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On Uniqueness of KMS States of One-dimensional
Quantum Lattice Systems
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Abstract. We present a proof of the theorem on the uniqueness of KMS
states of one-dimensional quantum lattice systems, which is based on some
equicontinuity.

1. Introduction

Araki [1] has proved, in full generality, the uniqueness of KMS states of one-
dimensional quantum lattice systems under the condition that for some increasing
family of finite volumes the corresponding surface energies are bounded. (See
also [8,3,5,9].) We present another proof of this fact in the same setting as in
[1,9]. The reader is referred to [1] for the connection with one-dimensional
lattice systems.

2. Theorem

Let A be a UHF algebra and 6 a normal *-derivation on 4, i.e., the domain D(J)
of ¢ is the union of an increasing family {4, } of finite type I factors (which is dense
in A). There exists h,=hfe A for each n satisfying (a)=4;, (a)=[ih,, a] for all
ae A,. Let t be the unique tracial state on 4 and P, the canonical conditional
expectation of A4 onto 4,, i.e., k,= P,h,e A, satisfies t(h,a)=1(k,a) for all ac A,.
If {|| h, — k, |l } is bounded, the closure of § generates a one parameter automorphism
group g, satisfying
0,(X)=lime™* ' xe "t = xeA.
(For the proof, see [6].) Since g, is approximately inner, there exists at least one
KMS state for any temperature [7]. On the uniqueness of KMS states we have
Theorem. If {||h,—k,||} is uniformly bounded, then A has only one g-KMS
state for each inverse temperature p.

3. Proof

Let 1 be an extremal KMS state at 8 and (9, 7, ¥) the GNS representation of 4
associated with . Then ¥ is a cyclic and separating vector relative to M =n(A4)".
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Let 4 be the modular operator (for ¥ relative to 9t). Now we define the following
function of z in the strip region I, = {z;Imze [0, §/2]} for each xe 4:

F,,(Z; x)=(eii(—H+W,.)qjln(z)e—iz(—H+Wn)T)

where W,=mn(h,—k,) and H=—p"'logA. Then F,(z)=F,z;x) is a bounded
continuous function of z in I, and holomorphic in the interior of I, [2]. For

real t,
F(0)=(o(iW)¥|n(z)p _ (iW,)¥F) .
Here
(Pt(iW,)=eit(_H+W")€itH
w t ty tm—-1
= Z dtljdtz... j at, o, (iW,)...a, (iW,),
m=00 0 0

O't(Q)=e_itHQ€itH, QGSU%
On the other boundary,

i+ %) =0 m e iatzio- W) (H)

where
V(o (pW,)= exp[5(log A +a (BW)]Y .

It is shown as follows:

) -g-(—H+W,.)
elt(—H+Wn)e
Li-m+w,)
:eit(—H+W,.)eitHe—itHe eithP

L(~H+ouWy)

=@ (iW,)e Y.

Now we can prove:

Lemma. If {|W,|} is bounded, the families of functions {F(t)} and

are uniformly bounded and equicontinuous.

Proof.
o iW)l=1.
d
|G| =1 e
SLAF
p

[Plo (W)= exp 5 Wl
d (e+Ly-H+w,
-d—te

i LUARCUAT A eng (A

b4

’ =[(=H+W)¥(BEW,)|

fr. e

ip
2

)
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where we have used the fact that log4 + W, — j(fW,) is the modular operator for
V(W) (j(BW,)=JBW,J, J is the modular conjugation operator, [cf.2]). Q.E.D.

We are now ready to start the proof of Theorem. Let w, be the state such that
wy(x)=1(e " P*x)/t(e " P*). Then w, is a KMS state at f relative to e’ (x)=
e*nxe ™" (xe A). First of all we choose a subsequence {n,} such that w, —o in
the vague topology. Then w is a KMS state at f relative to g,(x)= lim e (x)
(xe 4) [7].

We notice

i

B x) =00 = 0wt )

where ") /p#79(1) is a KMS state at f relative to

QiW")(X) =1 l(eit(H— W")TE(Z)Q_ it(H — W,.)) .
Since ¢!""/A4, =e'%"*/4,, we have
p /A, =y (e,/A, .

(These facts are all due to the equivalence of the KMS condition and the Gibbs
condition [4,2,1]). By choosing a suitable subsequence {m} of {n,} we have
convergences

Fo(z;y)=F ,(z;y)
Fo(z; 1)>F (z;1)

for arbitrarily chosen ye U A,, where the convergence is uniform in z on every
compact set in I, (by Lemma and the theory of normal families). Since [, || <
2| W, |l and

lim &,y (m(@)) = lim {n(8 ;4. (@) — 7(S (@) }
=limno(1— P,)é(a)=0(ac D(O)=uUA,),
we obtain limd, (n(z))=0 for all xe 4. We can conclude
lim ||, (iW)% n(x)] || =0.

This implies that ¢,(iW,)* ¢ _ (iW,) converges weakly to F (¢, 1)1, because M I’
is trivial by the extremality of . Hence

Fo(t; y)=w(y)F (t; 1)
which implies

F, (%y) =yp(F, (%3 1)

by the analytic continuation. On the other hand

Fy @ y) = limp?")(y)
= limyp?" (1o, (y)

=w(y)F (%3 1)
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i
Since (1) = [P(FW,)IP 2 expy(pW) (2, F.. (551) +0. Therefore ()=
w(y), i.e., p=w. Since an arbitrary extremal KMS state is equal to the fixed KMS
state w, the set of KMS states consists of only one state.
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