can always be achieved by

redefinition of the charge .

The classical, canonical partition function for n positively and n negatively
charged particles with two body potential V in an external potential logg(X")+
logg(Y") is defined by

Z(V,g)= [ dX"dY"g(X")g(Y")e Urxm¥

&2 ¥ (Vixi,x)+V (i3}

= [dX"dY"g(X")g(Y")e &tV xnent) o o= . 2.7

Conventionally g(x) =y 4(x), where y , is the characteristic function of some (open)
region ACIR® with volume |A|. (We must be a little more general here; see [8, 9]
for the reasons.)

Lemma 2.1. Suppose that for arbitrary, signed measures ¢ with |dxg(x)=0,
i.e. total charge 0, suppo < Sp,

[ dxdyo(x)V(x, y)o(y)Z | dxdye(x)W(x, y)a(y) (2.8)
and that sup {V(x, x)— W(x, x)} =K.

X€ESR
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Then

Z(V,g)<e*™*Z (W, g). (2.9)
Proof.

Z(V.g)= [ dX"dY"g(X")g(Y")e " UwX"1"

e~ Jdxdyon(x) (V —W) (x,)en(y)

T AV(xi,x) = W(x,x) V(i) =Wy}

Ler=1
é eZnK j‘ dx"d Yng(Xn)g( Yn)e-‘UW(X",Y“) , (210)
since sup {V(x, x)— W(x, x)} <K and by (2.8). Q.E.D.

XESR
Remark. Since the signed measure g, [see (2.6)] satisfies |dxg,(x)=0, i.e.
0,(0)=0, Lemma 2.1, (2.8) hold for certain non-positive operators V. That is why
Lemma 2.1 permits us to bound the Coulomb — from above by the Yukawa par-
tition function, although the two-dimensional Coulomb potential is not the kernel
of a positive operator; see Section 4. (I owe this remark to Seiler.)

Definition 2.3. The grand canonical partition function Z(V, zg) for neutral sys-
tems is defined by

5] 2n
2%2)= T (fl—gaz,,(u 9. (2.11)

The r.h.s. of (2.11) is known to converge absolutely for all z if the potential V'
satisfies Definition 2.1 and g is in L*(S, d*x). This is essentially the same estimate
as (2.10). For details see e.g. [26]. In subsection (c) we prove an estimate going
in the opposite direction of the one proved in Lemma 2.1:

For

VZW20 ZW,.9)SZ(V,2). (212

b) The EFT Formalism
Without loss of generality we may assume that the null space of the operator

Vis {0} . (2.13)

(If not it can always be factored out.)
Let
P {Cé‘ﬁ,eal(SR) for R<oo, and
| Lea(®)  for R=o0,
where &,.,,(IR) is the real Schwartz space over IR®. Let % denote the (topological)
dual of . Points in & are denoted by f, g, k..., points in &’ by &.

Let X be the g-algebra on & generated by all Borel cylinder sets; see e.g. [14].
We define a functional J,, on &:

J(f)=e 2V D (2.14)
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The functional J is normalized, i.e. J,(0)=1, continuous on % and of positive
type [14, 22]. By Minlos’ theorem [22] it is the Fourier transform of some prob-
ability measure du,, on (¥, 2), i.e.

Ju(f)= _[ dﬂV(¢)3i¢(f)~
o

The measure duy, is the Gaussian measure on (<, 2) with mean 0 and covariance
operator V.
If F is a du,-integrable function on %’ we set

(Byy= | duy(D)F(®). (2.15)
)

Wick (normal) ordering of exponentials is defined by
L), = o) (GO o1 = iU AUV (2.16)

Lemma 2.2. For fi,....[,in &
<n :eitD(fj):V> = exp |:_ Z (fp ij)] >0
j=1 v 1gi<jgn

If the sequence { f}(x)}j2 | converges to ;6(x — x;) on C(Sg), as |- oo, for all j=1,...,n
then

lim<n s > E<H2€i£1¢'(x])1;/> =exp|— &¢V(x,x)|=0.
1= w0 j=1 14 15i<js<n (217)

Proof. The first part is Wick’s theorem and follows directly from (2.16) and
(2.14); (2.17) follows from Definition 2.1, (boundedness and continuity of V(x, y)),
and the first part of the lemma. See also [1]. Q.E.D.

Definition 2.4.

2 (9)= | dxg(x):e* 1y (x)

rcosedi(g)=3 {1y (9)+ v (9)}-
By (2.7) and Lemma 2.2

Z,(V. 9)=<(xv (9)" Ot @)Dy - (2.18)
For total charge g we define
Z8,+(V.g) =<0ty (@) v (@)D - (2.19)
Obviously
0=Z3(V. ) =law (@I v (@I
=L )" v @)Dy =2V, g). (2.20)

Using Definition 2.4 we see that

n

1 1
—{icose@ i (g))y=2"" —_—
n‘< V(g) >V QZO q'( _ )’

= Z2a=n 2
= qzo ql(n— q)' (9. (21)

o @) G @)Dy
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By (2.20) and (2.21)

" 1
on ),< rcosediy(g)*"y < WZ”(V g9)< ” ,)2

On the other hand all terms on the r.h.s. of (2.21) are positive by Lemma 2.2.
Hence

Z,V.9). 222

2n

Z,(V,9)< 2 (:cosed:y(9)*y . (2.23)

1
(n!)? (2n)!
Definition 2.4 and (2.21) lead us to the following

Definition 2.5. The grand canonical partition function of a system in a heat —
and charged particle — reservoir is defined by

o]

(Vizg)= Y, —Ccosediplg)lyy

n=0

=exp{:coseP:(zg) >y ; (2.24)
(z is the fugacity). Clearly
IE(V, 2g)| = E(V |219) = 25 ;s (V; |219)

[

© |2n

— . . 2n
=2ngo ey (:cosediy{g)*" >y (2.25)
and the convergence of the series on the r.h.s. of (2.25) for arbitrary |z| follows
from (2.22) and (2.11).
Equations and inequalities (2.18)—(2.25) yield
Theorem 2.3.

(1) ZZV,9=Z,V.g9) (2) Z(V, 9)<Ecoun(V, 29)
() EeosnV:9)=Z(V,g) (4) For positive g

EV,9)=28n(V; 9) =2E(V, 9).

Remark. The partition function Z(V; g) plays an important role in the con-
struction of the field theories described in the introduction under B, B, C and C
if we set V(x, y)=C,(x—y); see [8,9].

¢) An EFT Estimate (Conditioning)

The following is a special case of a result due to Guerra, Rosen and Simon [16]
called “conditioning”.

Theorem 2.4. Let V=W =0. Then for real-valued g
(1) E(V, £g)=E(W, £g),
(2) Z(Vg)ZEcosh(V; g)ggcosh(u/’ g);Z(I/V:%g)a
1 i 1
) Y om0z ¥ e
¢ qz-n (n+q)!n—gq)! (> £9) q:z—n (n+g)tn—q)!

Proof. Clearly (2) follows from (1) by Theorem 2.3, (2) and (3).

Z3W, £g).
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The idea of the proof of (1) and (3) is: Notice that

E(V, g)=<exp {:cose@:y(9)} >y
={exp {:cos&(P + Do)y —w, wl(@Dv-w.w> (2.26)
and
" 1
;_ it =g Z3(V, )= {:cose(P1 4+ Do)y w(@) P Dy -ww  (2.26)

where @, and @, are two independent Gaussian random fields with covariance
operator V —W, W, respectively. Then @, + @, is a Gaussian random field with
covariance V. Jensen’s inequality gives:
Cexp {:cose(P; +Py) iy —w w (@ Dv-ww
2 <exp{ j dity _w(P;):cose(Py +¢2):V—W,W(g)}>
o

= {exp:cosed,:yl(g)>w Wwhich proves (1).

Moreover (3) follows by applying the Holder inequality with respect to | du(®,)
o

to the r.h.s. of (2.26'). For details see [16,28]. Q.E.D.

