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Boundedness Below for Fermion Model Theories
Part II. The Linear Lower Bound*

David C. Brydges**
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Abstract. The Generalised Yukawa Model (GY2\ ±ψψφ* + φ2M, M > N > 1 , is
bounded below, uniformly in a momentum cutoff, and linearly in the volume
of a spatial cutoff.

1. Introduction

A lower bound, linear in the interaction volume and uniform in a momentum
cutoff, is proven for the Hamiltonian associated with the Generalised Yukawa
(GY2) interaction (±ψψφ™ + φ2M), M > N > 1 , in two space-time dimensions.
Thus, let H denote the cutoff Hamiltonian as in (2.1), given below, then:

Theorem.

H ̂  — const (supp g +1)

where g is the spatial cutoff (see 2.3) and the constant is uniform in the momentum
cutoff.

The case M = N = 1, the Yukawa model (Y2) was originally bounded below by
Schrader [13]. The following proof can be extended to cover the Yukawa model
with simple modifications, as in [5]. The proof is by expansion techniques analogous
to those used by Glimm and Jaffe [8] in P(φ)2. These techniques have been
developed for fermion fields by Federbush, and to a small extent, the author
in [1,4,5].

Another approach to this and other problems in Yukawa field Theories is
contained in [14—16]. These authors obtain a full Euclidean Theory by integrating
out the fermions. Their method is certainly neater than the one used in this paper
and it is more effective for certain applications, e.g., φ bounds.

* This article includes the major part of a doctoral dissertation submitted in partial fulfillment of
the requirements for the Doctor of Philosophy degree in the Horace H. Rackham School of Graduate
Studies at the University of Michigan.
** Junior Fellow, Michigan Society of Fellows.
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While the GY2 model has no particular intrinsic interest, it provides a useful
testing ground for ideas that have further applications. (See [2,3].) It is also
expected that "cluster expansions" for field theories and statistical mechanical
systems with fermions can be developed within the present time dependant
Hamiltonian approach [3.1]. This paper is a continuation of [5], but can be
real independantly.

The lower bound is obtained by estimating from below,

- lim T-1log(e-THy (1.1)

uniformly in a momentum cutoff and the expectation state. To make the calculation
more transparent, (1.1) is first estimated for an expectation in the Fock vacuum.
The simple changes needed to convert the calculation to obtain a bound uniform
in the expectation are given in Appendix III.

The expression (1.1) is estimated by a type of perturbation expansion. Since
the conventional perturbation series is divergent, the expansion is truncated by
using a (logarithmic) divergent lower bound in a similar way to the use of the
Wick lower bound in [8]. The substitute for a positivity preserving semigroup is
the possibility of taking the operator norm over the fermion Fock space at a
single point in Q space. (The total Fock space is fibered over Nelson space.)
This is called "defermiation".

The divergent lower bound is derived in Sections 6 and 7. The interaction is
divided into two parts which are referred to as the "pair creation and annihilation"
and "scattering" parts. The former is estimated by a modification of Glimm's
dressing transformation [6] in which only fermions are dressed. (See [1].) The
point of this is to obtain a lower bound holding pointwise with respect to Q space.
It also displays the essential idea behind the dressing transformation more clearly
than in [6]. However, this dressing transformation is not as accurate as Glimm's
and will not bound Y2 or GY2 uniformly in a momentum cutoff. The lower bound
provided by Section 6 involves nonlocal polynomials in the boson field raised to
fractional powers. Section 7 extends Nelson's original proof of boundedness
below for P(φ)2 to bound these terms. Here the presence of the φ2M with M > N in
the GY2 interaction is essential. Although the Yukawa model Y2 is a special case
of M = N and can be obtained by modifications of the present proof, these methods
do not suggest that the M = N case is bounded below in general.

2.1 Notation

The total Hamiltonian is

H = H0B + H0F+V (2.1)

where H0B, H0F are the usual free field Hamiltonians. V is the interaction

V= f g(x):ψκΨκ(x): :φN(x):dx + Jh(x):φ 2 M(x):dx-A. (2.2)

The subscript K on the ψs is to indicate that they have been cut off, i.e., ψκ(x) =
(2π)~1/2u*ψ{x) where we C°°(IR) and the fourier transform ύ satisfies |fi |^l,
ύ(p) = 0 for \p\^κ. All estimates in this paper will be uniform is this cutoff. The
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subscript K will be suppressed, g and h are differentiable functions with compact
support, h is positive. In addition g and h are selected from the class of functions
satisfying

\g\,W\,h,\g/h\^c (2.3)

for some constant C fixed in advance.
The counterterms, Λ, are

Γί ήί (2.4)
z j = o

where

Pi

= - 2 J Kί,(p1,/>2)l
2(ω

&1 +
= O

1 . (2.5)

The integration is over the hyperplane specified beneath the integral sign.

-dk1...dkN (2.6)

where ω 1 =ω(p 1 ) , ω 2 = ω(p2) with ω(p) = (M 2 + P 2 ) 1 / 2 , μt = μ{k^ with μ(/c) =
(m2 + /c2)1/2. zl and χ^ are defined in the next paragraph and

X'p = ((ωjω2 - p χ p 2 -M 2 )/(4πωiω 2 )) 1 / 2 sgn{p1 -p2)u{p1)u{p2) (2.7)

M~ fermion mass. For future use, define also

S(pu ί) = (2πΓ3/2 f u'ip^My'^d

with γOi y1 as defined in [9], ^r=JPo);o + Φi');i s o t r χat *S represents the propagator
(cutoff by u2) continued to imaginary time.

2.2 Spatial Cutoffs

Throughout the paper A will denote a unit square belonging to a lattice of squares
R 2 with one square in the lattice centered on the origin. χΔ will denote the charac-
teristic function of A. n(A) will denote the number of vertices in A, excluding C
vertices in R terms. See under the heading 'expansion' for the meaning of these
terms.

2.3 Momentum Cutoffs

Set κn = na where α will be chosen large to make the expansion converge. Let
ξeC%(R)9 with \ξ\^l be such that ξ(p) = l for \p\Sh ξ(p) = 0 for | p | ^ l . The
term "upper cutoff at κn" means that the momentum space kernel :ψ(Pι)ψ(p2): is
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multiplied by ρ(plf p2) = ξ(p1/κn)ξ(p2/κn). Thus in configuration space

:ψψ(x):^(2π)-^2\ j . ρ(pl9p2):ψ{p1)ψ(p2): "(x) (2.9)
L Pi + P2 = '

V represent the Fourier transform and its inverse. In (2.9) the "•" denotes the
variable being fourier transformed by "-". No cutoffs are put on boson momenta
until Section 7. The term "lower cutoff at κn" means that the function ρ(Pi,p2) =
(1 — ξ(pjκn)ξ(p2/κn) is substituted for ρ in (2.9).

