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Abstract. From the analyticity properties of the scattering kernels in
axiomatic field theory we derive macrocausality conditions for the scattering
amplitudes in the sense of Iagolnitzer-Stapp. By applying the generalized
Laplace transform theorem of Bros-Iagolnitzer, we show the equivalence of
such conditions with the exact size and shape of the analyticity domains.

1. Introduction

In the last ten years, several authors have looked for a direct space-time interpreta-
tion of the analyticity properties of scattering amplitudes of elementary particles.
As a matter of fact one can adopt two different attitudes concerning investigations
of this type:

i) One believes that analyticity should be derived from "physically-admissible"
space-time properties of the collision amplitudes the latter properties should in
particular express the short-range character of interactions together with a
certain form of causality. This point of view was supported for the first time by
Omnes in [1], where a derivation of the analyticity of two-body amplitudes in
ί-ellipses, was proposed on the basis of a certain short-range hypothesis. An
analogous derivation was given in a more rigorous form in [2]. The same point
of view had also been adopted by the tenants of axiomatic ^-matrix theory [3].
In this context, a set of general "macrocausality conditions" was defined by
Iagolnitzer and Stapp in [4], which was proved to be equivalent to local analyticity
properties of the π-body collision amplitudes. These macrocausality conditions
express in an appropriate mathematical language the fact that in collision pro-
cesses, all energy-momentum transfers which are not carried by stable elementary
particles give rise to short range phenomena in space-time.

We note that in the above formalism (as well as in [1] and [2]), the short range
properties are always assumed to hold in the sense of exponential decrease, the
latter being essential to yield analyticity.

ii) Starting from the analyticity properties of the scattering kernels which have
been proved in axiomatic field theory, one tries to derive equivalent space-time
properties of transition amplitudes. This is the point of view which we adopt in
the present work. To the same field theoretical context belong the works by
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Williams and Hepp [6], in which these authors derive certain macrocausality
conditions of scattering amplitudes (for special space-time configurations)
directly from the axioms of field theory. However in the latter works, macro-
causality was expressed through conditions of rapid and not exponential decrease,
and the links between macrocausality and analyticity properties of the scattering
amplitudes were therefore not considered there.

In the present work, our purpose will be to derive precise macrocausality
conditions of the type introduced in [4] which correspond to the analyticity of
the scattering kernels in global regions of the mass-shell, obtained from field
theory. As a matter of fact, the equivalence which had been proved in [4] did not
provide a precise correspondence between the shape and size of analyticity
domains on the one hand, and detailed conditions of exponential decrease on the
other hand. However the mathematical ideas used in [4]* were developed in [5]
under the name of "generalized Fourier transformation" and a generalization of
the Laplace transform theorem could be proved in this context. This theorem
states the equivalence between the fact that a function / is the boundary value of an
analytic function F in a certain (specified) domain (called a local tube) and corre-
sponding exponential decrease properties of the generalized Fourier transform of/.

The necessity of such a generalization is suggested by the fact that the ordinary
Laplace transform theorem2 only applies to domains which are invariant by
translations in the real space (namely "tubes").

In the present work we restrict ourselves to considering the analyticity
properties of two-body scattering amplitudes except in the case of momentum
transfer analyticity where 2->« collision amplitudes are also treated.

In Section 2 we recall what a "macrocausality condition" means in the sense
of the Iagolnitzer-Stapp [4] formalism, and we present two versions of the
generalized Laplace transform theorem of [5] which apply to the case of distribu-
tions; the proof of the second one will be indicated in the Appendix.

In Section 3 we apply the above theorem to the 2-*n collision amplitudes, by
considering the analyticity of the latter with respect to the relative momentum
of the two incoming particles (as obtained in field theory [8—10]). There we
obtain an exponential decrease of transition amplitudes in the space variables
which expresses the short range character of forces. The results obtained are then
compared with those of [2].

In Section 4 we exploit the analyticity of 2->2 scattering amplitudes with
respect to the squared total energy s. Application of the same theorem yields:

i) a causality condition corresponding to analyticity in the physical sheet
of s, namely in bounded subdomains of the s-cut plane3 obtained in axiomatic
field theory [11,12],

ii) a condition of the type "relaxation" corresponding to the analyticity
domain in the elastic unphysical sheet of s (as it was obtained in [13]).

1 The main ingredient of this method was in fact the use of Gaussian wave packets as introduced by
Omnes in [1]. Such an idea had also been proposed independently by Froissart [7].
2 See for example: Streater and Wightman [14] and [5].
3 For simplicity, we have restricted ourselves to the case of one scalar field producing particles (of
a single type) of mass m.
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2. Causality and Analyticity

2.1. The IS. Macrocausality Conditions on Connected Scattering Amplitudes [4]

Let:

be the kernel of the connected S-matrix for a process /-> J involving m (resp. n — m)
incoming (resp. outgoing) particles with masses mi (resp. m'j) and momenta:
{Piliel, \I\ = m} (resp. {p'j JeJ, \J\ = n — m}) such that:

pf = mf; p?>0, (2.2)

pf^m'j2; p° '>0, (2.3)

L,IPi=Σj,jP'j- (2-4)

The conditions (2.2), (2.3), (2.4) express that the point p = ({Pi}{p'j}) belongs to
the mass shell manifold Mu of the process I^J. For arbitrary test-function
ψi, φ'jE^ilR3), with ieI,jeJ, the corresponding scattering amplitudes are defined
by:

Sc

u({ψil {ψ'j})= ί ShilPil {Pj}) Uiei ΨiiPi) ΓLw φfcjWsPiβω^p'j/lωj) (2.5)

where

ωi = ]/pf + mf •> W'J^Ί/PΪ Jt~m'j2 -

We also introduce the space IR4 of "multiple displacements in space-time"
u — ({uί}>ιe^' {u'j}> JeJ) where the w/s and M̂ -'S are arbitrary four-vectors in Min-
kowski space. Let P = ({Pi\ieI}', {Pj'JeJ}) be a fixed point in Jtu and u an
arbitrary displacement. With every configuration (P, u) one can associate in space-
time the set of displaced "trajectories" [in the sense of classical relativistic ki-
nematics] of the particles (i) (resp. (/)) whose equations are

xi = ui + tipi/mi,
(2.6)

