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Abstract. Finite-spin systems with ferromagnetic, finite range interactions are
considered. Using Ruelle’s theorem on zeros of polynomials contracted
according to Asano, analyticity of pressure and correlation functions is proved.
A description of all translation invariant equilibrium states at low temperatures
for a large class of systems is given.

Introduction

We develop here further the technique of [13, 14]. In combination with the results
of [6] it allows us to complete a picture of classical spin systems with ferromagnetic
interactions at low temperatures.

If J is any finite range ferromagnetic interaction one associates with it a
family 2(J) of functions on the configuration space and proves that for low
enough temperatures all translation invariant equilibrium states agree on elements
of this family.

Furthermore, the symmetriy group & is introduced. It acts on the configura-
tion space of the system by flipping spins at lattice sites in such a way that leaves
the energy invariant. Let, for Ge.%, o be the (equilibrium) state fio* (f-G),’
and for any probability measure y on & let

.= J# 06 MdG). 0.1)

The group &(J) and the family 2(J) are closely related: the closed linear span
of AU(J) consists exactly of all &#-invariant functions. From the uniqueness on
A(J) we weduce — this is our main result — that for any ferromagnetic spin system
with finite range interaction all Z’-invariant equilibrium states at low enough
temperature have the integral representation (0.1).

The representation is made unique by intergrating over &/ * instead of &
where &7 is the isotropy subgroup of ¢ *. Z" acts on /¥ * in a natural way, and
0, is Z’-invariant iff u is, g, is ergodic iff u is. Thus the description of all invariant
equilibrium states at low temperatures is reduced, in a sense, to finding &/%*

*  Research supported in part by AFOSR F 44620 71-C-0108 and by US NSF Grant GP 39048.
1 o" is the equilibrium state defined by fixing the maximal spin outside A and letting 4 /* co, Section
2.1.
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and to describing Z'-ergodic measures on this group; we consider this problem
in Section 5.

Most of the results of this paper are obtained by first reducing to the spin 3 case
by a method due to Griffiths. Then the analyticity of pressure, needed in the proof
of uniqueness on A(J), is demonstrated using Ruelle’s theorem on zeros of poly-
nomials contracted according to Asano; and in an unpublished proof of the
results of [6], which are used in Section 5 in a discussion of /%™, an extension
of Peierls’ argument is employed.

In applying the Asano contraction method to the problems of the present
paper we make extensive use of the connection between the Asano decomposition
and a decomposition property of a group appearing in High Temperature Ex-
pansion; this connection was noticed earlier [13]. The decomposition property
of the group — Theorem 3.5 below — is the single most difficult result needed here.
In full generality, as used in this paper, we owe this decomposition theorem to
Holsztyriski [5]; we proved it for a class of systems in [13].

In more detail, the content of the present paper is as follows. Section 1: de-
finitions and properties of equilibrium states, Griffiths’ representation of systems
of arbitrary spin in terms of spin } systems and some inequalities. Section 2:
definition and properties of the state ¢*, the symmetry group ., the subgroup
ST, the integral representation. Section 3: Low Temperature Expansion, the
groups I' and ¢, Ruelle’s theorem on Asano contractions, Asano contractions
and a decomposition property of 2", Holsztyfski’s theorem. Section 4: analyticity
properties of pressure, the analyticity and uniqueness theorem, zero-temperature
limit of the entropy and states. Section 5: determination of ergodic equilibrium
states in a number of cases, theorem on /%™ for systems in Z”, criterion of the
finiteness of the number of ergodic equilibrium states at low temperatures,
factorizable systems. Section 6: remarks.

A number of papers on application of Asano contractions technique through
Ruelle’s theorem is listed in [13)%; cf. also [20, 21, 22]. For references to papers
on Low and High Temperature Expansions we refer to [13, 14]. An Ising model
version of [13, Lemma 6] appeared in [23].

As noted in [13 Sec. 4.10] most of the results admit a generalization to systems
with interactions dominated by their ferromagnetic part; we omit here the precise
formulation.

1. Equilibrium States

1.1. Let m be a positive integer and let IL be a denumerable set. A configuration
of spin % classical system onIL is a function fromIL to {—m, —m+2,...,m—2,m}.
The set

X={—m, —m+2,...,m}",
we write sometimes % , of all configurations is made into a compact separable

space by the product topology. s,, aclL, will denote the function on £ which to
each configuration assigns its value at the point a.

2 See especially [15, 10]. For finite systems the contour homomorphism y and the group % were

introduced in [10].
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A multiplicity function (m.f)), [4], is a function from IL to {0,1,2,...}, zero at
almost all points. For a m.f. A4 we define

supp(A4)={aelL: A(a)*+0}
,AI = Zaesupp(A) A(a)

and

Sq4= Haesupp(A) S;{(a) .
When m=1 we write o, instead of s,. A m.f. 4 is called even if A(a) is an even
number for all aesupp(A4). The addition of m.f’s is defined pointwise:

(A + B)(a)= A(a)+ B(a),
so that

S4'SB=S4+B-

An interaction, say J, is a real valued function on the set of m.f’s such that for
any aell

ZB:aesupp(B) mlBll‘](B)l<OO . (11)

The support of J is denoted by %, or %(J), and its elements are called bonds.
Interactions form a vector space over IR.