Remark. Notice that Theorem 2.4, (2) and (3) goes in the opposite direction
of Lemma 2.1, (2.9) which yields

Z(V, g) S Z(W, &5g), (227)
where K = sup {V(x, x)— W(x, x)} .
SESR

d) Decoupling of Nearest Neighbour Cubes
Let R=o00, i.e. Sg=IR’. If B is some region in IR® y; denotes the characteristic

function of B.
We now cover R® with cubes 4, of unit size centered at the points

n=n',.. n)eZ*

with faces parallel to the planes x/=0, j=1,...,s.
We then decompose each cube 4, into 2° disjoint cubes Aé,...,Aﬁs, each of

volume [4;|=2"".

Clearly
23
cosediy(g)= ), Y :cose@iy(gy ) -
Jj=1 neZs
By Holder’s inequality

E(V, g)= {exp {:coseP:y(9) Dy

= fj1 <exp{ Y :COSE(DZVQSQX%)D 2-s

neZs vV

25
=[]& (V, > 2ngAL{)2_S, (2.28)
j=1

neZs
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By Theorem 2.3

Zs
< E(V, y zmgxdé)z‘s

j=1 nezs
25
<27] Z(V, y 25+1gXAle)2_s. (2.29)
j=1 neZs -

These simple inequalities decouple nearest neighbour cubes. We apply them in
subsections e) and f) to prove stability.

e) Strongly Decoupling Gaussian Measures
Let B be some cube in R® and let X denote the minimal o-algebra on % such
that all functions spanned by {¢'*Y)| fe &, supp f B} are X z-measurable.

Definition 2.6. The measure dp,, is called a strongly decoupling Gaussian measure
if there exists p=p(V)e[1, o) such that for arbitrary X ,,-measurable functions
F, . neZ* )

n,j

< ﬂ Fn,j>
neZs 14

for arbitrary j=1,...,2°%
If a potential V =0 satisfying Definition 2.1 has the property that the Gaussian
measure duy, is strongly decoupling then using (2.28) and (2.30)

2= ] < i exp{zcoss@zv(zsgx4_4>}> -

1
< [TAF, 178, (2.30)

nels

j=1 \nezs

25
<1 T1 20 2pgra) ", (2.31)
ji=1

nelZs
and we have used the obvious fact that exp {:cose®:,(2°gy )} is a du,-integrable
X ;-measurable function on &, for ge L'(Sg, d°x) which follows from (2.24),
(2.25), (2.11).
By Theorem 2.3 and (2.29)

25

2,9 [1 [1ezZW.2" pgra)® 7" (2.32)

j=1 neZs
If V is translation invariant (R=o0), g=4-y, for some open region ACIR’,
|| the total volume of the cubes 4, intersecting A, and
ZV, i) =K; <0, (2.33)
1

for arbitrary, positive A then with K, = 5
p

lngKzsp).
E(V, Ay )= 10
For complex z we have

IZ(V, zg)l = E(V, Rezg) ,
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thus

1BV, zy )| S efme=ll, (2.34)
and by (2.32)

|Z(V. 2y S Z(V. |2l ) Sefeatia, (235)
We have proved

Theorem 2.5. If V is translation invariant and du, is strongly decoupling the
finite volume estimate (2.33) implies the stability estimates (2.34), (2.35).

f) Application to the Yukawa Potential
Let

V(x, 9)=Vewx =)= [ dXdY h(x' = x) Co(x = y)h(y' =), (2.36)
where C,(x —y) is the kernel of (— 4 +m?) ™!

Let &, =h,x®. The following equation is useful:

@Dy, =<F(@e,, - (2.37)
To prove (2.37) we must only show that

Iy, )=, =Py =T (hexf)
which follows directly from (2.36) and (2.14).

Theorem 2.6. Let m be positive and k=>4, i.e. supph, C {x| |x|<%}. Then duy., .
is a strongly decoupling Gaussian measure with p=p(V, )= p(m)e(2, co), where
p(m) is independent of k. Theorem 2.5 applies.

Proof. Nelson has shown that du., has the Markov property [23], and is
hypercontractive [23, 247; (du,, is Markovian, since the inverse of C,,, i.e. —4+m?,
is a local operator, see [23], and hypercontractive, since m>0; see [23 24, 28]).
Let 4/ be the set of _points xeR* with distance less than or equal to 4 from 4J.
For fixed j the sets 4}, A}, are non-overlapping for n#n'. Applying Eq (2.37) we
observe that we must prove the decoupling estimate (2.30) for
<H exp{:cosc@K:Cm(zngi;)}> .

Cm

neZs

(2.38)

Obviously exp {:cose®,:c, (2914} is Z57-measurable. Therefore the Markov
property and hypercontractivity for duc, imply the decoupling estimate (2.30) for
(2.38). The simple proof of

Markov property +

.. }:(2.38) satisfies (2.30)
hypercontractivity

is due to Guerra, Rosen and Simon and is called the “checker board” estimate.
For details see [16,28]. Q.E.D.

Remarks. Theorems 2.6 and 2.5 show that we have proved stability for CSM
with Yukawa forces in two dimensions once we have proved stability in a finite
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volume, i.e. inequality (2.31). It then follows from Lemma 2.1 and (2.27) by a
simple argument (see Section 4) that the neutral Coulomb CSM system in two
dimensions is stable, too. These results are basic for the construction of the field
theories B, B, C and C, since there is indeed strictly no difference between CSM
A, A in the grand canonical ensemble and the field theories B, B, respectively, in
the Euclidean formulation; see [8, 9].

3. The Heart of the Proof: Stability in a Finite Volume

In this section we show that for fe? <4m (or ¢? <4n if we set f=1) the CSM
system with Yukawa forces is stable. The Yukawa potential is given by

Vix,y)=C,(x—y), and m>0.

It is convenient to first consider CSM for the regularized Yukawa potential
V. m — see (2.36) — where the cutoff function h, satisfies Definition 2.1, (2.3), and
to derive estimates which are uniform in x. By the results of Section 2, e) and f),
we are left with proving that Z(V, ., Ax,) is uniformly bounded in x, for arbitrary,
fixed, positive 1 and 4 a square of volume 1/4.

The strategy of the proof'is to reduce this problem to the one solved by Deutsch
and Lavaud in [4] for the Coulomb system, i.e. to bound the partition function
with Yukawa forces from above by the one with Coulomb-like forces which can
be estimated explicitly. This is possible by using conditioning (Theorem 2.4). Of
course we have to replace the Coulomb potential by one which is the kernel of
a positive operator. It is convenient to work with the grand canonical partition
function E(V ., 9).

a) Reduction to Coulomb-like Potentials

Let 4,, 4, be the squares of volume 1/4, 1, respectively, with boundaries parallel
to the coordinate axes and centered at the point (1,0). Let S=S, be the circular
disk of radius 2 centered at the origin. Let 4g be the Laplacian on L*(S, d*x) with
0-Dirichlet data at 8S. Finally let C5(x, y) be the kernel of (— 45+ m?)~ 1. Notice
that because of 0-Dirichlet data at S — Ag is strictly positive and hence (— 4g) ™!
is a bounded, positive operator with kernel C3(x, y): Coe (| LP(S x S, d*x x d*x).
Forall x and yin 4, and m>0 p=e

0=[C,— Clx, ))=K. (3.1)
Lemma 3.1. Let F be a X 5 -measurable function on &'. Then

[<F e, | S<IFIES s

for some ¥=r(m, d) which is finite for m>0 and d >0, and d is the distance between
A, and 0S.

This lemma is proven in [16]. See also [28, Theorems 1.23, VIL.2]. For a
general study of Gaussian measures on & see [28, 10]. We set
Vol y)=[ d*x' d*y h(x— Xy —y)Colx', ¥)
=[(h®h)*Co1(x, ),
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and
W)= e Ry (),
w(x)= e " F[Cm—CRl (x,%) 'XAl(X) . (3.2)
Notice that w,—w, as k—c0, in the || - || ,-norm
Let g be a positive function in L'(4,, d*x). Then Lemma 3.1 yields
Corollary 3.2.