In the sequel, there will arise time dependent momentum cutoffs ρ = ρ(τ) =
Q(PoP2)^Q(τiPuP2)' These are always step functions of time and each step
is either an upper or a lower momentum cutoff as above. The letter ρ will be used
to denote all these types of cutoff.

The expansion will lower the momentum cutoff in the exponent of (1.1) in
individual squares A; therefore given a cutoff ρ, which may depend on A, define,

V(A,τ)= j :^:(x,τ)(2πΓ 1 / 2[ J
Lpi+P2 =

+ \hχΔ{x,τ):φ2u:(x,τ)dx-Λ{Δ) (2.10)

where

:φN

Δ:{x,τ) = g{x)χΔ{x,τ):φN:(x,τ)

with φ(x, τ) a Nelson boson field. Also, let

Λ(A, τ)= ΣUKJ-Φ2N~2}-(^ ^2(X)Z / 1(X, τ)dxdτ
j=o ι

+ Eβ(A,τ) (2.11)

where

δnήiβ=-2 j |jς(Pi,P2)lV(Pi,P2)
Pί+p2 + kί +

. . . -J- ϊr . ̂  Q

( J ... + μ7 )" 1 (4πμ 1 )~ 1 . . .(4πμ j )- 1 (2.12a)

Ee(Δ, τ)= - j \(gχAΠPl+p2 + . . kN)\2ρ2(Pl,p2)^2

p{pup2)
ί ί 1 d P l . . . d k N . (2.12b)

The symbol 0(1) is used to indicate constants which are uniform in the variables
of interest. The energy counterterm given in (2.6) differs from the usual one by a
nondivergent quantity linear in the volume. Fourier transforms and partial
fourier transforms are indiscriminately notated by ", " the context is supposed to
supply the missing information. Λ denotes the inverse fourier transform to ".

3. The Expansion

Following the procedure in [5], (e~THy is rewritten in terms of Nelson boson
fields, via the Trotter Product formula.

(e~TH)= Jim
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The expectation for the boson fields is with respect to the Nelson Fock vacuum
on the right hand side. The T stands for time ordering and for this purpose the
fermion fields are to be given a dummy time dependance, hence the time argument
in H0F and in V in (3.1) and (3.2). In order to display the algebraic structure of the
expansion a formal rearrangement of (3.1) is used:

(e-TH) = τ(e~JH^τ)dτe-JV(τ)dτ} . (3.2)

Expressions like (3.2) are to be regarded merely as a convenient shorthand for
limits of time ordered products as in (3.1).

The identities which generate the expansion are now given.

T T

-JH0F(τ)dτ -JF'(τ)dτ

T (e ° e ° )
T T

, -SH0F(τ)dτ -SV"(τ)dτ

= Ί\e ° e °
T T

T -SH0F(τ)dτ -JF'(τ)dτ
-]dsΈ e Q e ° {V'-V"){s)

0
s

•e ° ) . (3.3)

F' and V" are being used to denote sums over A of terms of the form (2.10). Again,
in a formal sense (3.3) can be summarised by:

T T T s

-iv -IV" T -sv-sv"
e o =e ° - \ds{V'-V"){s)e s ° . (3.4)

o

In the expansion, (3.4) is used to lower the momentum cutoffs in individual
space-time squares. Thus write

g(x)=Yjg{x)χΔ{x,s). (3.5)
A

Note that the right hand side is independent of the time variable s. Correspond-
ingly

V'=ΣV\Δ) (3.6)
A

where the cutoff in each A will in general vary with A. (3.4) may be applied to alter
the cutoff Q' in a single square A to ρ" by

J ( ) J ( )

•e s ° ' . (3.7)

(3.7) is called the P formula (for perturbation). The (V- V")(A) will be referred
to as a P vertex. Note that the ranges of the time integrals in (3.7) are restricted
by the time localisation of the V(A)s.
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The other identity used to obtain the expansion is called the contraction
formula or C formula. In the interest of brevity it is also stated formally. Let
σ"i ^ σ 2 . b(p) is a fermion annihilation operator.

, σ), 7'(σ)>~ J™ τ. (3.8)

Similar identities hold for b' and b*9 b'*. A monomial in fermion annihilation and
creation operators i>* at different times may also be included. (As will often be
done in the sequel, any φ dependence will be absorbed into the kernel.) Suppose
R==R(b*(s1),b*(s2),...,b*(sn)) is such an object, then (3.8) is modified to,

,σ), 7'(

£ .,b*(sn))e^v\ (3.9)
ι = l

The second term in (3.9) will be referred to as a contraction to the exponent and
the commutator therein as a C vertex. In order to obtain the rigorous identities
which (3.7) and (3.9) abbreviate, multiply by e~

SHθF(τ)dτ, time order, and take the
Fock expectation. For time ordering understand a limit of stepwise time dependant
quantities as in (3.1). The b(p) in (3.8) and (3.9) is to be smeared with an L2 function.
The justification of these limits is omitted.

The expansion is now described. For a given A, n, and times sί S s2 S ύ sn

e Δ
(se A means (x, s)e A for some x), let ρ = ρ(τ) specify an upper cutoff at κt for
S j - i < τ ^ s f . (Set s09 sn + ί equal to the smallest and largest 5 with seA.) By (2.10)
define the corresponding V(A) = V(A9(st), τ); (st) abbreviates so,sl9...,sn+ί.
Let V(A, (sf), τ) be the same as V(A9 (sf), τ) except its cutoff ρ specifies an infinite
upper cutoff for τ > sn.

Begin the expansion by selecting a square A and applying the P formula (3.7)
to (3.2) with V\A)=V{A) with infinite upper cutoff and V'\Δ)=V(Δ) with upper
cutoff at κx. (See 2.10.) The C formula (3.9) is now used to move the annihilation
and creation operators of the P vertex over to the vacuum where they annihilate.
In the process, new C vertices, contractions to the exponent, are formed. These
are not further contracted. Both legs of the P vertex are said to be contracted.
Next, certain terms arising during contraction are cancelled. This is described
under "renormalisation" below. All the terms which came from manipulations
on the terms containing the P vertex have an exponential dependance e~J K ( d'S l > τ )

in the square A. Equation (3.7) is applied to these terms with V'(A)=V(A,sί,τ)
and V"(A) — V(A9 sί9τ). Again the resulting P vertex is contracted and renormalised.
Then (3.7) is applied etc. The nth application of (3.7) is with V'(A)=V(A,sl9...9

sn-l9τ) and V"(A)=V(A9sί9...9sn-l9τ). The expansion will terminate in A when
n is so large that κn > K. Then a new square A' is chosen and expanded, and so on.
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Renormalίsatίon

It is possible for a P vertex to contract twice to the same C vertex. Terms in which
this occurs need special handling because they contribute divergences as τc-»oo.
They are to be cancelled against terms containing appropriate counterterms.