χ'j=u'j+t'jP'jlm'j^

tt and t'j being the "proper time" parameters.
A configuration (P, u) is said to be "normalized" if (in a chosen Lorentz frame L)

M\l= Σ/((«ίo))2+«?)+ Σ i ( ( M D 2 + « i 2 ) = 1 w h e r e "i=("ίo )

ϊ« ί) tι}=(u}(0),iιi).
Following [4], we call the configurations (P, w) causal if the initial and final

displaced trajectories form a "causal set"; that means, if there exists at least one
multiple-collision classical process with possible exchange of (stable) physical
intermediate particles, connecting the initial and final particles. If such a process
does not exist, (P, u) is called "non causal".

Being given an arbitrary normalized configuration (P, u), we say that the
quantum scattering process /->J satisfies an 'Ί.S. condition" C(P, u, α, γ0) if the
following bound holds: Vy with 0<y<γo:

lί Ά{Pi}, {p'j})χ({Pi}, {p;})e-v««(p.-' .» e -«Σ.w.

%PI-PJ) Uieiuj δ(pf-mf)θ(pf)d4p,\ £ CNe-^/(ί+τN) (2.7)



226 M. Manolessou-Grammaticou

where:

&ι= — 1 (resp. + 1) if / is initial (resp. final).
Φ({pι — Pι}) is an analytic function which vanishes at pt = Ph has there a

"critical point of spherical type" (it is strictly positive at all other real points and
is such that the level surfaces Φ({pt — PJ) = C keep a nested structure for sufficiently
small values of C).

The simplest example of such a function Φ (which we shall use later), is:

P^ΣieiujiPi-Pif • (2-8)

In this definition the bound (2.7) is assumed to hold for every test function χ
in y which is locally analytic at P (i.e. analytic in a suitable neighbourhood of P).
Furthermore, we note that the scattering amplitude4 is expressed in terms of a
localizing "sequence" of states labelled by the parameter τ, which localize the
particles in the classical configuration when τ-> oo. The actual displacements of the
wave packet χ occurring in (2.7) are xx — τub with the dilatation parameter τ—>oo.

The macrocausality requirements of [4] amount to state that for every non
causal configuration (P, u) a certain condition C(p, u, α, y0) is fulfilled (without
specification of α and y0).

In the following such precise conditions C(p, u, α, y0) (i.e. with α, y0 specified)
will be derived from the analyticity properties of the scattering kernels in the
field theoretical framework.

2.2. The Generalized Laplace Transform Theorem

Let us recall some geometrical definitions given in [5a] and [5b]:
i) Given a fixed point P inR", we consider in the complex space <E"k) (k = p + iq)

the analytic function5

ΦP(k)=ΣUΛki-Pd2 (2.9)

and call Ωa the real open ball:

P)2=Σ"=ΛPi-Pi)2<«}- (2.10)

In the following, we drop the subscript P of Φp for simplicity.
ii) Let B be a bounded convex domain in an auxiliary rc-dimensional real

space, such that the closure of B contains the origin. B is supposed to be described
in polar coordinates (ρ, ω) by an inequality of the form ρ < r(ω). In the following
we always assume that 0<r(ω)< 1/2j/α for all points ω in the unit sphere s""1.
We now consider the set $ of points k = p + iq such that:

\q\ + r(ω)(ReΦ(p + iq) - α) < 0

q = \q\ω.

4 We still use this term, although χ is not necessarily factorized as in (2.5).
5 In [5] more general functions Φ, local tubes Γβφα, and generalized Fourier transforms
considered and yield similar results.
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We define a local tube TBΦoc with basis B as the interior of the connected com-
ponent of 8 whose edge on the real is Ωα; since r(ω)< 1/2 j/α it is easily checked
that this domain is bounded.

iii) The # ^ φ ) transform of a function g (or distribution) is defined in the (n + 1)-
dimensional space of the variables x = (x1,..., xn), x0, through the following formula:

#~(φ)(#)(x, xo) = (2π) ~n/2 j e-ipx~φ{p)x°g(p)dp . (2.12)

iv) For a distribution / which is the boundary value of an analytic function F
in the local tube TBΦa it is convenient to introduce the following set SB in (x, x0)-
space which is called the essential support of f over Ωa (this name being justified
by the theorem below). SB is the convex cone with apex at the origin, whose basis
is the set of points {xeB, x0 = 1} where B is the polar set of the basis J5, defined by:

B={xeW;x ω + r-χ^0 for every point (r ,ω)eΰ}. (2.13)

v) For every (α, α') with a < α, we define S)a{Ω^ as the space of all functions χ
in ®(Ωα),6 which are moreover analytic in Ωa>

7 and have an analytic continuation
in the closed local tube fBφa, [for instance the latter condition is satisfied ifχ(p)=l
for p in Ω α ] .

The following theorem has been proved in (5 b). (A slightly weaker version of
it can be found in (5a).)

Theorem 1. There is equivalence between the two following properties of the
distribution f :

i) f/Ωa is the boundary value of a function F, which is analytic in the local
tube T β φ α .

ii) The generalized Fourier transform ^rΦ{χ f)(x,Xo) of f(p)χ(p) satisfies the
set of exponential bounds:

e-«'x°/(\ + \\x\\N), for (x,xo)φSB,x0^0. (2.14)

More precisely these bounds hold with uniform constants CN>a> in every closed cone
of the half space {xo^0} lying outside SB.