E(Vem 9)=<exp {:c0seP,:c,(9)})c,,

< exp {rcosed, icy(rwe 9L (33)
=BV w9 (34)
<o r-weg)' (3.5)
<QZVS o woeg) (3.6)

Proof. The first equation follows from (2.37). By the definition of Wick
ordering (2.16) and (3.2)

:eiiad),c:cm(g): :etiztp,c:cySn(WK_g) ,

for suppg € 4,, whence
exp {:cose®, ¢, (9)}=exp {:cose®P, ics(W,.9)}.

This equation and Lemma 3.1 prove (3.3); (3.4) follows from the definition of
Z; (3.5) follows from the inequality (—Ag) '=(—Adg+m?)~*=0 by the con-
ditioning inequality: Theorem 2.4, (1). Finally (3.6) follows from Theorem 2.3, (3)
and (4). Q.E.D.

We are now left with estimating Z(V,};, rw,g), uniformly in x and (as a result)
showing that

Z(I/K,m9 g)_’Z(Cma g), as K—0, etc.

b) An Explicit Representation of the Green’s Function C3(x, y)
Let x=(x!, x?) and y=(y", y?) be points in R2. We set z= x* +ix* and w=y* +iy?.

4
We let Z be the reflection of z at the circle 45, i.e. 2=Z:. If ze S then z=2.  (3.7)
Lemma 3.3.
Ci(x, )= C5(z, w)=G(z, w)
=——11—71—{ln\z—w\+1n|2—ﬁ)|—1n\2—wi—ln\z—W\}. (3.8)

Proof. In order to show that G5(z, w) defined by (3.8) is the Green’s function
of —Ag we must show that 1°) for z or w on 0S G5(z, w)=0, and 2°) for w¢dS
— g, ,G(z, w)= 6(z—w), where
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with O-Dirichlet data at dS. Obviously for z or w on S the r.h.s. of (3.8) vanishes
by (3.7), whence 1°).

G5z, w)= — % {In|z—w|—1In|4—zw|+1n4}, by a trivial computation. If

. . 1 .
w¢ 0S then —In|4—zw|+1n4 is a harmonic function on §; — 2—nln|z—w| is the

two dimensional Coulomb potential, hence by Green’s theorem

1
— A ,G5(z, w)=%As,zln|z——w|=6(z—w), ie.2°. Q.E.D.

We are now ready to estimate Z(V3 o, rw.g). Let fy=r-w,-g, f(X")=[] Silx))s
j=1

and h&"@hS"(X", Y")= [ hy(x)h.(y). Then
j=1

J
Zn(Vi,O’ r.WK.g)

—Uys, (X"Y")

=[dX"dY" {(X") fY")e
— [(B® " ® h® M)*Us)(X",Y")
=[dx"dY" f(X") f{Y")e
<[ dX"dY"(hE" s £, )X"YhS 5, (Y o O 3.9)
by Jensen’s inequality.
Definition 3.1.
Xj+ixj, j=1,...,n yi+iyh,j=1,...,n,
i) 1T .2 j= 17“-92 s e N T ) j= 1,...,2 .
Zj y}_”_ing_n J=n+ n W;j le‘—n_lsz'—,, j=n+ n

Notice that Z;=w,,, and W;=z;,, for j=1, ..., n.
We set Z"=(zy,...,z,) and dZ"=dX",

Wr=wy,...,w,), etc.

Finally we define H,(g|Z", W")=(h®"x f )(Z"\(h®"xf )(W") and observe that
H (912", W")>(wglZ")(wg)(W"), as k—o0; (3.10)
&2 (_ pe?

weleto=—|="—,
4z

e for f= 1). Then by Definition 2.2, (2.4) and (3.8)

—ch (Zn,wn) H |Zi_Zj|a|Wi_lea

_1=i<js2n

2n
n |Zi—wj|a

i,j=1

x [T lz;=wjallwj= 20" G.11)
j=1

e
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and the second factor on the r.h.s. of (3.11) accounts for the fact that according
to (3.8) a charged particle at z; does not interact with its image (with respect to dS)
atZ;=w;,,.

By assumption suppg<4,. Hence [by Definition 2.1, (2.3) and the definition
of f{Z") and H (92", W")]

supp H,(g|Z", W™ CA4{?", for xz4.

Notice that 4, does not contain the origin and that the maximal distance between
points in 4, and in its image 4, (with respect to 0S) is therefore bounded. Hence

[T 1zj=wj W=z, *< K7, (3.12)
j=1
on supp H,(g| -), for some finite constant K.

¢) The Main Estimate

By a lemma of Cauchy’s — see [4] and refs. given there —

1_[ |Zi_zj|alwi_wj|a

1<i<js2n

H |Zi_wj|a

ij=1

o

= |Det (3.13)

zi—w}]

where L W, denotes the 2n x 2n matrix with matrix elements
o i— W
Equations (3 13) and (3.11), (3.12) enable us to prove
2
Theorem 3.4. Let a <1 (i.e. an_< 1). Let p=1 be any real number such that

and let g be a function in L¥ (4, d*x). Then

p
-p<l.Letp =
o-p etp p—1

1
1Z(V3 0o rweg)| = () )P K llg 115" 5 (3.14)
uniformly in k= 4.
Proof. Let He LP (A} *", dZ"dW™). Then by (3.12) and Holder’s inequality

‘de"dW"H(Z" w") Detl } H zj= Wil W=z 4l
1 o p)1/p
<K}|H], [ [ dzrawr Det[ ] ]
Az Zl'—Wj
2n 1 1/p
<K" ||H|p,[ S| dzrawr [] ——7} . (3.15)
REYan A% 20 j=1 |Z'_W7t(j)|
2n 1
Since ap<1, ]_[ R e is dZ"dW" — integrable on 4, *", and
Wagj)
2n 1
j dzrdwr [ —-—a—p§K2(p)", (3.16)
aim =1 12— wag)
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for some constant K,(p) which is finite for «-p < 1, independent of the permutation
TE Ve
Hence

24

[dzrawrH(Z", W)

1 n
Det L"W} jl:[l T R P

i J.
1
=K K,p)'IIH]|,,(2n) 1) .
For H(Z", W) =r*"(h®"+w, g)(Z"(h®"+w, g)(W") we get for p' < oo

|H Iy Sr*"lhdw.g) 13"
= (weg) 13" =r*"|wegly
<r*"Kilgl3"
by the Hausdorff-Young inequality and the facts that Ifz,c(k)léjhk(x)dx=1, and
[w,llo, =]/ K3, for some finite constant K;; see (3.1) and (3.2).
If we set szrzKle(p)K3, (3.14) now follows from (3.9), (3.15) and (3.16).

Q.E.D.
Combining Theorem 3.4 with Corollary 3.2 we get

Corollary 3.5. (Stability in the grand canonical ensemble.)
Let a<po<1, m>0 and k=4

} 1
(1) Let ge L? (4, d*x) with p’>I——& (ie. pa<l), for some square A of finite

volume. Then {E(V, ., 20) }x < and {Z(V,. o 29) } < o are families of entire functions
of z which are bounded by

Ep z|lp/ip—1
er 2| ,
for some constants K, K » Which are finite for a <pa<1 and uniformly in k.
(2) Let A be an open set in R* with the property that the total volume of a
covering of A by unit squares is bounded by some constant times |A|. Then
EV e 2 A D S KR
and
FAUAENES S

Jor some constants K, K p Which are finite for a<p-a<1, and uniformly in k.

Proof. The first part is a direct consequence of Corollary 3.2 and inequality
(3.14); (2) follows by combining (1) with Theorems 2.5 and 2.6.

Corollary 3.6. (Stability in the canonical ensemble.)

Let o<pa<1, k=4 and set@zl—Z—I. Then

1-p

2 P\2n
IZn(VK,m,Z'XA)IéK'],lZIZ"(Q i ) (n)?, (3.17)
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and
1-p\n
K{cosed e, (e 201> e <Ko 7 ) (3.18)
Jor all ¢ >0 and uniformly in k. Here K, are constants which are finite for a <pa<1.