Write these terms as sums over the cases in which the P and C vertices are
localised in squares AP and Ac. Terms for which APφAc do not give divergent
contributions. This will be proven in appendix I. Therefore suppose AP = AC = A.
Let the times of the P and C vertices be sP and sc. Let the P vertex be the n t h

P vertex introduced into A.sn-1 denotes the time of the previous P vertex introduced
in A. Then the factor corresponding to the double contraction can be written as:

f dscdk(:φN

A'ϊ(k, sP)r(K sP, sc)(:φN

Δ γ(K sc) (3.10)

where, if ρP and ρ c are the cutoffs on the P and C vertices,

r(k,sP,sc)= J \άr

p(PuP2\
2Qp(PuP2)Qc(PuP2> sc)

- s c | (3

Notice that since the cutoff in the exponent changes at the times of each P vertex
in A, the cutoff, ρc, on the C vertex depends on sc. Since the exponent does not
depend on sc, it is permissible to take it outside the integral over sc as is implicit
in (3.10).

Renormalisation consists of cancelling the term containing (3.10) against the
term containing the right counterterm. This term is the same except that (3.10)
is replaced by [see (2.11)]

AP = A{A,τ) (3.12)

with cutoff ρ given by ρ2 = 1 — ρp.
It is convenient for the rest of the calculation to also group together the terms

for which ΔP and Δc are not the same but have a common side or corner. Thus
let Jί{AP) be the set of all (9) Acs with this property. Then on grouping together
all the appropriate terms, one obtains a term with, associated with the P vertex,
a factor:

R= Σ ί dscdk(:φN

Δp ΠK sP)r(K sP, sc, Δc)

.(:φN

Ac:Y(Ksc)-ΛP. (3.13)

The dependence on Δc in r is there because ρ c depends on Ac in (3.11). Equation
(3.13) will be referred to as an "R term". The corresponding double contractions
between vertices in the same or neighboring squares will be called "R subgraphs".

Smoothing the uncontracted fermion fields:
One final operation is performed when the expansion, as described so far, is

complete in every square; each uncontracted fermion field is contracted once
more. This has the beneficial effect of incorporating the upper momentum cutoff
in the exponent into every terminal vertex, i.e., a vertex with an uncontracted
field.
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The expansion is written as

(e~TH}= Σ\ds?τ (κ^s^)e-sdτH^τ) Π e-^dτV{Λ^ 'τ)\ . (3.14)

V(A, sp,τ) = V(A, fa), τ) where (sf) are the times of the P vertices for a given term
indexed by g. s^ denotes the set of times of all vertices occurring in the term
except those in R subgraphs which have already been integrated out. (See (3.13).)
g comprises (a) a function Ah>n'(A) specifying the number of vertices in A. (b) for
each A, a function {1, 2, 3,..., n(A)}\->{P, C} which labels the vertices in A and
specifies whether they be P or C vertices, (c) a graph on the vertices given by (a)
and (b), which specifies the contractions arising from use of (3.9). Uncontracted
fermion fields are represented by open lines, i.e., lines which leave a vertex but
do not end on another vertex. Finally gs which are the same except for specifying
different R subgraphs for a given P vertex are identified. Define n(A) as the number
of vertices in A, excluding C vertices in R subgraphs, so that the equivalence
classes of gs will have n{A) well defined for each A.

Given g, and sp, K^ is obtained by the following prescriptions. Assign to
each P vertex in an R subgraph, the factor R given by (3.13). To each vertex v
at sv in A which is not part of an R term, assign the factor ρv(p1, p2)(: φΉ

Δ ')\pχ + p2)
If v is the nth P vertex formed in A by the expansion, ρv specifies a lower cutoff
at κn. C vertices have an upper momentum cutoff whose form is not important
except when v is a C vertex formed in smoothing the uncontracted legs. In that
case v has a time dependant cutoff less than κn{Δ). To each closed line assign a
cutoff propagator S. See (2.8). To each open line assign either ψ or ψ in a consistent
way. Integrate over all momenta as indicated by the graph specified by g.

The time integrations for the P vertices are over a time ordered region, (the
order being that in which they were formed). C vertices are not time ordered.

4. Estimates

To begin with, the fermion fields are removed from (3.14) by the lemma below,
called "defermiation".

Define the kernel Kp of Kp by

tp # denotes xp or ψ. The sum is over the spinor indices α l v . . 5 αw. The integral is
over the m o m e n t a p{.

Lemma. Suppose there exists a function of Nelson fields c(φ) which may depend
on τ, sp, such that as forms

H0F(τ)+ΣV(Λ,s^τ)^-c(φ) (4.3)
A

pointwise in τ and sp9 then

T /^(s^-^°- Π e-ί^^ Λ ^ <Tr|̂ (s |̂ef̂ ^> . (4.4)

^ means the following. The arguments of K^ come in pairs corresponding
to the ends of subgraphs consisting of connected open lines in the total graph
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specified by g,. K^ is the kernel of an operator acting on the Hubert space of L2

functions of the first elements of these pairs. Identify Kp with this operator, then
\KJ means ]/K*Kp and trace has its usual meaning. Lemma (4.2) is a simple
consequence of the inequality | |φ*(/) | | ^ | | / | | 2 Write K^ as a matrix with respect
to pairs of orthogonal product bases, and choose an optimal set. A proof of a
similar estimate is given in more detail in [5].

In Sections 6 and 7 it is shown that there exists a c(φ) satisfying (4.3) and

(e2ίc{φ)dτy/2^Y\0(l)n{A). (4.5)
Δ

Lemma (4.4), (4.5) and the Cauchy inequality imply

™ Σ J £ 2 1 / 2 Π r > . (4.6)

)2
The next task will be to estimate (Tr|X^|)2 by polynomials in Nelson fields.

Basically this is done by applying the inequality, rc^2,

with suitable choices of the operators Qt, Bt. H.S. stands for the Hubert Schmidt
norm. However it is necessary to obtain estimates that take into account the small
contributions that are made by ^s which specify contractions between vertices
in widely separated squares or vertices with large lower cutoffs. The estimates
discussed below all hold pointwise with respect to s^ which is to be regarded
merely as a parameter.