Let us notice that the left-hand side of the "I.S. condition" (2.7) C(P, u, a, y0)
is precisely the generalized Fourier transform J^ φ of:

Π/ (2ωιr
1δ(pI-pJ)TIJ({pi}ieI; {^}jeJ)z({pJ, {#}) (2.15)

evaluated at (x = τu, x0 = yτ).
Therefore I.S. conditions (2.7) have exactly the same form as the inequalities

(2.14) of the above theorem; in view of the latter, there will be equivalence between
appropriate sets of I.S. conditions and the analyticity of the Tu kernel in corre-
sponding local tubes.

In the following, it will be convenient to make use of the analyticity of the
scattering kernel TJJ? with respect to a subset ( p j of the energy-momentum variables
p. According to the above theorem, this "partial analyticity" yields conditions
of the type (2.14) written in terms of a "partial" £FΦ transform corresponding to
the variables px.
6 @(Ωa) is the space of C°° functions with compact support in Ωa.
7 The closure of Qa>.
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However these conditions can also be equivalently formulated in terms of a
"total" # " φ transform, i.e. with respect to all variables. Indeed, two equivalent sets
of conditions can be given, either one of which expresses the fact that a distribution
f(Pu Pi)ιs t n e boundary value of an analytic function of pί in a fixed local tube
Γβφα, when p 2 lies in the neighbourhood of an average position P2. More precisely,
we can state:

Theorem 2. Let f be a distribution in the space of the variables (pu p2) defined
in an open neighbourhood of the set:

{(p 1 ,p 2 )6lR Π l xR I I 2 ;p 1 eί2 α ;p 2 = P 2} (2.16)

Ωa being the open ball: {pγ\ (pί — P 1 ) 2 < α } .
The following properties of f are equivalent:
i) For every positive number a < α, there exists an open neighbourhood ω of P2

in IR"2, such that: Vφe^(co), the distribution:

fφ(Pi)= ί f(Pu Pi)<P(Pi)dP2 ίs defined in Ωa,. (2.17)

Moreover, it is the boundary value on Ωa> of a function Fφ which is analytic in the
local tube TBΦa, [with Φ(p1) = (p1-P1)

2l
ii) For every (α', a") with 0 < a < a" < α, there exists an open neighbourhood of P2

in W2 such that:

a>(ΩΛ»\ Vφe^(ω), the "partial" generalized Fourier transform:

i (2.18)

satisfies the following set of bounds:

VN>0 l^pa^Γ/^i^o^QllφllJl + llx^fΓ^-^0 (2.19)

valid in the region:

{{X19X0)ΦSB9 x o ^ 0 } . (2.20)

In (2.19) m is a fixed integer which expresses the order of the distribution f
with respect to the variables p2.

The semi-norm \\φ\\m is defined by:

\\φ\\m= sup
l j

the constants CN can depend on α', a" and ||x2ll
iii) For every (a, a") with 0 < α / < α / / < α and every χ2(Pi) analytic in a neigh-

bourhood of P2 with χ2(p2)^0 at p2 = P2, Zi(Pi) as in ii) the total generalized
Fourier transform:

(2.21)
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satisfies the following set of bounds: VW > 0

l^totCCi -Jt2 •/)(*!, x2> xo)\ S CN(ί + \\x2 |Γ)(1 + | |x, \\NΓ ιe~«'x° (2.22)

valid in the region

{(xux2,x0):(xι,x0)φSB;x0^0;x2elRni} (2.23)

(with m the same as in iϊ}).

The proof of this theorem is given in the Appendix; here we shall rather
indicate its physical interpretation when the distribution / is chosen to be the
scattering kernel of a certain process; Pγ (resp. P2) can for example refer to the set
of relative (resp. absolute) four momenta of a first (resp. second) group of particles.
(These two groups can be those of incoming and outgoing particles as it will be
the case in Section 3, but this is not necessary.) The set of conditions (2.22) is a
set of macrocausality conditions of the type I.S.; each of them requires the localiza-
tion of all the particles near the average configuration (P 1 ? x ^ H ^ ||), (P2, χil\\χ2 ID-
Theorem 2 essentially says that the analyticity of the scattering kernel with
respect to p{ in the specified domain TBΦ<X, is equivalent to a precise exponential
damping of the scattering amplitude with respect to relative space-time dis-
placements of the first group of particles.

The equivalence of statements ii) and iii) means that for the short-range
behaviour to hold it is immaterial to consider the second group of particles either
in a localizing "sequence" of states in the sense of I.S., or in an arbitrary fixed state φ
with momentum spectrum localized in a neighbourhood of P 2 .

3. Analyticity with Respect to Momentum Transfer and Conditions
of Short Range of Forces

We consider the scattering of two initial and n final identical scalar particles with
mass m. Let us denote by r={rί...rn} the final four-momenta which satisfy the
mass-shell conditions:

7=1,. . . ,n. (3.1)

We shall represent by k^pi + iq^ i = l , 2 , /CJGC4 the corresponding momenta
for the two initial particles.

The total energy momentum conservation:

leaves us with only n+ 1 independent four vectors. We choose the set

{k = p + iq = (k1-k2)/2; ΓJ 7=l, . . . ,w}

where k is the relative momentum of the incoming particles, which is considered
as a complex four-vector. One also puts:

r2 = s (3.3)

(squared total energy).
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In the context of axiomatic field theory [8, 9] it has been proved that when the
rpi= l,...,n are kept fixed and real, the scattering kernel T{p; {r7-}) is the restriction

to the physical region of an analytic function H(k) inside the Jost-Lehmann-Dyson
domain of holomorphy D [15]. The latter has a non-empty intersection with the
complex mass-shell manifold Jic (which is a two-dimensional complex sphere):

This intersection Dr\Jic is of spherical type, described by:

(3.5)

In a more rigorous way, T(p, r) is a distribution in the variables r= {r3) which
is analytically valued in k; it means that for every test functions Y[j <Pj{Vj)e3

the function:

T{φj}(k)= J T(K r) Y\j <Pj{rj)d*rj/2coj9 ωj = γή + mi (3.6)

is analytic in a J.L.D. domain of Cffe).
We shall always choose the functions φ3- so as to have their support in an

arbitrarily small neighbourhood of a fixed configuration {rj = Rj} of the final
momenta. Then, the corresponding domain Όr\Jic of the function T{φj}(k) is
defined by the constant:

Cs = 3m2/\/s-ε (3.7)

where the number ε > 0, takes into account the size of the support of the wave
packets Y\j ψy

The scattering amplitude for the process A1 +A2^Bι + ... +Bn when the
initial (Ah i= 1, 2) and the final (Bj,j= 1,..., n) particles are translated by the four
vectors xί,x2,x'j,j=l,...,n respectively reads:

{<?}})(*, x'jX)=

• δ(pr)δ(p2 + r2/4 - m2)dp UJSJ d3rj/2wj (3.8)

with J = { 1 , ...,n}

γ] = ω1 — m21
pr = 0 (3.9)
p2 = m

2 — s/4 = — α = a(s)

for arbitrary test functions Y\iφj(rj)φ(p)e^(Jίr) with a suitable parametrization
of Jtr described in the following).

In (3.8) the energy momentum conservation p1 +p2 = Σj= i rj9 has been taken
into account besides the change of variables:

(x1+x2)/2 = X, x,-x 2 = x. (3.10)
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By using Theorems 1 and 2 we shall be able to write conditions C(P, u, α, y) of the
type "I.S." for the scattering amplitudes (3.8); these conditions will be equivalent
to the above analyticity domain.

The average momentum configuration " P " is here specified by fixing:

rj = Rj, r = R, fc = P(real) with P R = 0, P2 = m2-R2/4 .

It is convenient to choose axes of coordinates such that:

R = (R{0\0), P = (0,0,0, P ( 3 ) ), k = (k{0\ k{1\ k{2\ k{3)) (3.11)

we also put:

fctr = (/c(1U(2)) (k transverse).

The space time (normalized) translation "M" = "X"/| |"X"| | is here specified by
fixing the set

"xn={Xj9jeJ; X = (x1+x2)/2; χ = χx - x 2 = (0,x t r,0)}. (3.12)

The two dimensional vector xtr is the "impact parameter" with respect to the
classical momentum configuration (R, P).

We shall use the vector variables ktr (resp. piτ) as a parametrization of Jtc

(resp. Jίr). With the above choice of "x" the matrix element (3.8) can be written
more precisely:

}})(xtr, {%}}, X)

J φr(>'MPu)e~i[p"x"-ΣrΛx'J + x)]T(ptr{rj}) UJEJ (d3rj/2(Oj)d2pu (3.13)

where φeS)(R2) has a sufficiently small support.
We now construct a maximal domain in Jίc whose projection in the variables

ktr will be a local tube with real open set Ω (centered at P) defined by:

Ω={ptr; 0^Φ(p) = p2

r<a(s)}. (3.14)

When ptr varies in Ω the point p = (ptτ j/α — p2

r) varies in an hemisphere of Mr

(with pole P).
In an auxiliary space with dimension two, we define the basis B of the local

tube TBΦa as the set of points (ρ, ω) with ρ < r(ω).
Then (see Section 2 and [5]) TBΦa is the union for all values of ρ<r(ω) of the

bounded components (with edge dΩ) of the following "cycles":

qtr = \qtτ\ω, \pir\
2<(x} (3.15)

Such a definition is meaningful provided that r(ω)<l/2|/α. We shall now fix
r(ω) = rm a x (independent of ω) in such a way that TBφa be maximal and contained
in the axiomatic domain Dr\Jίc.

Looking for a local tube in which the maximal value oϊ\q\ is the one given by
the domain (3.5) [or (3.7)], we must impose that when |/>| = 0

(3.16)
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One then easily verifies the following two possibilities:
i) for energies ]/s such that: C s

2<α, the inequality (3.16) is satisfied when
J2
J(s);

ii) for energies such that C ^ α the condition ρ:g 1/2J/α is sufficient for (3.16)
to be true.

We conclude that the maximal local tube TBφa with image in Jίc contained
in the domain (3.5) (or (3.7)) (where T(p, r) has an analytic extension) admits as
basis:

ρ^ 1/21/5 for CS^\Γ*
or C s<jΛ. ( 3 Π )

Let us now choose arbitrary functions χ{ptr), YljX^Vj) j=ί,...,n with the
appropriate properties described in Section 2 and consider the generalized
Fourier transform:

^ \X > xXji)\^tτ > ^o)= ] e 1 β t r t r i ( p t r , \Vj})χ(ptr) [ [j Xj\yj)(d Γj/2(Dj)aptr.

(3.18)

Following Theorem 1, #~*f satisfies bounds of type (2.14) for {xtr, xoφSB}; where
SB is the convex cone in the space (xtr, x0) with apex at the origin, (with Xo = y||Xtrll>
7 = const) whose intersection with the plane xo = l is the polar set B of B (3.17):

~ = ί | | x t Γ | | ^ 2 | / ϊ for C>^λ

Γ t r ' | |x t r | |^(C s

2+α)/C s for Cs<γa}' [' }

Let us suppose that in the expression (3.13) of the scattering amplitude the wave
functions are gaussian type wave packets of the form:

φ'jir^e'^'^^Xjirj), φ(ptr) = e~p*rX°χ(ptτ). (3.20)

Application of Theorem 2 then leads to the following bounds of the scattering
amplitude:

-f ||*tr|| N > r—
\cNe Λi +11*11); ^ 1 / Φ ) ( 3 β 2 1 )

[cNe c>

VJV, V ( x t r , 4 1

We notice that the intersection of SB with the xo = 0 plane is only a point, that
means, the origin in x space.

The choice of P (centre of the local tube TBΦa) being arbitrary on the sphere
Jiγ (3.9) we can repeat the same procedure for all points P in J(r. It follows,
that by taking the union of all these local tubes, we reconstruct the total domain
of analyticity (3.5). The set of conditions of type (3.21) obtained, represent then the
"I.S. conditions" corresponding to this domain.