Proof. By Corollary 3.5 Z(V, ,.z-x,) is an entire function of z the absolute
value of which is bounded by K ,e¥»/=!”””""I4l. Choose as a contour I in the z-plane
the circle of radius ¢? ~!/? centered at the origin and apply the Cauchy integral
formula for I' to compute the 2n™ derivative of Z(V, . zy4) at z=0; (3.17) now
follows immediately; the same argument applied to Z(V . zx,) yields (3.18).

Q.ED.

Theorem 3.7. (Removing the cutoff x.) Let a<pa<1 and m>0.

. 1
(1) Let gelL”(4,d*x) for some p'> 1 (i.e. pu<1) and some square A of
finite volume. Then

lim Z,(V, » 9) =Z,(Cy, 9) (3.19)
lim ({:00560, ¢, (9))"c,, = < (ic0seDic, (@)}, (3.20)
lim 2V, ,.,2-9)=2(C,,z-g), etc. (3.21)

(2) The bounds of Corollaries 3.5 and 3.6 hold for E(V, ") replaced by 5(C,,-),
Z(Vie.mr+) replaced by Z,(C,,-), etc.

Proof. Under the hypotheses of Theorem 3.7

—Ucg,, (X", Y7") =pUc,, (X", Y")

g(XMg(Y")e and e (3.22)
1
are dX"dY"-integrable for all p with pa<1. (Notice that C,(x)~ —Eln(mzlxlz),

as x—»O.). See also [4]. We now show that

“Ux,, (Xn,Y7) ~Up,, (X7, ¥")
gX")g(Y")e —g(X"g(Y"e : (3.23)
as k— 00, in L1472, dX".dY™).
By the Holder inequality this follows from

—Uy,,,, (X7,Y7) ~Ug,, (Xn,Yn)
e —e , as K—o, (3.24)

in LA(A*?", dX"dY"). Thus we must show that

~pUv (XM¥") = pUp (X7, ¥7)
L= | dXx"dY"|e —e |. -0, as k—o.
Ax2n
Now

I

IN

1
| XY™ ] dse o S0 (U, U KT V)
Ax2n 0

I\

p sup I andYne—(SpUme +(1-s)pUc,, (X", Y") l(UV,c - UC,.,,)(Xn9 Yn)l
se[0,1]1 4%2n ’

p sup [le P [ 4lle PV 135 x Uy, = Uc,ll 5 (3.25)
se[0,1] 1+0

IIA
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by the Holder inequality, and 6 >0 is picked so that pa(1+ d)< 1 which is possible,
since p-a<1. The first and the second factor on the r.h.s. of (3.25) are bounded
uniformly in k<oco and se[0, 1] by Jensen’s inequality — see (3.9) — and (3.22),
since pa(1+9) <1, and the third factor is easily seen to tend to 0, as k— co. This
proves (3.19); (3.20) follows by almost identical arguments. Finally (3.21) follows
from the uniform bounds of Corollary 3.5, (1) and (3.20). This completes the proof
of (1). Obviously (2) follows from (1) and Corollaries 3.5, 3.6. Q.E.D.

We are now prepared to prove the existence of the thermodynamic limit of
the pressure (grand canonical ensemble).

d) Existence of the Thermodynamic Limit
Theorem 3.8. (Thermodynamic limit for the pressure.)
Let a<1, ie. fe*<d4n, (and we set ,B=%: 1), and m>0. Let A, , be an ar-

bitrary rectangle with sides of length | and t.
Then for all real z

.1 .
lim —1og&(C,, zy,, )=p(C,, z) exists and is convex in z.
1=
t— o0

Proof. By Theorem 3.7 and the Markov property of the Gaussian measure
dpc,, (see Section 2, f), Theorem 2.6; [23]) there exists a Hilbert space # with
scalar product (-,-), a vector Q,e# and (for real z) a transfer matrix e "1
generated by a densely defined, selfadjoint, operator H,(z) on # which is bounded
below such that

(Qo, e H19Q0) = E(C,ps 214, . )= E(Cp 22 4, . )
=(Qq, e Q).

These equations were first proved by Nelson [24] in the framework of the

well known P(¢),-models. For a proof see also [28, Chapter 5]. By Theorem 3.7

these results extend trivially to the case at hand.
By the spectral theorem

(L0, e_tH'(Z)Qo) = je _Msz,z(/l) >

for some probability measure g, , supported on [a, c0), where a=infspec H (z) >
— 0.
Let 0<p<1. Then by the Hélder inequality

je - ptld@z,t('ﬂ = (je _MdQl,z(’l))p :
Therefore

(3.26)

1 1
ol log(Q,, e PH@DQ ) < 7 log(Q,, e "H1=5Q ) (3.27)
(by the monotonicity of the logarithm). This inequality proves that

1 .
t_llogE(C"" Z)4,.,) 18 monotone increasing in t. By (3.26) ¢ and I play symmetric

roles which yields monotonicity in /, as well.
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1 . . L
Thus ﬁlogE(Cm, ZX4,.,) 18 monotone increasing in ¢ and I, and by Theorem

3.7, (2) it is uniformly bounded in ¢, I. This proves existence of the limit p(C,, z).
Remark. These arguments are just a rephrasing of arguments due to Guerra
[15].
We now prove convexity.
For 0</i<«1

E(C,» Azy g)={exp{:cose@:c, (Az) 1)} e,
é <6Xp {ICOS8@:CM(ZXA)}>?EM :E(Cm’ ZXA)A H

by the Holder inequality applied to <+ )¢, = [-duc, (@). Hence p(C,,, 2z) < Ap(C,,; 2).
. . 7 {tcose@:c,, (A(z ~z0)xA)} . .
Next we apply the Holder inequality to e integrated with
the measure

{:cose®:c,, (zox.a)}

E(Cos 20X )~ ‘e dﬂcm(¢)
and conclude that
(G (1= A)zg+A2) (1= Ap(C,p, 20) + Ap(C,y» 2)

for Ae[0, 1] which proves convexity; see also [28, Chapter 6]. Q.E.D.

Remark. For a proof of the existence of the thermodynamic limit of the free
energy (canonical ensemble) based on the stability estimates of Corollary 3.6
and Theorem 3.7 we refer to the standard methods; see e.g. [26, Chapter 3], and
refs. given there.

It is then an easy exercise which we leave to the reader to show that the
canonical and the grand canonical ensemble for our CSM system are equivalent
in the sense of [26, Section 3.4]. The proof follows by adapting the arguments of
[26, 3.4.5] and using Corollary 3.6.

Theorem 3.9. ( Thermodynamic limit for correlation functions.)
4 16
Let a< 5= ie. ﬁ82<7{— and m>0.

Let z be an arbitrary, real number, n a positive integer, e;=+ 1, j=1,...,n, and

Q' =(Xy, €15 .. X,y €,).
Then
(1) The classical correlation functions in the grand canonical ensemble in a

region ACIR? are given by
04(Q")=2"E(C,p 274" ' % < []:e® :Cm(xj)e’°°“‘b’€m(%“> Cm.
j=1

(2) Let {A;};c; be an increasing family of open regions in IR?. Then
lim ¢5,(0")=¢%Q")

A, R?
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exists in the sense of convergence of measures on R*". The correlation functions
0%(Q") are Euclidean invariant.

(3) There exists a Hausdorff measure space (X, X) and a regular Borel probability
measure dp on (X, X) such that

Q") = )f{ du(x)ey(Q"), forall n,

where the measures ¢’, are the pure phase correlation functions, (sets in X correspond
to measurable sets of pure phases). For p-almost all ye X, ¢3(Q") is Euclidean
invariant and has the cluster property, (in particular the equilibrium state determined
by {0:(Q,)}n= is ergodic under the action of the translation group). The &+ — @
symmetry is broken in a set A of pure phases of positive u-measure, meaning that
a single particle with charge +¢ in a pure phase y€ A has a non-vanishing, constant
potential energy, provided there exist at least 2 pure phases.