For a given sp, the cutoff on a vertex has the form

QiPi > Pi)=ξ{Pi/μ)ξ(p2/μXi - ξ(p1β)ξ(P2/λ)

where μ specifies the upper cutoff and λ the lower. This may be rewritten in the
form

ξ(Pί/μ)(l - ξipJλ))ξ{p2lμ)ξip2lλ) + ξipJμ)ξip2lμK\ - ξ(p2/λ)).

Rewrite the kernel K^ as a sum corresponding to the above splitting being made
at each vertex. The momentum cutoff at a given vertex of a term in this sum has
the form of a product of a function of px only, with a function of p2 only. These
functions are to be absorbed into the propagators which is indicated by replacing
S by S' below. (See 2.8.) Let / be a line joining two vertices. Let dx be the distance
between the closest points of the squares within which each vertex is localised.
Let χe C°°(R) be a function such that χ(t) = O if ί ̂  1/2, χ(t)=ί if ί ̂  1, and define
I j e CM(IR2) by putting χι(x) = χ(\x\/dι); xeJR2 denotes a point in space time.
If dt = 0 set Xι=l. If S' = S'(p) (keeping s^ as a parameter) is the propagator cor-
responding to the line /, the replacement

changes nothing because the localisation of the vertices connected by / is such
that χt=ί. S satisfies two estimates (4.8) and (4.9).

' ί Γ I ' - β - - β + ; 7?,ε_,ε+>0 (4.8)
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λ specifies the lower cutoff which has been absorbed into the propagator. tx

denotes the time difference between the vertices contracted by /. The norm sign
means operator norm on L2(R)(χ) spinor space, identifying ω and S with the
obvious operators on p-space. (4.8) is easy to prove. The other estimate is

dΐm); dz>0 (4.9)

for all m^O and some η>0. To prove (4.9):

\ω2SJS \\(M2- P/dx^S'tpXth . (4.10)

The subscript is to indicate the L1 norm. (4.9) is immediate, because of the rapid
decay of Sf and its derivatives away from the origin. The (l+λ)~η can be obtained
by scaling.

Let Qv have the kernel

(l+λvy«ω-HPi)( ΦNA' r(Pi+P2)ω-εKP2) (4.11)

where A is the square where vertex v is localised. λv is the lower cutoff on v. The
choice of ε1, ε2 and η will be made later. Choose the B?s to have the kernel ωε~ Sωε+

where ε± will depend on the line associated with S. All the subgraphs specified
by p are either closed loops or open connected lines. A closed loop corresponds
to an expression with the form of a trace of a product of β's and B's which may
be majorised by (4.7). An open connected line also corresponds to such a product
and its trace norm which appears in (4.6) can also be estimated by (4.7). Only the R
terms (see 3.13) are excluded from this procedure. They are majorised simply
by their absolute value. Whenever a line has dx > 0 (4.9) is used on the corresponding
B (thus choose ε+ = 1 for such a B). If dt = 0, (4.8) is used. Hence for η > 0 sufficiently
small,

( T r | ^ | ) 2 ^ Π O(l)||βv | |H. s.|Λμl Π ίΓσ i(l + di)"m (4.12)
v,μ I

where μ runs over all P vertices in R terms and v runs over the other vertices.
I runs over all lines in the graph except those in R terms. σι depends on the ε's and
η, which are yet to be chosen. Given / with dt>0, σt=0. If dt=0 then σx=ε_ + ε + +η
where —, + label the ends of/. Equation (4.12) is valid for all m ^

The next lemma will be used to estimate /γ[ | | 2 J H . S . ^ N

Lemma. Let Lbea lattice of squares on IR2. Suppose fv, v=l92,...n are functions
on Q space, each one belonging to an algebra generated by Nelson fields supported
in a square in L; then for some β independent of n,

ΠΛ
ΛeL

(4.13)

By abuse of notation veΛ is to indicate that the fv belongs to the local algebra
generated by fields supported in A. \\ \\β means the norm on Lβ(Q).

Proof This is the "Sandwich Estimate" in [12]. Briefly, the proof goes as
follows: Suppose that h is in a local algebra generated by fields supported in a
strip with parallel sides and let E, E project onto functions in the two algebras



Fermion Model Theories 11

generated by fields supported on the edges. Then by hypercontractivity, [12],

\\EhE'\\S\\h\\β, (4.14)

for some /?' depending only on the width of the strip. || || means the operator norm
on L2(Q). To obtain (4.13), order the fv by the horizontal abscissa of their supports.
Insert projections onto vertical lines using the Markov property, then use (4.14).
The left hand side of (4.13) has now been dominated by Lβ. norms of functions
supported in vertical strips. Apply the same argument, but using projections onto
horizontal lines, to each vertical strip to obtain (4.13).

The lemma is not immediately applicable to / J ] | | 6 V I I H . S . ^ V / 2 because the

Rμ are supported in overlapping 3 x 3 squares. To remove the overlap, form 9
lattices of 3 x 3 squares L1 ?..., Lq by unit translations, horizontally or vertically,
of a 3 x 3 lattice centred on the origin. Correspondingly partition the set of v's and
μ's into G l v . . , Gq so that v belongs to Gm if veΔ with Δ the central unit square
of a 3 x 3 square in Lm. μe Gm if the fields of Rμ are supported in a 3 x 3 square
belonging to Lm. This is tantamount to saying that the P vertex of Rμ belongs to
a A as above. Then by the Holder inequality:

q

Π (4.15)

Apply (4.13) to each LίS norm using 3 x 3 squares Λ. Thus the left hand side of
(4.15) is dominated by

q

Πm=l
Π

ΛeLm

π
v,μeA

v,μeGt

(4.16)

for some y independant of the total number of v's and μ's. By the Holder inequality
(4.16) is less than

Π Π IMIβvllH.s.ll,BW)llκμIU
w (4.17)

where Δ is a unit square as usual. This is because the number of v's and μ's belonging
to a given A and Gm is n(Δ). HQVIIH.S. a n d # μ are polynomials in Nelson fields. It is
a simple consequence of Nelson's Best Estimate (see [11]) applied to e~tN where N
is the number operator that

= ll llflv
(4.18)

The N in (4.18) is the N in the definition of the (GY)2 interaction. (4.18) applied to
(4.17) shows that

(4.19)
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5. Convergence of the Expansion

Equations (4.19), (4.12), and (4.6) imply,

, J ίΓ'" (5 i)
v,μ /

It is now a purely numerical (as opposed to operator) problem to verify that (5.1)
converges for suitable choices of α, (κj=f), m, η and the ε's in (4.11). The order in
which these are to be chosen is: ε's and η, α, m. Three estimates, (5.2), (5.3), and (5.4)
will be used. (5.2) and (5.3) are not hard to prove, so proofs are not given. Estimate
(5.4) is discussed in the appendix.