The directions xtr for each of these conditions, lie always on the plane ortho-
gonal to each vector P; it follows that the bounds of type (3.21) are valid in every

8 Remark: The rigorous application of Theorem 2 says that α has to be replaced by some a =a — ε
with ε—>0 when the size of the support of ψj contained in IRj tend to zero.
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direction in IR3. The exponential decrease of the transition amplitude is thus
expressed with respect to the relative distance of the translated trajectories of the
two initial particles (or impact parameter) independently of the translation X + Xj
of the final particles. The latter behaviour expresses the short range character
of strong interactions and we have proved that this behaviour is equivalent to
the J.L.D. domain of analyticity of the scattering kernel, with respect to the
variable of relative momentum. The precise rate of exponential decrease is given
by the size of this domain.

Because of the invariance under the Lorentz group, the analytic extension
F(k, r) of the scattering kernel defines an analytic function in the space of the
invariants fc r^j = 1,..., n (the invariant k2 being a function of s in the manifold Jίc\

In the case of the scattering A1+A2^>B1+B2 (two final particles), the re-
maining independent invariant is k (rί—r2) (at fixed total energy) which by a
linear transformation is related to the scattering angle z = cos θ. The image of the
domain Dr\Jtc in the space of this variable is the Lehmann ellipse [8]. Taking
into account unitarity Martin [9] obtained a larger ellipse whose inverse image9

is a spherical domain analogous to (3.5) (or (3.7)), with corresponding constant:

C2

M = m2s/(s/4 - m2) > C2 . (3.22)

What follows then is that "I.S. conditions" of type (3.21) equivalent to Martin's
ellipse may be obtained in the same way as described above. By inserting the value
of the constant CM (3.22) in the formulae (3.21) we have explicitly the following
bounds:

a)

(3.23)

b) /

w ^ + l ) - 1 ! ! ^ ! ! ] (3.24)

ViV; V{xtr,x0}^SB,(Λr,x})elR4(Λ+1), ||x|| = {|xtr|
2 + xg}1/2 .

One then verifies that for 5^00 the exponential decrease reads:

\S({φ}Λφ)})\s^oo<cNe-2m{M/(l + \\x\\N) (3.25)

which expresses the physical idea that for very large energies the exponential
damping is independent on the energy.

The corresponding bounds (3.22) for the case of the Lehmann ellipse give for
5—• 0 0 :

ς r | H O ) . (3.26)

We should expect these different results as a direct consequence of the qualitative
difference between the two domains of analyticity: the Martin ellipse has always
tmax = 4m2 while the Lehmann ellipse shrinks to zero as ts^ ̂ ^ const/5->0.

9 In /c-space.



234 M. Manolessou-Grammaticou

Concerning the behaviour at the threshold energy s->4m2, it is, as one expects,
similar in both cases: the rate of exponential decrease vanishes as:

/ m 2 ) 1 / 2 . (3.27)

Some Remarks about the O.K.R. Formalism

In the works of Omnes, Kugler-Roskies, Finley [1,2], one starts from the short
range hypothesis expressed in terms of exponential decrease property of the
scattered wave for any production process (α). Such a property is immediately
rewritten in terms of the exclusive absorptive part Aa of the two-body scattering
amplitude associated with the channel α as follows:

J AJίE,p p')φa{p)φ*a{p')dΩpdΩp,<ce'2σa (K.R.)

with φa(p) = {λa/π)3l4e~ip-p)2λal2e-ίpa similar to our φe"ίp'x in (3.8), (3.20).
The parameter a is the impact parameter (in semi-classical approximation)

and the rate of decrease σ in this formalism is justified from intuitive potential
theory considerations. By exploiting conditions (K.R.), these authors derive
analyticity properties of the absorptive parts Aa. The analyticity of the scattering
amplitude is yielded afterwards by unitarity. In these studies the principal scope
was the understanding of analyticity properties on the basis of the short-range
character of the interaction in space-time. It prefigured in a special situation the
general S-matrix approach of Iagolnitzer and Stapp [3,4].

Our method and results differ from those of O.K.R.F. in the following respects:
a) The method of the generalized Laplace transform allows us to state a

precise equivalence between the size (and the shape) of the analyticity domains
and the corresponding rate of exponential decrease in space-time.

b) We applied our method to the derivation of I.S. conditions for the (2->n)
scattering amplitudes. However it could have been applied as well to the corre-
sponding scattered waves (or Aa) and would have then led to inequalities of the
type (K.R.).

c) In our formulation, the fixed total energy is not necessarily fixed as in (K.R.).
Testing with wave packets in all variables, including the total four momentum,
is a little more satisfactory from both (physical and mathematical) points of view
(see the general I.S. formulation [3,4]).

d) Concerning the physical interest of the above mathematical equivalence,
we preferred to choose the point of view according to which space-time asymptotic
properties can be derived from the analyticity properties of field theory, rather
than the converse. In fact, without discussing here the general motivations which
can lead one to prefer either the field theoretical approach or the S-matrix approach
to the analyticity properties on the mass shell, we can make the following remark:
in the S-matrix approach it seems difficult to justify with physical arguments a
precise "quantitative" formulation of the macrocausality conditions (including
all types of "short range assumptions"). For example in [1, 2] the rate of ex-
ponential decrease σ which was chosen was only justified by an analogy with
potential theory. On the contrary, if one accepts the global analyticity domains
of axiomatic field theory as a firm basis, the above method yields a derivation of
"quantitative" macrocausality laws in the field theoretical framework.
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4. Analyticity with Respect to the Total Energy

4.1. Causality Conditions

Let us consider now the scattering

A _ι_ A v A _ι_ A (A 1 \
-ΓX I \~ vT. 2 ~ / 1 3 \Γ •S~*-4. V /

of identical scalar particles with mass m. The four momenta p l 5 p3 are real and
satisfy the mass shell conditions: pf = m2, pj o )>0, i= 1, 3 while the corresponding
momenta for A2, A4 particles are:

/c2,/c4eC4.