Proof. (1) follows from Lemma 2.2 and [26, Section 4.2].

(2) is proven by noticing that the classical CSM system with two body Yukawa
forces is equivalent to a generalized ferromagnetic Ising model with nearest
neighbour interactions [16, 28, Chapter VIII] and then using the second Griffiths
inequality [13,16] to prove convergence, as A—IR* The complete proof is
patterned after the one of Nelson [16,25] of an analogous result in the P(¢),
quantum field theory. Additional technical lemmas are required to obtain uniform
bounds on the correlation functions g% and due to the fact that one has to replace
the random variables :¢'#*®: by the field @ to make Nelson’s argument work.
For a complete proof of (2) the reader is referred to [8].

(3) follows from (2) by applying the isomorphism I, and a general theorem
about the decomposition into pure phases proved in [10, 11]. Q.E.D.

Remarks. 1) Obviously, for fe? >4, e #Uen X" Y ig not integrable with respect
to dX"dY" which is trivially checked for n=1; Z(C,,z-y,)=00 for z£=0, A0,
and the correlation functions ¢%(Q") do not exist. This is the collapse catastrophe
(formation of pairs) described in the introduction.

.. 16 .
The more severe restriction, namely fe? <— rather than fe? <4m, required
Y n

in Theorem 3.9 (in contradistinction to fe* <4 required in all previous results
of Section 3) is presumably an artefact of non-optimal estimates; see [8].

2) For Be? <4n and m>0 the correlation function ¢*Q") are analytic in z for
|z/m?| <rp (With ry, > 0 for fe* <4m) and they have exponential cluster properties;
(the interval 0 <z <m? 7p.2 is thus contained in the single phase region). In addition
to the chemical potential for the number of particles (— log z) one can also introduce
a chemical potential u for the charge. If [z/m?| and e™* are small the correlation
functions still exist and have exponential cluster properties. These results are
based on the Glimm-Jaffe-Spencer cluster expansion; see their contribution in
[7] and refs. given there. The proof is given in [9].

3) Applying the isomorphisms I, and I, described in the introduction Theorem
3.9 establishes existence and Poincaré-covariance of the quantum field theories,
(the Sine-Gordon equatlon with a mass term and Quantum Electrodynamics +
Thirring interaction in two space-time dimensions), listed in B and C.
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4. Stability and the Thermodynamic Limit for the Coulomb Potential

In this section we establish all the results of Section 3 for two component, neutral
CSM systems with two body Coulomb potentials with one proviso: A precise
analogue of Theorem 3.9 can only be proven under the assumption that Debye
screening forces the classical, neutral Coulomb system in the thermodynamic
limit to have a finite correlation length — i.e. no long range order. (Without this
assumption one can still prove existence of correlation functions in the thermo-
dynamic limit but their uniqueness is then an open problem; see [8].) Applying
the isomorphisms I, I, described in the introduction our results in Section 4
imply existence and Poincaré covariance of the field theories defined in B and
C — the quantum Sine-Gordon equation and the massive Thirring model (in the
vacuum sector); see [8].

a) Approximating and Estimating the Coulomb-by the Yukawa CSM System
We define

v

m

1
(x_y)Ean(x_y)+ Gln(cmz)’ (41)
where ¢ is a numerical constant, and

1
Volx=y)= = -Infx -y’

1 1
=_—1 . 4.2
2 42
It is easy to prove that
ling [V (X) =V, (x)]=0; 4.3)

this is well known; see e.g. [2, Formula 2.7].

Lemma 4.1. Let =1, ¢* <4n and &* <pe* <4m. Let g be a positive function in
LP (A, d*x), for some square A of finite volume.

Then for all 0<m=1
ne?

Z,(Ves 9SS Z,(V1, g)=c*"Z,(C1, 9). (4.4)
Proof. This is Lemma 2.1, i.e.

—Uypn (X, Y7)
Z,(Vy g)= | dX"dY"g(X")g(Y")e

~ Uy, (X7, Y")

= j dX"dY"g(X")g(Y"e Lo T PXAYen() (Vi = V1) (5= ¥)enl) | (4.5)

where ¢,(x)= ) e{d(x—x;)—(x—y,)}, and by (4.3) the constant occurring in
j=1

Lemma 2.1, (2.9) is equal to 0. The existence of | dxdyg,(x)(V,,— V;)(x—y)e,(y) is



254 J. Frohlich

obvious. Since [ dxg,(x)=0 — neutrality —
4

J dxd?yo,(x)(V,y— V1) (x — y)2,(y)
= [ d®xd?yo,(x)(C,,— C)(x—y)e,(y)

1 1
— [ 215 (J)I2 _ > .
[ d*k|g (k)| (k2+m2 k2+1):0' (4.6)

The lemma follows from (4.5) and (4.6). Q.E.D.

Lemma 4.2. Let ¢;= +1, j=1,...,n. Under the assumptions of Lemma 4.1

(1) lim <n :e"ef”:,,l(xj)> = lim mH<ﬂ :e"ef“pzvm(xj)>
Vm ji=1 Vm

m—0 \j=1 m—0

0if Y e;=0 (in particular if n is odd)
j=1

J

n
e V@ i Y =0,
j=1

82

where Q,=(X1,€1,..., X €,), and U(Q,)= o Y ee;ln

1gi<j=n |xi_xj|.

n

@ tim Y (") 220 0= 2 lim CGcoses @,

m—=0 g=0 m—0

0 ifnisodd
n
- (n/2> Z,2,(Vo,9) if nis even, and in this case
ZoVor 9)=lim Z,,(¥, 9) .

Q) Z,(Vo: 9)=Z,(V1 9) -

Proof. Part (1) of this lemma is well known from the theory of the free, massless
quantum Klein-Gordon field in two space-time dimensions. It is discussed e.g. in
[29, 2]. The proof follows directly from Lemma 2.2, (2.17), (2.16), and (4.1), (4.2).
Part (2) is an immediate consequence of formulas (2.21), (2.18), and of Lemma 4.2,
(1). Finally (3) follows from (2) and Lemma 4.1. Q.E.D.

Corollary 4.3.

lin}) BV, 229)=Z(Vy, zg) =E(Vy, 29) .

Proof. The corollary is a consequence of Lemma 4.2, (2), of (4.4) and Lemma
4.2, (3) and of the bounds established in Corollary 3.5, Theorem 3.7 which guar-
antee that the power series expansion of Z(V;, 2zg) in z converges absolutely for
all zeC. Q.E.D.
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Theorem 4.4. (Stability of the classical Coulomb system.)
Under the assumptions of Lemma 4.1 and Corollary 3.5,(2)

IE(%’ ZXA)I éerKﬂRe z|P/P = 1| 4]

1-p,

n p

— n!)?

o e,

where K, K, are constants which are finite for &* <pe* <4m.

Proof. This follows from Lemma 4.2, (2) and (3), from Corollary 4.3 and from
the bounds proved in Corollaries 3.5, 3.6, Theorem 3.7. Q.E.D.

\Z,(Ve, ZXA)I§K2I212"<

b) Existence of the Thermodynamic Limit

Theorem 4.5. ( Thermodynamic limit of the pressure.)

Let & <4n and {A.,} a family of rectangles such as in Theorem 3.8. Then
for all real z

.1 . ; .
lim —-logE(Vy, 2y 4,« ) =p(Vo, 2) exists and is convex in z .
1=
t— o0

Proof. This is the analogue of Theorem 3.8 and follows from Theorem 4.4,
Corollary 4.3 and the arguments used in the proof of Theorem 3.8 (i.e. mono-
tonicity in / and t). Q.E.D.

Remark. For a direct proof of the existence of the thermodynamic limit of the
free energy (canonical ensemble) we refer the reader to the techniques of [19]
which apply to the case considered here. The equivalence of the canonical and
the grand canonical ensemble remains true. (See also (4.16) below.)