If eί > 0, ε2 > 0 and εx + ε2 > 1/2

IIIQvlll^oμ-1'). (5.2)

Ifε1 = l/2, ε2 = 0,/lv = 0, and veA

| | | β v | | | = O(log2iV [largest upper cutoff in A])

SO(log2Nn(A)). (5.3)

Let sμ be the time of the P vertex μ in Rμ, then there exists η > 0 such that

ίdsμ\\Rμ\\2^O(λ-η (5.4)

uniformly in the times of the other vertices not already integrated out. The dsμ

integration is between the times of the P vertices introduced into the square
containing μ immediately before and after μ.

Whenever v is a vertex with no open lines (excluding vertices in R terms),
apply (5.2). If v has an open line, apply (5.3). To JR terms apply (5.4).

The time integral is now estimated for restricted values of the σx. The range
of integration time orders the P vertices, but not the C vertices. Overestimate by
discarding the time ordering of the P vertices. The integral now factors into
subintegrals corresponding to connected subgraphs of the fermion graph specified
by p. These are either closed loops or lines. The R terms have already been estimated
by (5.4). The remaining loops with two vertices have ^ > 0 , hence σz = 0 for both
lines, hence these subintegrals are estimated by 0(1). Subintegrals corresponding
to loops with n vertices are less than 0(1)" provided each σz<2/3, (which is the
condition that a loop with three vertices give a convergent time integral. Loops
with more vertices are better behaved). A subintegral corresponding to a connected
open line with n vertices is less than 0(1)" provided each σt< 1. These assertions
are easy to verify. The restrictions of the above paragraph and (5.2) and (5.3) are
all satisfied by the following choices: If/ with dt = 0 connects two vertices, neither
of which have open lines, let σ/ = 5/8, ε_ =ε+ =5/17. If / with dt = 0 connects two
vertices and the one at the u + " and of the line has an open line, let σt = 13/16,
ε_ =5/17, ε+ = 1/2. If / is an open line with the vertex at the " —" end, let σι = ε_=0.
If/ is any line with dt>0, let σ ^ O , ε + = ε _ = 1. Choose η >0, η< 5/16 — 5/17.
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By (5.1H5.4) and the paragraph above

9 \ A I v I

for some η > 0 and all m ̂  0. f{Δ) is defined by

f(Δ) = ίO(l)n(A) log2 n(A)-]N^Δ) (5.8)

for 0(1) a suitably large constant, v now runs over all vertices. Let n( ) denote a
function A\->n(A) and let {^:n(-)} be the set of all # with the same given n( )
Rewrite (5.7) as

<<r™>sΣ(Π/(4) Σ Π ( i + ^ r i ' Π ( i + ^ " M (5 9)
w( ) \ Λ / {*:«(•)} v I

Estimate the second sum by

Lemma. Let F = F(^), then

\ \ sup %) (5.10)

where I runs over all lines specified by ^.
For a detailed proof of this kind of lemma, see [7], lemma (2.6). Briefly: Let

^ denote the equivalence class of all # with (1) w( ) specified. (2) The P vertices
which are part of R subgraphs specified. (3) The vertices with an open line specified.
(4) The localisations of the ends of each line not in an R subgraph specified. The
number of g, in ^ is less than \\ (2n(A))\. [2n(A)\ overcounts the number of ways

Δ

of assigning lines ending in A to vertices in A."] The factor f | ( l + d/)~3 controls
i

the sum over (4) because a line of length άx can contract to at most O(\)dι squares.
O(l)n{A) controls the sum over (2) and (3).

Define dv to be 1 if v is a P vertex; if v is a C vertex, let dv be the sum of the
d{s for the lines / joining v to the P vertex generating v. A C vetex v is said to be
generated by a P vertex v' if it was formed by contracting v' or by contracting a C
vertex which itself was formed by contracting V. Define λf

v = λv if v is a P vertex,
= λv if v is a C vertex. V is the P vertex generating v. In terms of these definitions
(5.9) and (5.10) imply, after relabelling m and η and the 0(1) in f(A)

. sup γ\λ'-ηd;m (5.11)

SWΣ f{Δ)2n{Δ)\
A n(Δ)

• sup Π K~ηd;m (5.12)
{gι:n(A)} veA

y:n(A)} is the set of all g with the same n(A) in a given A. It is now proved that
if α is sufficiently large and if m is sufficiently large depending on α then

sup Ylλ'v-
ηd;m^O(l)n{A)n(A)-{N + 3)n{A) (5.13)
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(5.13) and (5.12) combine to give

^pg\. (5.14)

This concludes the estimation of (1.1) for the special case of the Fock vacuum
expectation and, as explained in the introduction and Appendix III, demonstrates
boundedness below linearly in the volume for the Hamiltonian.

Proof of (5.13). Fix A. Let C{ be the set of all vertices in A, excluding C vertices
in R terms, with dv = ί. Let \Ct\ denote the number of vertices in Ct. The expansion
has been constructed so that if n P vertices are localised in the same square, they
must all have different cutoffs chosen from the sequence/, j= 1, 2,.... Consequently
the product of factors λ~η for these vertices is less than (nl)~m. The P vertices
generating vertices in Cί5 by definition of Q, are localised in less than 25i2 squares.
The product of factors λ~η for these P vertices can easily be vertified to be over-
estimated by [(IQI/lOO/ 2)!] 2 5^. Therefore for al l^

S Π ί ~ m | C i l [ ( I Q / 1 0 0 ί 2 ) ! r 2 5 ί 2 * α . (5.15)
i

The I Cj| are constrained by

Σ (5.16)
i

The log of the right hand side of (5.15) is less than

J= -ΣMQ logί + ηφ\Cί\(log\Ci\(100ί2y1-l)'] . (5.17)
ί

The supremum of J with respect to \Ct\ constrained by (5.16) occurs when (5.16)
holds and, for each i

" 1 ^ ^ . (5.18)

λ is a Lagrange multiplier. Therefore

supJ= - Σ|C,|(A-^a/4)= -n{Δ){λ-ηφ) (5.19)

and (5.18) and (5.16) imply

λ = ηφ \\ogn(A)- log £ 100z< 2-4 mH . (5.20)

Choose α so large that ηoc/4^N + 3. Choose m so large that 2 — 4m/ηot^— 2.
Then the sum in (5.20) converges and thence

logn(A)-O(l). (5.21)