Let A be a finite subset of IL. The Gibbs state in A corresponding to a con-
figuration Yin IL\A, to an interaction J and to a temperature §~! ascribes to a
configuration X on A the probability

QX(X) = (Zﬁ)_ ! exp Zsupp(B) NAF6 K(B)SB(Xs Y) (1 2)
where K(B)= J(B),

ZX = ZXEBZA 2.9Y Zsupp B)nA*F¢ K(B)SB(Xa Y)

and X, Yis the configuration inIL equal to X in A and to Yin IL\A.

Let A be the C*-algebra of complex continuous functions on Z and let 2,
be the subalgebra of the functions depending on the restrictions of configurations
to A only; A, will be identified with (% ,).

A probability measure on &, or, equivalently, a state of 2 is called an equi-
librium state (corresponding to K) if when restricted to 2 ,, A finite, it is a combina-
tion of the states {o}y:

o(f)=[ex(f)esdy), fe¥,, (1.3)

where ¢, is a measure on £\ 4.

The set of all equilibrium states is dentoed by 4; we write Ay or 4, , when
discussing the dependence of A on the interaction and f. 4 is a compact separable
space when equipped with the w*-topology, which in our case is defined by the
family of functions pr>g(s,), A running through the set of all m.f.’s.® 4 is a Choquet

3 Infact any s, is a linear combination of s, with supp(4')Csupp(4) and A'(a)<m [4, footnote 8]
but we will not use this reduction.
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simplex, i.e. for each ge 4 there exists (unique) measure carried by the set £(4) of the
extremal points of 4 with the resultant g.*

1.2. IL will be called a (v-dimensional) lattice if it is a discrete Z® invariant
subset of R”. Since the injection of IL in R” will be of no importance in what follows
we could define a lattice as a free Z"-space with a finite number of orbits. We write
a+ x or 1,(a) for the translate of aell by xeZ".

The set of translation invariant equilibrium states is denoted by A'; 4 is
also a Choquet simplex. Considering the induced action of Z' on the set of m.f.’s
we call a subfamily %, of # fundamental if each bond is congruent with exactly
one element of %,. Similarly one defines a fundamental subset for any Z*-space,
as for instance IL.

Let the interaction be translation invariant and let

ZA = erEFA eXp Zsupp(B)cA K(B)SB(X) .

The pressure

1
K)= lim —
pK)= lm 7

exists and is a convex function of K; here the limit is understood in the Van Hove
sense.’
For any translation invariant state ¢ the mean energy

. 1
lim Q(“ Zsupp(B)C A K(B)SB)
A—- |A|

is equal to —o(} pes, K(B)sp) where %, is any fundamental family of bonds.
A translation invariant state on U is a translation invariant equilibrium state if
and only if

p(K)=5(0) + 0} pem, K(B)sg)
where s(g) is the entropy of the state ¢ [8].
1.3. Proposition. Let A be a m.f. and let the interaction K 4 be defined by

1 if Bisatranslate of A
0 otherwise .

logZ,

K.(8)- |

If the function A—p(K + AK ,) is differentiable at zero then g(s,) has the same value
for all ge A and

d
o(s4)= 7 p(K+AK ;=0 -

One can prove this proposition as indicated in [13, Section 1.4]. Another
proof, which yields corresponding result also for quantum lattice systems can

be based on [19]. Still another, a more direct one, will presumably appear in [7].
4 We refer to [1], [8] for the notion and properties of equilibrium states.

> The usual definition of the Van Hove limit ([11], Section 2.1), and the theorem on the convergence
of pressure and entropy generalizes easily to our case. In fact we will use very regular nets only (Theorem
4.5).
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14. Our results for arbitrary spin are obtained through Griffiths’ representa-
tion by spin % systems:
For any set IL define

L"=ILx{l,...,m}, Z"={1, -1},
and for any m.f. BonIL

O gm = Haeﬂ_(o-a,l + ... +0a,m)B(a) :

g 18 a function on Z™.
m

5 system in A. It

Let A be a finite set and let K be an interaction of a spin
was shown in [4] that the partition function

Z= ZXezm exp ) 5 K(B)sy(X)
is equal to

ZXGQ":T CXp [ZB K(B)O-B”‘ + ZaeA Z:‘?Zs= 1 Kr, s(o-a, ro-a,s - 1)] (X) (14)6
with suitably chosen K, ; a possible choice is

K, ,=3logr+1) if s=r+1,r=1,...m—1 (1.5)

0 otherwise .

Similarly, for the (magnetic) correlation functions

os)=2"" ZXeer s4(X) eXpZB K(B)sp(X)
one has the formula

o(s))=2" ! ZXefz‘:'; o m(X)exp [ZB K(B)o g

+ ZaeA :'js—l Kr,s(o-a,ro-a s_l)J(X) (16)

If the original interaction is ferromagnetic, the resulting spin 1 system is ferro-
magnetic too.