Definition. Let 07(Q") be the classical correlation functions in the thermo-
dynamic limit associated with Yukawa two body forces with potential V,, Here

Q'=(xy,€15..., X 8,); e;==%1, for j=1,...,n (These correlation functions were

. . 16
constructed in Theorem 3.9 for all m>0, arbitrary, real z and &* < —)
T
Let z be a positive number. We define

1

&m,2)" = lim — —log {0%(x, 1,0, — 1) — @%(0, 1)*} ;

|x]| = o0 I |

&(m, z) is the correlation length. As a consequence of correlation inequalities [16]
one can show that {(m, z) increases, as m decreases; see [8].

Theorem 4.6. (Existence of the m=0 correlation functions.)

16
Let &2 < — and suppose that

£, z)=supé(m, z) < o0 . 4.7
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Then for all positive integers n
lim?(0") = 05(0")

exists in the sense of measures on R*"; the measures {03(Q")}*, are Euclidean
invariant and have exponential cluster properties (with decay rate £(0,z)™*).

Remarks. This theorem is a consequence of correlation inequalities [16, 8] of
the type of the second Griffiths inequality and uniform bounds on the measures
{029} >0 In m. It is proved in [8], where two equivalent constructions of the
correlation functions ¢§(Q") are given, one of them being the one described above.
Debye screening and the isomorphism between the classical, neutral Coulomb
gas and the massive Thirring model suggest that £(0, z) is finite for some values
of z (see also [3]). If this is true then &(0, z) < oo, for all z40 which we prove belov.
(Since z determines the average density ¢ and 3 /o~ ! has the dimension of a length
the conjecture &(0, z) < oo is certainly not absurd.)

A weaker form of Theorem 4.6 which is not based on the conjecture (4.7) is
proved in [8]. In this case the uniqueness of ¢§(Q") is however unknown.

We now explore the scaling behaviour of the canonical partition function of
the classical, neutral Coulomb gas in order to derive some explicit expressions
for the pressure p and the correlation length & as functions of the fugacity z and
to rigorously prove the well known equation of state [21, 17]

p= %(1— [;in) 438)

2

Let a= %— (and we set f=1 in the following); let p(e, z2) =p(Vo, 2)li2 = 4y WE

first prove that the pressure p(«, z) in the grand canonical ensemble has the form

2

p(o, 2)=F(a)z2~*.

By Theorem 4.5
. 1
p(a, z)= lim i logE(a, zy 4, ) 4.9)
l»o °
t— o0

where Z(o, 2y 4, )=E(Vo» 224, N2 = any 15 the grand canonical partition function
for a rectangle with sides of length [ and t. From Theorem 4.5 we know that
pla, z) 18 a non-negative, convex function of z.

By definition
e} 2n
E(O(, ZXAI”)= ngo Wzn(a’ XA,”) 5
and
n n Ixi_leza’yi—yjlza
Zfoxa )= | ] d*xdy rEE . (4.10)
(Arxe)*2n j=1 l_[ Ixi__yjIZa

i,j=1
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We now change variables:
We let I=11,, t=4At,, and

xX=A"1x,  dPx—ARdRR,
yim ="ty d yz"*/izdzyu At 2zt Aig w10 -
Then by (4.10)
Z(0 Aty ) = AP O2L 00 Ly ) (4.11)
and hence
E(o 20 51 20) =B P72y, ) - (4.12)
By (4.9) and (4.12)

12 — 1214
Pl 2)=4 ,llf; FIT

to— 0

log E(a’ ZXAglu x Ato)

log 5(o, A2~z 4,,..,,)

=p(o, A*772) . (4.13)

The non-negativity and convexity of p(«, z) as a function of z combined with
(4.13) now yield
2
Theorem 4.7. (1) p(a, z)=F(a)z> ™% for some positive function F(x) which is
finite for a<1. In the variable p=Inz ( chemical potential)

2
plo ") =p(e. ) =F(@)e® ="

(2) For a<1 the neutral, classical Coulomb gas has no phase transitions as one
varies the density g of the gas on (0, o).

Proof. We have already proved (1); (2) is a direct consequence of (1). For the
convenience of the reader we compute the Legendre transform of p(e, p) with
respect to u, i.e. the free energy f(a, ) as a function of the density ¢ of the gas:

We get

s 2
=" —ocF(OC)e ,
ie.
(2—we
@)= —ln 2o )]
and

Sl 0)= pl@)-0 —plo, ()
20 (2—a)e
2 2F ()

¢l|ln

— 1}. 4.14)



258 J. Frohlich

Since F(x) is positive f(a,g) is analytic in ¢ on (0, o) which is interpreted as
absence of phase transitions as one varies 9. Q.E.D.

Notice that

plo e =e1-3)

(1— g) (4.15)

This is the equation of state of the classical, neutral Coulomb gas. It was earlier
derived in [21, 17], where, however, (4.9) remained an unproven assumption.
Theorem 4.7, (1) shows that for the Coulomb gas an expansion of the pressure
p(a, z) in powers of z is impossible (it is easy to see that the explicit expressions
for the coefficients of such an expansion are infrared divergent).

Next we want to derive an explicit expression for the correlation length
&(m, z) when m=0. Let « be fixed. For the following we must assume that there
exists some z,+0 such that

S‘iI(’) é(mn ZO)lsz=4na <. (416)

It is convenient to change notations:
5(0(, Z) = é(m’ Z)lm= 0,e2=4ma *
Welet ui=g;-o(x, 1)=0,-00, £1), (4.17)
and () =g} o(x, 1,0, — [)—(3)? .

Using a slight generalization of the scaling relations (4.13) proved under the
hypothesis (4.16) in [8] one can show

2228720 (x) =uZo(A " 1x) . (4.18)

Similar, explicit scaling — (“Callan-Symanzik”-) equations can be derived for the
n-point Ursell functions ui(x,,...,X,_), for all n; see [8]. We do not use them in
this paper.

It is well known that

&, zg) = lim — T)lalogu?’(x) , 4.19)
|x] = 0
see e.g. [8].
Thus, by (4.18)

1 2
A %zg ) 1= lim —;loguz“ 70(x)

|x] = o0 I |

= lim —I—log[/lz“ A7250(x)]

|x] =0 I

=171 lim — loguZ®(2™ *x)

x| =00 1] |

= A", z,), for arbitrary 1>0.
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Therefore
1 1

&z 0)=G(@)(Azo)* 2 or &z,0)=G(@)z* 2, (4.20)

for some measurable function G of «.

We remark that G(x=0)=0. Continuity of G near «=0 would imply that
&(z, o) is finite for all z 40, provided « is sufficiently small. A Lee-Yang type theorem
in o would imply that &(z, «) is finite for all z+0 and all but at most countably
many ae [0, 1). We have not yet been able to prove either of these conjectures;
(a proof may require some sort of “large z-expansion”). Certainly Eq. (4.20) is
consistent with our conjecture of Debye-screening and makes it more precise.

¢) Pair Condensation as T T,

Here we construct a renormalized limit for the pressure, as a1 (ie. T~T)
using some preliminary estimates of [4]. Let 4 be a square of area ; in IR,
We define z(0)= Z,(«, y4) " %.