Equations (5.21) and (5.19) imply (5.13). Proof of (5.13) concluded.
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6. Estimates on the Exponent

This section and the next one are concerned with the justification of (4.3) and (4.5),
namely: to show there is a function of Nelson fields c{φ) so that

(6.1)

(6.2)

c(φ) will depend on τ and s^ but (6.2) is uniform in sp. For each A9 V(A, sp9 τ) =
V(A) is split into four parts. (Λ{A) = A(Δ9 τ))

V(A)=Vp(A) + Vs(A)-A(A) + f hχA:φ
2M:dx (6.3)

where, letting ρ = Q(A9τ9sp9pί9p2) denote the momentum cutoff in the exponent
in A,

Vp(A)= μPldp2jrpρtb*(pί)b'*(p2) + b(-p1)b\-p2m:φ (6.4)

j (6.5)

The dummy time dependence of the fermion fields is dropped. The remaining
estimates in this section will all be pointwise in time. A has been defined in (2.11).
Define, for τ ' < l , ώ = ω — lωτ' where l>0 is chosen so that ώ > 0 and let

Nr'F = ί ωτ'(p)[b*(p)fo(p) + V*(p)b'(p)]dp . (6.7)

Estimates (6.1) and (6.2) are obtained by finding functions cp(φ) and cs(φ)
satisfying:

cs(φ) (6.9)

h:φ2M:dxdτ\ 1/2 < ΓΊ Qί\\n{Δ) (6.10)

A

The remainder of this section is to choose cp and cs and verify (6.8) and (6.9).
(6.10) is discussed in the next section.

cp(φ) is produced by Glimm's dressing transformation. Let

) (6 H)

ΓVp has been designed to satisfy

lH0F-lNτ,F,ΓVp\=ΣVP(
A)- (6.12)

Define

U H (6.13)
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Calculate the positive operator jώ(p)[b*(p)b(p) + b'*(p)b'(p)~]dp. Thence:

H0F-lNτ.F + £ Vp(Δ) + j dpώ[_b*(p), ΓVp-\[b(p\ ΓVp-\ + (same term in b')^0.

(6.14)

The two second order terms in (6.14) are positive operators, since the integrands
have the form A* A. The fermion annihilation and creation operators in these
terms are antinormal ordered. On normal ordering, one obtains contracted
terms and negative operators by virtue of the anticommutation rules. The negative
operators can be discarded to obtain

Σ Λ(A,A')^0. (6.15)
A Δ,Δ'

The sum represents the contracted terms.

Λ(A, Δ)= J dk(:φN

A-T(k, τ) j ^ β{Δ)Q{Δ'){ώ, +ώ2)~ι] {:φUiK τ)
J

Therefore (6.8) hods for the choice

i (6 1 7)
A,A' A

The scattering part Vs:
Let ωx> LOG be the operator

(1 + x2yx ωτ'(D)(l + x2)-1 (6.18)

where D = (l/i)d/dx. Define Nτ>LOC to be the Friedrichs extension of the second
quantisation, with respect to fermions only, of ωτ, L O C ; the extension being from
the domain of wavefunctions in Schwarz space describing finite numbers of
particles. Let Nτ'fLOCti denote the translation of Nτ> LOC, in the obvious sense,
by i units.

Lemma. For τ' < 1

Σ Nτ.tLOCtaθ(l)Nτ,F (6.21)
i= -L

uniformly in L. For a proof, see Lemma (2.11) in [13].
Define

) (6.22)

where q denotes a point in Q space. Then,

VS(A)= \dVldV2V\b%b2 + b'*b'2-\ (6.23)

letting bf = b*(px)9 b2 = b(-p2) etc. Observe that Jf5ρeS(IR2) Schwarz space.
To obtain cs(φ) begin by estimating, for A the square centred on the origin,

\\NligcVJLA)\\F. (6.24)

The subscript F means that the norm is with respect to the fermion Fock space
only, i.e., the total Fock space if fibered over Q space. By a local Nτ estimate.
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(See [13]), (6.24) is less than

2\\ωΓΊ2(l+Dl)V\\2. (6.25)

The L2 norm is with respect to the fermion variables in the kernel. The boson
field is regarded as a numerical quantity. The subscripts 1 on ω and D are to
indicate that these operate on px in V. 1+D2 is the fourier transform of 1+x2.
Define

p29q). (6.26)

The estimate (6.25) for (6.24) implies

l|JVττi&^2(J)ΛΓττigc | |F^4||ωΓτ72^ll2 (6.27)

which is the same as

Vs

2(A)^4N^LOC\\ωΓΊ2W\\2

2 (6.28)

which implies

± Vs{Δ)^2N\)loc\\ωΓΊ2W\\2 (6.29)

ω Γ τ 7 2 ^ l l i (6.30)

for any η>0. Estimate (6.29) is valid because operator inequalities are preserved
on taking square roots. There are no technical difficulties with this because Vs

2

commutes with NF, the fermion number operator, so V2 can be proved to be self
adjoint by restricting attention to eigenspaces of NF.

Since the fermion momenta are restricted to lie below κn{Δ) by ρ

(6.31)

for all ε > 0 and δ>l. The point of this is that while (6.25) diverges with κn{A), the
kernel of the first term on the right of (6.31) does not diverge (with suitable choices
of τ and ε). Choose δ > 1 so that Nδ < M. [These are the N and M in the expression
for the interaction (2.2).] This is possible by the hypothesis M>N. Next choose
ε > 0 small so that εδ/(δ — l)<l/a. Recall α was determined in Section 5. As a
consequence of this choice of ε

ΦB(//(ί"^0(«(J)). (6.32)

Recall κn{Δ) = n{Aγ. Next choose τ' < 1 so that τ' + ε > 1. This means that the kernel
of the first term on the right of (6.31) is convergent independently of the cutoff.
Clearly there are estimates analogous to (6.30) and (6.31) for each A and the
choices of ε, <5, τ' are independant of A. Therefore choose η in (6.30) so small that
on combining (6.30) and (6.31), summing over A and applying (6.21) one obtains

± Σ Vs(A)SlNτT + O(ί)Σ(\\ωΓΊ2ω2

ε/2W(A)\\2δ + n(A)). (6.33)
A

Comparing (6.33) with (6.9) shows that cs may be chosen to be the second term on
the right of (6.33).
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7. The Estimate (6.10)

In this section the proof of (6.1) and (6.2) is completed by proving (6.10).
First cp is majorised by a sum of terms each of which depend on boson fields

localised in single squares. Define

D{k,Δ,Δ') = 1 \JrM>P2)\2QAQA (a)ί+ώ2y
1. (7.1)