The total energy-momentum conservation: Pι+k2=p3 + k4 leaves us with three
independent four-vectors: we choose the following ones:

1 3 >eIR4 k = (k2 + fc4)/2 e (C4(fc = p + iq). (4.2)

r13~Pl +P3J

The mass-shell conditions expressed in terms of those variables are the following:

) 2 + r2 = 4m2 r2 J\-r2

3 = 4m2 , ^

( 4 3)

We suppose that the wave packets {φ} of all the particles have been translated
by corresponding four-vectors xb i = l , . . . , 4 and we define:

Jϊ(x4+x2)/2' Izi'zy (44)

The scattering amplitude for this process then reads:

S{{φ}e-i{p^ + PM-p^-p^))=\T{p,rγ3,r){ψ}{p^

S(r2

x 3 + r2 - 4m2)δ(pr)δ(r13r)δ(4p2 + r2- 4m2)dpdr13dr (4.5)

where we have put {φ}(p, r 1 3, r)={φ}(pί, p2, p3, p4) [with (p, r 1 3, r) satisfying (4.3)]

Let us now define the average momentum configuration " P " of the scattering
process by fixing:

r13 = R13, r = R, k = P (real)

p.R = 0 P2 = m2-R2/4
with: ^ ^ Λ ^ ^ Λ Ί (4.6)

{φ} is then assumed to have its compact support containing (P, K1 3, î ) and such
that its projection in the space IR^.l3) lies in an arbitrary small neighborhood of R13.

We now choose for convenience axes of coordinates such that:

1 3 ~ 1 3 ' P = (P°,P) (4.7)
R = (0,Pr)
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A0=x1=x2

Fig. 1. Space time displacements. The relative translation ξ lies inside the light cone (see text)

and we restrict our set of "normalized translations" "M" = "X"/| |"X"| |, with "x" =
(X,X,ξ,ξ) to be of the following form: (x1 = x2, x 3 = x 4 with (x2 —x 4 ) 2 >0) or:

ξ = -ξ = (ξ{0\ξ) (4.8)

w i t h ξ O 2 > ξ 2 .
Such a choice of "x" ensures that the trajectories of the two final particles

intersect each other at a point which lies in the forward (for ξ{0) < 0) or backward
cone (for ξ{0) > 0) with apex at the intersection of the trajectories of the two initial
particles. In this subsection, we stick to the case ξ{0)<0 (see Fig. 1) whose physical
interpretation will be a test of causality.

(The detection apparatus, represented by the average trajectories of the
outgoing wave packets should not detect any scattering in this situation.) With
this choice of "x", the scattering amplitude (4.5) can be rewritten:

S({φ})(ξ)= J [T{φ}](p, r 1 3 5 r ) Γ i ( p + r i 3 / 2 % r ) δ ( r 1 3 r ) 5 ( V + r2 -4m 2 )

δ(r\ 3 + r2 — 4m2)dpdrι 3dr .

Now using the Lorentz covariance of T, the integration over drί3 and d/0) can be
performed and yields [with a new test function {φγ} (p{0\ p, r{®3\ rj]\

S{{φ})(ξ)= J ίT{φi}^{p{0\ p, r[% r)e'i[ipί0) + r?i/2)ξi0)-pζlδ{pή

δ(4p2 -r2- 4m2)δ(r[°3

)2 - r2 - 4m2)dpdr[°3

)dv . (4.9)

Let us introduce the usual invariants:

s — (Pi + ^ ) 2 = (P3 + Ό 2 = (r13/2 + k)2 ' squared total energy in the C M . system,

t = (pι— p3)
2 — (k4 — k2)

2 = r2: squared energy-momentum transfer

C M . system. (4.10)

In <Efk) the complex mass-shell manifold Jic is defined by:

kr =
(4.11)
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Taking into account the definitions (4.10), (4.11) we notice that the variable s is
related to the four-vector keJίc by the following mapping πt (r?3 and r being
kept fixed):

It has been proved inRef. [11] that when r, r 1 3 are kept fixed, real, and such t h a t 1 0 :

(4.13)

then the scattering kernel T(p°,p,r,r°ί3) considered as a function of k = (k°,k)
has an analytic continuation in Jίc\ its analyticity domain 1 1 in Jic is the inverse
image by πt of the s-cut-plane with cuts se[4m2, + oo) s e [ —ί, — oo) and t fixed
in (4.13).

It follows that the intersection of the manifold Jtc with the domain of analytic
continuation of the scattering kernel T(k°, k, r, r°13) when r, r°13 are kept fixed, is
represented by the fco-cut-plane with the following cuts:

pi0)e [(m2 + ί/4)/(m2 - ί/4)1/2, + oo)
(4.14)

p ( O ) e [ - ( m 2 + ί/4)/(m2-ί/4)1/2, - o o ) .

Let us call p[o] = |/m 2 - ί/4 the threshold of the physical region of (4.1). We shall
exploit partially this analyticity domain of T by considering the maximal local
tube inside {Im/c°>0} which is bounded on the real by the open interval Ω =

M^Pmΐ w h o s e c e n t e r i s p-
More precisely, let:

= (P(oθ) + ώO ))/2, α = ( ( ^ 0 ) - P ( o ° W Φ{I*OΪ) = (P ( O ) - P™)2 (4.15)

From the equation of "cycles":

, ( p ( 0 ) - P ( 0 ) ) 2 - α < 0

we conclude that the basis B of the maximal local tube TBφa is defined by:

B={ρ:0<ρ<ί/2\/a}. (4.17)

TBΦa is the bounded connected component 1 2 of the union of "cycles" Γe such that
ρeB. By taking arbitrary functions χ^p), χ2(pm), X^{r(°l), χΛr) w i t n t n e appropriate