Lemma 4.8. There exists a finite constant ¢, =1 such that

lim sup p(a, z()-z) = ¢, 2> . 4.21)
a1

Proof. (1) Because of scaling — Theorem 4.7 — it suffices to prove (4.21) for
small |z|. It then extends to arbitrary z, by Theorem 4.7, (1).
(2) Therefore we only must prove that

|5 (s, 2(@)zx )| < KX, (4.22)
for all a<1 and sufficiently small z, with constants K and K independent of o.
By Lemma 4.2, (3)
Elo, z(@)zy ) = E(Vy, 2021 4|2 = 47a
=E(C1’ Z(a)CZZXA)|£2=4na

where ¢ is the constant defined in (4.1).
By Theorem 2.5 and Corollary 3.2

NE

) (Cls Z(OC)C ZXA) |£2=4Tld

1

a p
< 11 {E(CI,zw)pczzxd)uz=4m}

AnAF 0
K-|4]

° pr
<|5(cs mpe 2w, o and
K-|4|
= [E(C?)a Z(O‘)EXA%) |62=4mx P 5

where 4, is the square introduced in Section 3, (a), C3 is defined in Section 3, (b), and

Z=r-p-|z|-max(c?, 1)- sup |w(x)| .
xeA%
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Thus we are left with estimating Z(C3, z(c)Zy 43)]e2= 4 Uniformly in o<1,

(3) This estimate can be reduced to

20" Z(CFs A ay)lez =4na S KLY (4.23)

for all <1, with K, a constant independent of a. For the proof of estimate (4.23)
we use (3.8) and (3.11)—(3.13) to derive (our notations are as in Theorem 3.4):

1 a n
AJZ dZ"dWw"|Det <Z~—W‘) _l—lllzf_wj+n|a|wj—zj+n|°‘
i i J i=
2n 1 a
<Ky | dzaw'| Y ]
Agan neyan i=1 Z2i 7~ Wag)
2n 1
<k Y | dzawr [] ———
neya, AFM i=1 |Zi_Wn(i)|
" 1
= K%(2n!) j dZ"dW”l—[ = .
Afan =1 |Zi= Wil 1z —Wig,

<(n!)*K"z(e)~?", which proves (4.23).

See [4, Section 3] for related estimates.
Thus
1 = E(Cf)ﬁ Z(OC)EXA%H& =4na

o]

=3

n=0 (n ')2

= 2} (K, z2)". (4.24)

Z—an(a)lnzn(cg, XA.%)ISZ =4no

Since Zoc|z|, the r.h.s. of (4.24) converges provided |z| is sufficiently small. This
completes the proof of (4.22), and (1) and the next result — which shows ¢; =1 —
yield Lemma 4.8. Q.E.D.

Theorem 4.9.

lim ilnf p(ot, 2(x)z) = 2% .

Proof. Let

4,= {x %e A%} .

1) lim infp(a, z(o)z) = lim inf lim Lz log E(or, z(00)zy 4,1 -
a1 a1 A=,00

Clearly

. 1
inf = log E(B, z(B)zx4,)

1>p2a

is increasing (more precisely non-decreasing) in ¢ (trivially) and in 1 by Theorems
4.5 and 3.8.
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Therefore

lim inf| lim iz log &(at, z(ct)zy4,)

a1 A—
= llim %[lim ilnf log &(at, z(at)zy4,)]. (4.25)
2) From (the proof of) Theorem 4.7 we get
© ZZnZ((x)Zn

E(a, 2(0)zy,)= Y, W—Zn(a9 Xa,)

n=0
ZZn

=2, Wy

/1(2 —a)ZnZ(a)ZnZn(a’ XA%) .

3) It suffices to prove Theorem 4.9 for small z. We may let z be so small that
(4.22) and (4.24) apply.
It then suffices to show that

lin} A" Z (o x4,) =1

This is proved in [4, Section 3].

Thus
' _ «© (/{222):1 1292
lim Z(er, 2()z4,) = nz"o o
and hence

1
77 lim log 5ot 2(@)z,) =2*

which completes the proof of Theorem 4.9.

a1

Interpretation

Lemma 4.8 and Theorem 4.9 tell us that as a1, i.e. T~ T, the contributions of
interactions between pairs of particles of opposite charge are dominant. This is
interpreted as a pair condensation process [4]. This interpretation is rigorous if
the constant ¢, in Lemma 4.8 is equal to 1; (a proof would require additional
estimates). Physically the correct pressure of the classical Coulomb gas for T <T;
is then p(a, z)=2z* (up to a factor associated with the kinetic energy of particle
pairs); T, has the significance of a critical temperature.

The renormalization procedure for the classical, neutral Coulomb gas de-
scribed in Lemma 4.8 and Theorem 4.9 is certainly rather artificial. What these
results really suggest is:

— The classical description is only valid for T> T,

— For T 2 T, quantum effects are important.

— The quantum Coulomb gas presumably has a phase transition (associated
with pair condensation) at T~ T, (a rigorous proof has not been found).
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Obviously Lemma 4.8 and Theorem 4.9 can be extended to the classical
Yukawa gas (m>0), (at least for small enough |z|). Furthermore the methods and
results of Sections 3 and 4, a) and b) can be adapted to one dimension.

Our results in Section 4, b) and c), in particular Theorem 4.7, (1) and (4.15),
suggest some interesting conjectures for the field theories described in the intro-

duction under B and C:
2

For 1< %I— <2 the field theories B, C are probably renormalizable; see also

[2]. It follows from Theorem 4.7, (1) that they are not superrenormalizable. For
&2 =4n they are known to be superrenormalizable and to be equivalent to a free
Dirac field of mass z; see [2]. For further discussion see [8,9].

5. Stability of the Quantum Yukawa- and Coulomb System

Physically this section is possibly the most interesting one; it is certainly the
shortest one. We prove that the quantum system consisting of infinitely many
non-relativistic fermions of arbitrary spin and charge +¢ interacting via a two
body Yukawa- or Coulomb force is stable. The thermodynamic limit of the free
energy or the pressure can then be constructed in a standard manner — in the case
of Coulomb forces one uses the powerful methods of Lieb and Lebowitz [19].

The basic idea for the proof of stability is the following: Use the Golden-

Thompson inequality (Tr (e *B) < Tr (e eP)) and Fermi statistics (WhiCh when com-

1

bined with Hadamard’s inequality for determinants gives the Gibbs factor W)
n!

to reduce the stability estimate for the quantum systems to the one for the classical
systems established in Sections 3 and 4.

It should not be very difficult to prove stability for the quantum systems when
only one species of charged particles are fermions and the other particles have
arbitrary statistics by adapting the methods of Federbush [12] or Dyson and
Lenard [5] developped for the stability of matter problem in three space dimen-
sions. It is well known that it suffices to prove stability for Yukawa forces. The
difference between Coulomb- and Yukawa potential is an H-stable interaction in
the sense of [26]. This is proved by arguments similar to the ones used in
Lemma 2.1 and 4.2.

Definitions and Preliminary Results

Let A be an open region (e.g. a rectangle) in IR*. We define the Hilbert space for k
particles of positive and n particles of negative charge in the region A by

Hy(k, n)=(C'® L*(A, d*x))®*® (C'® L*(4, d*x))®=", (5.1)

where €'® L*(A, d*x) is the one particle space associated with 4 — €' accounts
for internal (e.g. spin) degrees of freedom — and ®, denotes the antisymmetric
tensor product required for Fermi statistics.
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The kinetic energy is given by

k

Hy k)= - {32 S

j=1 =1

} +(k+n)-p (5.2)

where M is the mass of the particles, 4 =0 is the chemical potential, and 4 is
the two dimensional Laplacian with some selfadjoint boundary conditions at 0.
For the sake of concreteness we choose 0-Dirichlet data at dA4; we could instead
use periodic or Neumann boundary conditions without any difficulties.

The potential energy is given by

UEE’V"L.(Xk, Y")=¢ Z Vm(xi_xj)+82 Z Vm(yi—yj)

1<i<j<k 15i<j=n
~é&? Z Valxi= ;) (5.3)
]=12:::;n

where m=0 and V), has been defined in (4.1).
If m=0 we require neutrality (k=n).
The total Hamiltonian is

HY (k,n)=HS (k,n)+U%p (54

It is standard to prove that Hj (k, n) is densely defined, selfadjoint and bounded
below on #,(k, n) and e #Ha.xlem is trace class.

The Hilbert space and the Hamiltonian for arbitrarily many particles in the
region A are given by

Hy= @ H,kn), and
k,n=0 (55)

HY = (—B H¢ ,(k,n), respectively .

k,n=0

For the purpose of (somewhat unnecessary) mathematical rigor we also introduce
a regularized Hamiltonian H%':

= @ Hilukn),

k,n=0
with
His(k,m)y=HY (k )+ U (5.6)
where

Vil X =)= [ d®x'd*y h(x = X)WV, (x' = y)h(y =),

and A, is the cutoff function defined in (2.3).
"The potential Uy, is bounded and stable, i..