Choose a function χeC°°(IR) such that χ(ί)=0 for tgl/2, =1 for ί^l. Define

^.(x)=rtM/dist(/l,J'))»=l if dist(/1,zΓ) = 0. Define D'{k,Δ,Δ')=(2π)-ll2D*

χΛA
k> A> Λ')

Λ(A,A')= Π ΦΪ Wi ΦΊ ϊdk

£(f \(:φN

Λ-ϊ\2\D'\dk)1/2($ \{:φU\2\

tk^\(:φN

Λ-ϊ\2\D'\dk+^\(:φ»,:)γ\D'\dk. (7.2)

Therefore by (6.17)
N Ύ { Σ γ γ (7.3)

Split the sum over Δ' by setting

Σ\D'\= Σ \D'\+ X \
Δ' Δ'eJί{Δ) Δ'φjV(Δ)

Recall that Jf{A) is the set of Δ' within distance zero of Δ. If dist(zl, zl')>0

Σ\D'\= Σ \D'\+ X \D'\. (7.4)
Δ' Δ'eJί{Δ) Δ'φjV(Δ)

l'Γ3 (7-5)

This is an easy consequence of the rapid decay of the propagator and its derivatives
(provided any cutoffs included in the propagator are smooth) away from the
origin. Equation (7.5) is uniform in cutoffs. Therefore

Σ \D\'^O{l)μ-\k) (7.6)

uniformly in Δ. From (7.6) and (7.3)

Σ |D| + O(l)Jα"1W/c+yl(zl)l . (7.7)
Δ'eJί{Δ) I J

The D's and A{Δ) in (7.7) diverge as the cutoffs in ρΔ, QΔ, tend to oo. The same type
of estimate as that used in the treatment of Vs [see (6.31)] is now used to majorise
(7.7)by,(<5>l,ε>0)

0(1) Σ ( ί \( ΦA .T
Δ {

j ( ϊ + 2 ) ί γ
Pί+P2=k J

\η . (7.8)
Δ

It is now shown that for λ > 0 and 1 ̂  p < oo

K (7.9)
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The same type of proof applies to the terms in (7.8). The resulting estimate can
be combined with (7.9) by the Holder inequality to complete the proof of (6.10).

The first step is to apply (4.13). Thus (7.9) is implied by

(7.10)

uniformly in A. p and λ have been relabelled. The method of proof is that in
Nelson's original proof of boundedness below for P(φ)2> (See [10].) Let

%=\\ωΓΊ2cθ2ε/2W(A)\\l; τT = f dxdτhχΔ:φ
2M\dx . (7.11)

These are both monomials in Nelson fields. Define %L, WL by substituting φ-+φL

in (7.11). φL = (2π)~ί/2ξ(\(')\/L)*φ, a field with momentum cut off above L.
F o r a l l L ^ O

j dτ(<%δ- λiT)S j (βWl~ λΨ^^dτ + J dτ{_μψU -°UL\d- λ(iT- 1TJ] (7.12)

recall δ> 1. μ is a constant depending only on δ. Nelson's proof can be applied
using (7.12) provided, for some y and η>0,

(7.13)

^ (7.14)

uniformly in A, ρ(A) and q> 1.
Proof of (7.13).

)\2ω-ι

τ' ω^ (7.15)

Perform the derivatives with respect to px using Leibniz's rule. A typical term in
the resulting sum is, using primes to indicate differentiation.

gXΛ-ΦNL ϊωr'ωr • (7.16)

Define

D(k)= j (χ sβy(^sρ)"ωΓ'ωΓ (7.17)

so that (7.16) can be rewritten as

(2πΓ 1 / 2 J x t o : Φl -){x)D{x - y)(gχA: φN

L :)(y)dxdy. (7.18)

Now it is easy to show that \D(k)\ ^ const independantly of ρ because τ' + ε > l
and jΓsρ and derivatives are bounded uniformly in ρ. Thus the operator with
kernel xχΔ(x)D(x — y)χΔ(y) is bounded and (7.18) is bounded in absolute value by

0{\)\dx{gχΔ'.φ
N

L )2{x) (7.19)

and in fact

*UL^O(\)\dx{QlΔ.φl'.)2 (7.20)

therefore

μ 2 \ N 2 δ μ : φ N

L : ) 2 δ (7.21)
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using the Holder inequality followed by the hypotheses (2.3). So (7.13) is implied by

O(l)(:φN

L:)2δ-λ:φ2

L

M:^O(l)logyL. (7.22)

This is implied by Wick's theorem. Recall 2Nδ<2Mδ. End of proof of (7.13).
Proof of (7.14).

irL\Cί. (7.23)

The A on the time integral means that the integration is to extend over the cor-
responding time interval.

||^-^L||^^(^Γ||^-^L||^(^Γ0(l)L^. (7.24)

The first inequality in (7.24) is Nelson's Best Estimate [ I I ] . (An Nτ estimate is
also sufficient.) The second inequality is valid for η>0 satisfying τ' + ε — η/δ>l
and is not difficult to prove. A similar process applied to \W — i^L\\ completes
the proof of (7.14).

Appendix I

Estimate (5.4): Rμ is written as a sum of terms, each corresponding to one of the
cases below. The L2 norm of each is bounded separately. The notation used in
"renormalisation" Section 3, is resurrected.

Case 1. AP = Ac = A. sc<sn_ί

ίds cμk(:φN

A:Y(sP)r(:φN

A:Hs c)^ jdsc($r\{:φN

Δ:y\2{sP)dkγi2

•{\r\{:φN

Δ:)'\2{sc)dkγi2. . (A.I)

The range of the integration over sc is sc<sn_ t . For N = 1,

γ - k)r(k)(gχAY(k2 - fc)|2] "2

+ 0(1) J dk\{gχΔf\
2{k)μ-\k)r{k) (A.2)

(A.3)

The norm on the left hand side of (A.2) is on L2(Q). The estimate (A.3) is by the
Cauchy Schwarz inequality. A similar estimate holds for JV>1. The right hand
side of (A.3) may be estimated by combining the hypotheses (2.3) with

r^SOWK^Se-ScΓ1-* (A.4)

valid for η, s such that ε > ^ > 0 . Estimate (A.4) is an easy consequence of (3.11).
The factor \sP — s c | " 1 ~ ε is integrable for suitable choices of η>0, ε>0 because
sc<sn_1<sP. Collecting (A.I) to (A.4) proves that the integral with respect to sP

of the L2(Q) norm of the left hand side of (A.I) is bounded by 0{κ~η) for some
η>0, uniformly in sn_1. Case 1 is complete.

