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A Conventional Proof of Kerr's Theorem*

D. Cox and E. J. Flaherty, Jr.**

Center for Relativity Theory, The University of Texas at Austin, Austin, Texas, USA

Abstract. A proof of Kerr's Theorem for generating geodesic and shearfree
null congruences in Minkowski space is given in the Newman-Penrose null
tetrad formalism.

Kerr's Theorem gives an algorithm for obtaining the most general geodesic and
shearfree null congruence (GSF congruence) in Minkowski space. The theorem is
important for constructing the Kerr-Schild spacetimes [1] and is also essential
in the twistor treatment of zero rest mass free fields in Minkowski space [2]. The
published proofs of Kerr's Theorem must be either extracted indirectly from the
Kerr-Schild field equations [1], or they must be translated from twistor language
which is unfamiliar to many relativists [2]. Nowhere, to our knowledge, is there
to be found a straightforward proof of the theorem in familiar terms. The pur-
pose of this note is to remedy this situation by presenting a proof of Kerr's Theorem
in the Newman-Penrose null tetrad formalism [3].

Let the metric of Minkowski space be written as

ds2 = dudv - dζdζ = (lanb + nalb - mamb - mamb)dxadxb, (1)

where /α, na, ma, ma is a constant normed null tetrad. Then Kerr's Theorem states
that the most general analytic GSF null congruence ξa is given by either ξa =
na or by

ξa=la+Yma+Ϋma+YΫna, (2)

where Ϋ is a complex function of the coordinates u, v, ζ, ζ defined implicitly by
F=0, where

F = F(Ϋ,u+Ϋζ,ζ+Ϋυ)

is an arbitrary complex analytic function of its three arguments. [The case ξa = na

can be thought of as arising from the form (2) in the limit 7->oo.]

* Supported in part by NSF Grant GP-43844-X.
** Present address: Department of Physics, Syracuse University, 201 Physics Building, Syracuse,
New York 13210, USA.



76 D. Cox and E. J. Flaherty, Jr.

The first step to recall that the GSF property is a function of the directions
only of the vectors of the null congruence, i.e. ocξa is GSF if ξa is GSF. Then it
follows that (2) sweeps out every null direction except na as Y is varied. This is
because the most general null direction is given by

ξa = ala + bma + cma + dna (3)

with some functions α, b, c, d with

ξaξ
a = 0 = ad-bc with α = ά, d = d, b = c (4)

for a real null direction. If αφO, we can choose the scaling such that

L = h + b'ma + c'ma + d'na. (5)

Then (4) gives

d'-b'c' = 0

a=vd=<<<>. (6)

Then setting c' = Ϋ gives the desired form (2). If α = 0, then bc = 0 by (4) and the
case ξa = na is obtained.

We can now look upon ξa in the form (2) as the new tetrad leg ίa resulting from
a "null rotation" about na [4]:

Under such a null rotation, Kinnersley [6] has shown that the spin coefficients
κ and σ transform according to

+ Y3Ϋv-DY-ΫδY

- YδY- YΫΔ 7,

σ-+σ = σ+ Y{τ + 2β)+ Y\μ + 2y)+Y?>v-δY-YΔ Y. (8)

Under our assumption of a constant null tetrad, with respect to the null coordinates
of (1) (which can occur only for Minkowski space), all the spin coefficients must
vanish. Then (8) becomes

κ-+κ= -DY- ΫδY- YδY- YΫΔ Y
(9)
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There is no loss of generality in_choosing the constant tetrad in such a way that
in the coordinate system w, v, ζ, ζ, we have:

(10)
«α=(0,

ma = (0,

ma = (0,

So that

0,0,0)

1,0,

0,1,

0,0,

δ = -δζ

δ=-δ

0)

0)

1).

Then (8) becomes

κ= _ dυY+ ΫdζY+ YdζY- YΫduY

= -(dv-Ydζ)γ+Ϋ(δζ-Yδu)Y,

= (δζ-Yδu)Y.

To apply the GSF conditions, we set κ = σ = 0. The differential equations which
result are equivalent to the following, obtained from (11) with κ = σ = 0 by taking
appropriate complex conjugates and linear combinations:

(dυ-Ϋdr)Ϋ=0
K v _ ζ _ (12)
(dζ-Ydu)Y=0.

Now we consider the system of equations

{δv-?δξ)X = 0

(δζ-Yδu)x=o y '
where for the moment Y is considered to be known. This is a system of linear
partial differential equations. A necessary and sufficient condition for this system
to be completely integrable, i.e. for two independent solutions to exist, is given by
Eisenhart [5, pp. 69-70]. This integrability condition is simply that the com-
mutator of the two linear differential operators (δυ—Ydζ) and {δζ — Yδu) should
take the form

l(δζ - Ϋδu), (δv - Ϋδζj] φ=a(δζ - fδu)φ+b{δv - Ϋδζ)φ (14)

for any function φ, where a, b, are some functions.
Working out this commutator, we find:

=(ΫΫ, uδ-ζ - Ϋ, ζδ-ζ - Ϋ Ϋ, -ζδu + Ϋ, υδu)Φ

Sv~ Ϋδζ)Ϋ-(δχφ)(δζ - ΫδJΫ. (15)
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The only way for this expression to be of the form (14) for arbitrary φ is to have

- ζ - (16)
(dζ-Ydu)Y=0,

that is to say, Ϋ must satisfy_(12).
So now we assume that Ϋ is indeed a solution of (12). (Clearly at least one such

solution, Y= constant, exists.) Then the system (13) is integrable. Two independent
solutions are easily seen to be

Xγ=u+fζ
- - (17)

X2 = ζ+Yv

Then the most general (analytic) solution must be given by

X=f(Xu X2)=f(u+Ϋζ9 C+ Ϋv), (18)

where/is an arbitrary analyticjunction of its arguments.
In particular, the solution Ϋ must be expressible in the form (18):

Ϋ=g(u+Ϋζ, C+ Ϋv)oΫ-g(u+ Ϋζ, ζ+ Ϋv) = 0. (19)

Clearly, no generality is lost (and none is gained) by allowing Ϋ to be defined
implicitly by any analytic function

F(Ϋ9u+Ϋζ,ζ+Ϋv) = 0. - (20)

Thus Kerr's Theorem is proven.
To see the connection with twistor theory, consider a null twistor

Cy Ύ Ύ Ύ \

ft "~~~~ \£~* O 5 ^ 1 9 0 9 " J "3 /

= (O09Ou-iXAOΌA.-iXAVOA)

= (0A,-ίXBA'0B). (21)
We go to a spin frame where

and

XAΛ>=(^ ^ ) , (22)

so that

vBA' n _ IU ί I I 1 I
A UB-\- v)\γ)

ιlYγ% (23)

Then we have

Z β =(1, Ϋ, - i(u + Ϋζ), - i(ζ.+ Ϋv)), (24)
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and if we set

/ ( Z α ) ^ ( Z 0 ) - " - 2 F ( Z 1 / Z 0 ? iZ2/Z^ ίZ3/Z0), (25)

then /(Zα) is homogeneous of degree — n — 2 in Za> and /α = O^O^, is GSF if and
only if f(Za) = 0 for some /. The corresponding function F then defines a complex
analytic surface F = 0 in the projective twistor space C [2].

Note Added in Proof. Since this paper was written, still another proof of Kerr's Theorem has
appeared in a preprint titled "A Complex Minkowski Space Approach to Twistors", by R. O. Hansen
and E. T. Newman. Their proof, although entirely different from ours, is also understandable without
reference to twistor theory.
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