Ui, (x5, Y")>(n+k)BK, (5.7)

for some B, > — c0.
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Our goal is to prove that

Hii’,Ky g —-K(8, /*l) 'Al ’ (58)
for some finite constant K(e, ), and uniformly in x and m=0. Let Tr/ denote the
trace with respect to 5 4(k, n), or 5 4 (the superscript f indicates Fermi statistics).

Lemma 5.1. The following are equivalent
(a) Given ¢ there exists some positive [, such that

Trf(e—ﬁoHﬁ’,’L)§ Ko, 4] , (5.9)

uniformly in k and m 0.
(b) For arbitrary ¢ and 8

Tr/ (e~ FHA ) < Kate-bomldl (5.10)

uniformly in k and m20.
(c) For arbitrary ¢

H% 2z — K(e, )| 4], (5.11)
uniformly in k and m=0.

Proof. We show: (a)=(c)=(b)=(a).

Obviously (a) is a special case of (b), so that (b)=>(a) is trivial. To prove
(a)=>(c) we notice that

Tr/ (e~ PoHAk) > o= PoERT |

where E%", = infspec(H%") is the groundstate energy of H3",.
Using (5.9) and taking logarithms we obtain

g K>

1
Apu= B—O K1(8> ,U)I/ll , e

1
Hpi2z—K(e 4], for K(Eaﬂ)EB_Kl(Eaﬂ)~
0

This proves (c).
For the proof of (c)=(b) we decompose Hf'}:

Hin=3H3 ,+5H
Applying the Golden-Thompson inequality we get
Tr/ (e~ P < e SN Tr/ (e~ 5 PH%
< PIAIGKW e +3cper)
and c; is some constant determined below. Instead of the Golden-Thompson
inequality we could also use the Trotter product formula and the Holder inequality
for the trace. Q.E.D.

Next we want to verify (a) by reducing this inequality to the estimates of
Sections 3 and 4.
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Theorem 5.2. For fe* <4n
Trf(e 6HA “) SE H(ﬁg m K2 C[}e XA)
where E is the classical partition function in the grand canonical ensemble estimated
in Sections 3 and 4, ¢ is the fugacity, and
2
cp=1-fe " MPp=2Mnlp~!

with | the number of internal degrees of freedom. (Notice that E depends on Be’.
This dependence was suppressed in the notation of Sections 3 and 4.)

Proof. Let P§(x, ) denote the kernel of e #(~44/2)_ By the Golden-Thompson
inequality
Tr/(e “ﬂHff,'L) <Tr'/(e” PHS, i = BUeav,0.)

< Z TrS (o~ P sk =BV, )
k,n=0

k,n

(K, n) "
x Det(Pj(y;, yj)e PV me (K5I

en)(k+n)
[ dx* [ dY"Det(Pi(x; x;)

0 kil Ak Axn

9] (leu)(k+n) k

[ dx* [ dy" [] Pj(x; x)

k,n=0 k!n! Axk Axn i=1

_putem Kk yn
x n Pﬁ(yj, yj)e PG Y, 5T

lIA

=

and we have used Hadamard’s inequality for determinants of positive definite
matrices?.
Since we are working with the Laplacian 4, with 0-Dirichlet data at 04,

Pi(x, x)<[e PPPM@2p =2Mnp~* .
(Similar, but slightly worse bounds which are independent of A also hold for
periodic or Neumann boundary conditions.) Therefore
)(k+n)

Trf(e ﬂHA u)< i (C j‘ ka j‘ dY" —pU(kn) (Xk’yn)

knmo  kinl Axn
éE(ﬁ& m K? Cﬁe XA)

Our proof covers the case m=0, but then terms with k=n vanish by Lemma 4.2,
Corollary 4.3. Uniform estimates on Z are given for m>0 in Corollary 3.5 and
for m=0 in Theorem 44. Q.E.D.

2 I thank E. Lieb for suggesting to apply Hadamard’s inequality which simplified matters con-
siderably.
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Corollary 5.3.
(a) Trf(e—ﬂHﬁ,u)éeKZ(s,g,u)|A|
. 1 -
(b) lim mlogTrf(e pia k) =p(p, o, z)
A—-R2
pe?

exists; here z=e" and o=——

47

Proof. (a) It suffices to prove (a) for the potential V,, with m>0. For, if m=0
and k=n (neutrality)

Uiky> Uk,

It is easy to see that on some dense domain in 5 ,
s-imHyx=H ,.
K—

Hence lim EY' s < E% ,=infspec(H ,),

ie.
Hjl,ugEfl,ug —K(89 .u)|/1| s (512)

by Lemma 5.1 ((a)=>(c)), Theorem 5.2, Corollary 3.5 (and Theorem 4.4). For
fixed m>0, arbitrary finite k and n, a bounded region A and arbitrary 1>0

1USEY, (- Hj (k) + K ;)|

é?(kﬂw 1)3¢2 [ d?p|(p*+m?) +% I (cm?)[62(p)| (Ap?/2M + K ;)

(5.13)
<1, provided we choose K large enough.
It is well known that this estimate implies
e PHAullon) — s—lim(e_%H&“("’”’e—%f’yﬁ”""))” . (5.14)

N—w

It is easy to show that this equation and the Holder inequality for Tr/ yield
. B3¢ 28
Tef(e . wtem) < || o ~S8n | T ps (o= S0 witomy (5.15)

By (5.12)

B

3e
o] ] b

p & I}
< H e—gﬁf,u < egK(l/gsyu)lAf .

Summing (5.15) over all k and n we therefore obtain
Trf(e—Ban, “) < eﬂlAI(%K(l/?m,u) +3cpget) ,
completing the proof of (a).

(b) For the proof of (b) we refer the reader to the methods of [26] and [19]
which apply to our case with minor changes. Q.E.D.
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Remarks. 1) Using estimates (5.13) and equation (5.14) a direct proof of the
Golden-Thompson inequality in the limit k=c0 and for m=0 can be given:

Trf (e~ PHA utkom) < TpS (¢~ PHOk utkmlg BV
Let m=0 and k=n. Since A is a bounded set
[Vo(x)=Vi(x)|<K,, forall xeda,
ie.
(Vo= V)IMA(A, d?X)|| <K 4,

for some finite constant K ,.

Therefore estimate (5.13) and hence (5.14) extend to the case where m=0 and
k=n yielding a direct proof of the Golden-Thompson inequality for k= oo,
m=0, k=n.

Let fe® <4n. Applying then the Golden-Thompson inequality and repeating
the arguments given in the proof of Theorem 5.2 we get (using Corollary 3.5 and
Theorem 4.4)

Tr/ (e "M% SE(Be?, V. cpe"1a) » (5.16)

for arbitrary m=0.

Let p.; denote the pressure of the classical gas (including the contribution of
the kinetic energy) and p,, the pressure of the quantum Fermi gas. We derive
from (5.16) by taking logarithms that

pcl.gpqu.s . (517)

2) For m>0, fe? <4n and large p it seems to be rather straightforward to apply
the Glimm-Jaffe-Spencer cluster expansion [7] with modifications due to
Federbush [12] to construct the Euclidean (temperature-ordered) Green’s
functions for the quantum Yukawa gas. If this is true we may apply a theorem
proved in [11] (and refs. given there) to conclude

Quasi-Theorem. For m>0, fe? <4n and u large enough the Euclidean Green’s
functions for the two component quantum Yukawa gas with Fermi statistics
exist, are holomorphic in the time differences on a tubular domain — see [11]
and refs. given there — and have tempered boundary values on the real time region
satisfying the KMS condition.

This will possibly be proved in a future publication.

3) Sure enough the two component quantum Coulomb gas has scaling
properties, too:

Using the obvious scaling properties of the Laplacian and the existence of the
thermodynamic limit (Corollary 5.3, (b)) we may prove as in Section 4, (c)

/IZP(B, a, Z):p(;tazﬂa &, A2 -uZ) >
whence

2 2
p(B, o, 2)=2%"*F(a, -2 . (5.18)

3 I thank I. Herbst for pointing out to me (5.17) in a slightly different context.
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