1 0 Here we stick to the case when no pseudo-threshold exists in any channel (for instance the π —π
scattering).
1 1 More precisely this is a consequence of Ref. [11] and of the complex Lorentz invariance of the
analyticity domain of the four point function, Ref. [12].
1 2 Whose edge on the real is Ω.
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0 i £(0)

a b Ί c ί W

I c
Fig. 2a and b. Essential support of T(p(0))χ2(p(0)) (see text), (a) For the analyticity on the first sheet;
(b) For the analyticity on the second sheet

properties described in Section 2 (in particular χ2 analytic in TBΦa) we define the
following generalized Fourier transform ^®art in the space:

(4.18)

V,^V)lli=i,..,4

<5(r(i°32 - r2-4m2)δ(4p2 - r2 -4m2)δ(P'v)dpi0)dpdr^dr . (4.19)

The essential support SΆ(ξ{0\ x0) of T(p°)χ(p°) is defined as the convex cone in
(ξi0\ x0) space with apex at the origin, having as equations

whose intersection with the line x 0 = 1 is the set (Fig. 2a)

(4.20)

Application of Theorem 1 then provides bounds of type (2.14) for J% a r t whenever
(ξ{0\x0)φSB. If we further suppose that the wave function {φ^ in (4.17) contains
Gaussian type wave packets, precisely:

with:

(4 22)
ΛΌy (r(0)) '

φ4{r) = e-{r-pr)2χ°χ4{r),

Theorem 2 then yields the following bounds of the scattering amplitude (4.9):

YJV and (ξ(0\x0)φSB,
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q(0)>0 q ( 0 )>0
n(0) p n(0) D(0) p D(0) D (0)

Pθ Γ P m Pθ r PR Pm

a b
Fig. 3a and b. Local tube TBΦa> on the second sheet (see text), (a) Without pole; (b) With a pole inside it

When x 0 = 0, SB contains the positive ξ{0) axis, that means the bounds (4.23) are
valid for all ξ{0)<0.

We have to remark that the only space-time variable which contributes to the
exponential bound is the time ξ{0) (conjugate variable to the squared total energy s
with respect to which we have exploited the analyticity of the scattering amplitude).

In conclusion, we can interprete the bounds (4.23) as giving a precise expression
of causality (in the usual sense). Qualitatively it indicates that the probability of
the scattering process Aί + A2-^>A3-{-A4 decreases exponentially with respect
to the negative time-shift of detection of the final particles with respect to the
initial ones. The constant in the exponent of (4.23) corresponds to the size of the
bounded analyticity domain we have considered in the half-plane I m s > 0 for
s>4m2. Taking more and more analyticity into account, the exponential decrease
is more and more rapid and approaches in some sense the classical limit (i.e. an
infinite rate of decrease); as a matter of fact, due to the space-time spreading of
wave packets, one could not expect a "sharper" expression of causality in the
quantum case.

4.2. Relaxation Time Conditions

Under an additional smoothness postulate, it has been proved from axiomatic
field theory [13] that the two-body scattering kernel has at least locally an analytic
extension in the second Riemann sheet of the s-plane, when the real part of s is
in the elastic region1 3 (4m2 ^ s < 16m2). We can then consider a maximal local tube
on the second sheet: q°<0 with \q°\ <C (see Fig. 3).

This local tube will be defined as a union of manifolds Γρ with end points:
so = 4m2 — ί, 5m= 16m2. The constant C will measure the "distance" of the nearest
singularity from the real axis. (More precisely: C indicates to which cycle Γρ the
nearest singularity belongs.) The equation of "cycles Γρ" for this case reads:

k(0)| + ρ [ ( p ( 0 , _ p(0 ) )2 _ g(0)2 _ a Ί < Q

qm<0 \qi0)\<C

where the constants: α' = ((p°'-p°0)/2)2, P0' = (p°' + pg)/2 and p°', p°0 correspond
to the values s = 16m2, s = 4m2 — ί respectively; more explicitly from (4.12) we have:

+ ί/4)/(m2-ί/4)1/2 i*0>' = 4rn2/(m2-ί/4)1 / 2 - 2 8 m 2 ^ ί g O . (4.25)

The conditions ensuring the boundedness of the domain (4.24) define the basis B
of the local tube TBφa, and one verifies that:

β = { ρ : 0 < ρ < C } C={C/(C 2 + α'),for C2«x'), 1/2]/^(for C 2 ^ α ' ) } . (4.26)

Here we considered the case of an even theory.
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The polar set is then given by:

B={ξ{0):ξ{0)SyC}. (4.27)

By analogous considerations to those of Subsection 4.1 we then define the essential
support Sr

B of T(p°)χ(p°) (see Fig. 2b) as the convex cone in {ξ{0\ x0} space with
χo = Cξ{0); x o ^ 0 . Application of Theorem 2 then leads to the following bounds for
the scattering amplitude (4.9):

l l ^ n (4.28)

VN and for (ξ<°\xo)φSB9 ξeR\ | | ^ | | = {<*0)2 + x§}1/2.
We obtain consequently (for xo = O) an exponential decrease of the scattering

amplitude for all times ξ{0) > 0.
This property expresses the fact that the system of interacting particles Au A2

can produce the final particles A29 A± during an average time which is bounded
by 1/α'C.

According to the above result we can therefore say that the analyticity of the
scattering amplitude in a domain of the second sheet whose size is measured
by C (Fig. 3) is equivalent to the existence of an upper bound 1/α'C on the relaxa-
tion time of the "composite system" due to the interaction of Ax and A2.