Case 2. AP = AC = A. sn_1<sc<sP.
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While this part of Rμ does not diverge, (the C vertex has an upper cutoff) it is
still necessary to cancel it against the appropriate part of the counterterm to
obtain the small λ~η convergence factor. The term under consideration is

μscμk(:φN

A:Y(sM .φNA'.T(sc) (A.5)

In the above region of integration for sc,

r(k, sP, sc) = q(h sP -sc)= J

(sp-sc\). (A.6)

Normal order the bosons in (A.5). A term in the resulting sum has the form

J dsc j dk: {φN

Δ ~
 jy{sP)qj{φ^ ~ jY{sc): (A.7)

y = 0, l,..JV,and

qβ, sP — sc) = const x j f j μ(lι)~1 exp [ — μ{li)\sP — sc\] q(l0).
o ... j i- , . ,J {kX)

The conterterm for (A.7) is

;):)(sP). (A.9)

The result of combining (A.7) and (A.9) can be written as the sum of

jdk:\(φN

Δ- j)\2(sP):(idscqβ, sp-sc)- f dtqjp, ί)) (A.10)

and

The L2(Q) norm of (A. 10) is easily estimated by using

00

ί dscqβ, sP — sc) — j dtqj(O, i
o

00 Sn

I (qβ, t) - φ, t))dt + J qβ, sP - sc)dsc
0 - 00

where ε>η>0 together with (2.3). The last line of (A. 12) is tedious but elementary
to derive. To estimate the L2(Q) norm of (A. 11) write

so that (A. 11) becomes

0(1) ί dk^dlo-.iφ"-^, loM-Πku /Co)

.em-ka)sP i dscqβu sP-sc)(e~iko(S(:-SF)-1). (A. 14)
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Now use

|gi(/o-*o)sp J ds

where ε > ^ > 0 , to estimate the L2(Q) norm of (A. 14). End of Case 2.
Case3. Ap=Ac = A. sP<sc.
Repeat the argument in Case 2 with

q(K sP -sc)= j I JΓ/(1 - ξ(Pί/κn)ξ(P2/κn))

• exp(- [o)i + ω 2 ] | 5 P - sc\) (A. 16)

which also satisfies (A. 12) and (A. 15). (The C vertex now has no cutoff.) End
of Case 3.

Case 4. AP + AC.

By normal ordering, the problem is reduced to estimating the L2(Q) norm of

j dsc j dk:(φN

Δ^γ(sP)rj(K sP, sc)(φN

A-
jT(sc): (A.17)

where

rβ, sP, sc) = const x j f ] μ(/ f)"x

i o + . . . + /j = fc £= 1 j

• exp(-μ(ίf)|,Sp-.sc|) r(/0, sP, sc). (A. 18)

Observe that in (A. 17), rp may be replaced by

ή = rβ, sP9 sc)- r/0, sP9 sc) (A.19)

because the P and C vertices are localised in disjoint squares, so the second term
in (A. 19) makes no contribution, r} is not divergent. The norm of (A. 17) can now
be estimated using (A.13). End of Case 4.

Appendix II

The scattering part of Vs can be estimated in another way using a "fractional
local Nτ estimate". A formal derivation of this estimate is given below.

Suppose

V= ίv(j,ι,p2)b*(Pl)b(-p2)dpιdp2 (A.20)

w(p 1 ,p 2 )=(l +D2

1)(l+D2

2)v(pι, p2). (A.21)

Then for α > 0

(A.22)

with ε < α, and ε = (j)m for some integer m > 0.
Proof. Write

^ . (A.23)
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Let a = ωτL0C. aγ acts on px, a2 on p2. By (A.23) and the pull through formula,
the left hand side of (A.22) is estimated by

oc)b{-p2)\\ . (A.24)

By a local Nτ estimate (see [13]), (A.24) is less than

0(1) ] dt^2-1e-t(Sdp1dp2\(ωΓ/Hί+Dl)e-ta2υ)\2)υ2 . (A.25)
o

The presence of the factor e~
t{1+Nτ^oc) between the annihilation and creation

operators in (A.24) does not disturb the proof of the local estimate given in [13],
being a bounded operator. (The bound gives the e~f.) By the estimate \\aε

2

/2e~ta2\\ S
O(l)r ε / 2 , (A.25) is less than

0(1) J dt^2-1^ε/2e-t(idp1dp2\(ωΓ/2(ί+D2

1)a2ε/2v)\2)lf2 . (A.26)
o

Provided α/2 — ε/2>0, Eq. (A:-26) is less than

O ( l ) ( f Φ i * 2 | ω Γ t / 2 ( l + O i K β / 2 ϋ | 2 ) 1 / 2 (A.27)

Now obtain (A.22) by using the operator inequality

a2

 ε ^(1 + D2)ω2

 ε τ (l + D2) (A.28)

provided ε = (^)m for some m^O. To prove (A.28) observe that

((l + Z)2)ω-τ(l + D 2 ) ) 1 / 2 ^ ( l + /) 2 )ω" τ / 2 (l + /)2) (A.30)

is implied by (it can be proven that ωτ LOC is essentially self adjoint on

(operator inequalities are preserved by square roots) which is implied by

(1 + £ > 2 ) 2 ^ 1 .

Iterating (A.30) and taking square roots gives (A.29).

Appendix III: Uniformity in the Expectation

It is sufficient to find a uniform bound for (1.1) when the state s is a member of a
dense subset, in particular when S has the form of a sum of products of functions
from L°°(β) in ψ*(f)s, \\f\\2 ^ 1. ψ* denotes ψ or ψ. The lower bound for the right
hand side of (1.1) with S of this form is equal to the infimum over the cross product
contributions so one is reduced to estimating

- lim T- 1 log<5^- T V> (A.32)
T->oo

where s\ s" are each products of an L°°(β) function with φ*(/)s. The L00 functions
can be majorised by their L00 norms after defermiation. The constants so obtained
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make no contribution in the limit T->oo. The ψ*(f)s which will be referred to
as "external fields" cause a new class of fermion graphs because vertices can contract
to them. The terms with these graphs still satisfy (4.12) so it is merely necessary to
examine what change needs to be made in (5.10). Suppose there are p external
fields, then the extra graphs are claimed to be counted by prefacing the right hand
side of (5.10) by ]~\2n{Δ) pi Clearly the 2n{Δ) can be absorbed into the 0{\)n{Δ)

A

and the p! makes no contribution in the T limit, so a uniform bound on (A.32)
will hold. For each vertex, a factor 2 counts whether it contracts to an external
field or not, hence the Y\ 2n{Δ\ The p\ counts the possible assignments of external

A

fields to the vertices which contract externally.
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