We can refine the above result in the case where the extension of the two-body
scattering kernel on the second Riemann sheet is known to be meromorphic in a
bounded domain, with a single pole inside this domain at a point S = SR — iΓ,
Γ>0. We can separate then the pole contribution from an analytic background
in the following way:

Γ(p<°\p,r, rfl)=TR{p^;p, r, r<°>) + ΓB(p<°>,p, r,rft') (4.29)

where:

Upi0\ p, r, r^) = b(p, r, A°iW0) - p

= [2j/m2 - t/4(s -sR + ίΓ)] " 1 b . (4.30)

b is a constant 1 4 and TB(p°, p, r, r?3) an analytic function inside the maximal local
tube that we can construct as previously discussed. That means that for q°<0
we have: \q°\<C1 (see Fig. 3b) and the constant Cί determines again to which
cycle Γρ the nearest singularity (apart from the pole) belongs. Similar equations
as (4.24,...,4.27) then hold with the replacements C-+C\ and the generalized
Fourier transform J% a r t reads:

^ part — ** part ^ ^ part

The explicit evaluation of the pole contribution gives:

= c n s t e~ i(pR)ξ(0)" 2 ( p « 0 ) ~ p ( O ) ) « i ? ) j c o ) e - KP^ - P ( 0 ) ) 2 -^O)2]^o-<J<°^(0)

 β ( 4 . 3 2 )

The scattering amplitude (4.9) can be separated in the same way:

S{φ}(ξ) = SR{φ}(ξnSB{φ}(ξ). (4.33)

1 4 In P ( 0 ) space.
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SB satisfies bounds of type (4.28) and on the other hand one verifies that:

for \p^-P\>\qTU | S * { φ } ( £ ( 0 U 0 ^

(x^ = γξ(°\ξW>0). (4.34)

The last case in (4.34) expresses the fact that the "relaxation time" contribution
of the "resonance" is limited as the isolated pole approaches the boundary of the
local tube.
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Appendix

Proof of Theorem 2. (i)^(ii) is a direct corollary of Theorem 1 since in view of the
latter it is equivalent to state that MφeΘ(ω\ /φ(/?i) is analytic in TBΦa,> or that:

Vα' < α " ; VN>0, Mχx in 2>Λ.{Ω*')

l^partfc fφ)\ <c'Ne-*'x°/(l + H*! \\N). (A.I)

Let us show that each constant CN can be rewritten CN\\φ\\m, with CN independent
of φ. In Theorem 1, the constants CN are proportional to sup\g(p)\ g being a
bounded primitive of / ; here similarly, the function fφ{pι) admits a bounded
primitive (of a certain order):

dφ(Pi)= ί 0(Pi> P2)φ(P2)dp2 , (A.2)

where g is a distribution of order m in p2\ we thus have an inequality of the form:
suPl0<p(Pi)l<CΊI<PlL> a n d this accounts for the φ dependence of the right hand
side of (A.I).

Conversely, this dependence is necessary to be able to prove in (ii)->(i) the fact
that φ->fφ is a continuous linear functional (i.e. a distribution).

A proof that (i)-»(iii) could be given along the same line as the proof of Theo-
rem 1 (by making use of a contour deformation in the variables p x); however it is
simpler to prove directly that (ii)*±(iii).

(ii)->(iii): Let β be such that a < β < a" < α, and such that χ1 [chosen in 3Ja{Qa>)
also belongs to £%β(ΩΛ>)~\.

We then choose a sphere ω centered at P2 such that condition (2.19) be satisfied,
but with the exponential e~βx° instead oίe~ax°. Let us now choose the test function
φ as follows:

φ(P2) = χ2(P2)e~iP2-P2)2χoe-ίp2X2 (A.3)
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with χ2(P2)as i n (ϋi) a n d xo> X2 given constants. With this choice we obviously have:

^totiXl'Xl'f)(Xu X2> ̂ θ) = ̂ part(ZrΛ>XXl' Xθ) (A.4)

and assumption (2.19) readily entails:

- ^ / ( l + ll^ilΓ) (A.5)

[valid in the region (2.23)].
In view of (A.3), evaluation of \\φ\\m yields the majorization:

( A 6 )

&*(x0) is a certain fixed polynomial in x0 which can be absorbed in the exponential
if we majorize e~βx° by e~aXo\ inequality (2.22) is thus established in the region
(2.23).

(iii)-»(ii): Let us define:

F(XU X2, Xo) = ^r

part(Xl'f(P'e->P2*2)(Xli *θ) -

For every test function χ2 satisfying (iii), with suppχ 2Dsuppφ, and χ2 positive in
the interior of its support, we can write:

• {[Z2(P2)]-1φ(P2)e{pl-p^x°}dp1dp2 . (A.7)

Then putting:

G(x2, x o ) = j e-ί»^[χ2(p2)Γ1φ(P2)e(P2-P2μx°dp2 (A.8)

it follows that

u x29 x o ) = J^tottii'Xi'fXxu xi-x'i, xo)G(x2> xo)dx2 • (A.9)

Because of the properties of x2{p2Y
l and φ(p2), Eq. (A.8) yields the following

majorization for G{x2, x0):

\G(x'2,x0)\<cN\\φ\\me^2/(l + \\xf

2\\N) (A. 10)

where ρ is the radius of the sphere ω.
On the other hand by choosing xl9x0 inside the region (2.23) and taking into

account (2.22), we have:

| ^ t o t ( x 1 , x 2 - x 2 , x 0 ) | ^ ^ ( l + | | x 2 - X 2 l l > " ^ ° 5 with a'<β<a"<ot (A.ll)

such that χίe^(ΩCX').
By inserting the bounds (A. 10), (A.ll) into (A.9) we obtain:

The integral on the right hand side of (A. 12) is bounded by a (finite) constant
and we can always take ρ as small as we wish and such that β — ρ2>a. Noting
that F(xl9 0, xo) = ̂ part(Xi 'fφ)(χi, *o)> w e s e e t n a t t h e bound (2.19) readily follows
from (A. 12) and holds in region (2.20).
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Note Added in Proof. In the line which follows formula (3.21) (and similarly for (3.24)) replace

t r , x o ) ί 5 β b y :

VxtreIR2, x o -Inf(C s , lA)[α + (inf(

In the line which follows formula (4.23) (respectively (4.28)) replace: V(ξ(0\x0)φSB by:

\p{0)\

(resp. Vxo = C|ί(O) |, ξ{0)>0).