From (1.6) and corresponding inequalities for spin } systems, it follows, [4, 3],

that if K(B)=0 then for all m.f’s 4, B
54)=0
o(sg)= (0.7
0(s.48p) Z 0(s1)0(sp) -

If K’ is any interaction such that |[K'(4)|< K(A) for any m.f. 4 then the Gibbs
state ¢’ corresponding to K' is majorized by the one corresponding to K in the
sense that

0(s)=o(sy) foranymf A4. (1.8)

This follows from the corresponding inequality for spin § systems [14, Formula
(G.2)] via (1.6).

Here and in what follows it is assumed that Y .., e, mP|K(B)| < 0.
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We will need later also the following generalization of the inequality (4.19)
of [4]: For a ferromagnetic interaction K define two interactions of spin % system
on A by

R(C)= Y 5-cmP'K(B) and K(C)= ZB miBIK(B),

for odd m. Then

. m m+
where 1 is equal to 3 for even m, and 3

M log(o ) S o(s) Smlog(o) ; (1.9)

here A is the characterlstlc function of {aeA:A(a) is odd} and g, 0z are the
Gibbs states of spin 4 systems on A with interactions K, K.

Inequality (1.9) can be slightly sharpened but it is strong enough to yield our
results on the low temperature behaviour.

2. The State o and the Integral Representation
. . . .. m .
In this section we consider spin £} systems on a denumerable set IL. with a ferro-

magnetic interaction satisfying the condition (1.1).

2.1. Tt is easy to see that the state % fits into the framework of Section 1.4
with an interaction K in A depending on the configuration Y outside of A. If
o corresponds to Y,=m,acll\A, and K* is the corresponding interaction
then for any configuration Y outside of A4 and any m.f. B in A

IK¥(B)| =K™(B).
Therefore, by (1.8),

Qi) Z (s, VY, 4, 2.1)
and by the definition of equilibrium state

ea(s)Zzo(sy), Veed (22)

for any m.f. A in A.

From (2.1), (2.2), and (1.7) one deduces (like, for instance, in [147]) that g} (s,)
converges as A—oo and that the limits define an equilibrium state, denoted ¢,
with the following properties:

Q+(SA);Q(SA) ) VQ€A9 VA (23)
and
0 (sasp) =0 (sa)o"(sp), VA,B. (2.4)

It follows from (2.3) (cf. [147) that ¢ is an extremal equilibrium state and that
it is invariant under any transformation of IL leaving the interaction invariant,

2.2. The Symmetry Group. We define an action of the compact, separable,
abelian group

g={1, —1)*
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on the space Z of configurations: if G=(G,),, €94 and X =(X,),.; €% then
(GX),=G.X,;

G is flipping the a-th coordinate of the configuration if G,= — 1. Obviously, the
mapping ¥ x Z3(G, X)-»GXeZ is continuous.

The dual group to ¢ will be identified with 2 (IL) (equipped with the discrete
topology): the character o4 of ¢ corresponding to Ae 2 (L) is defined by

O-A(G)= naeA Ga . (25)
If A is a.m.f. then we define an element 4 of 2,(IL).
A={aeL:A(a) is odd}, (2.6)

and if 4 is a family of m.f’s then 2 will denote the subgroup of 2 (L) generated
by {B:Be 4}, this notation agrees with that employed in [14] in the spin § case.
We note that for any mf 4 and any Ge¥%

540G=03G)s,. 2.7)

For any state ¢ of U (i.e. any probability measure on &) we denote by g the
state

fieo(f°G);
by (2.7)
06(s4)=0(G)o(s,) - (2.8)

The mapping Gr>g; is continuous when the set of states is equipped with the
w*-topology.
The symmetry group & of the system:

S ={GeY:55°G=sg, YVBe B} (2.9
is a closed subgroup of % and therefore compact. By (2.7),

S ={Ge%:05(G)=1,YBe %} . (2.10)
For Ge¥, ACIL and for Ye % , let (GY),=G,Y,, ac A. If

o(N)= fanax(NEdY), feUy,
then, as is not hard to see,

()= ij\A QﬁyéA(d Y)

for any Ge &. Hence & is leaving invariant the set 4x of equilibrium states. Since
the mapping g->g4 preserves convex combinations gg is an extremal equilibrium
state if g is.

7 For any set IL, Z(IL) denotes the (abelian) group of all subsets of IL. with symmetric difference of
sets as the group operation. 2 ,(IL) is the subgroup of all finite subsets of IL.
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For a probability measure x4 on & we define

2,= [ oG u(dG) Q.11
(2.8) yields

0(s4)=1(07)0" (s54). (2.12)

Let " be the isotropy subgroup of ¢ *:

ST={GeS05=0"}. 2.13)

The function Gr-g¢ is constant on & *-cosets. Therefore the integral in (2.11)
can be transformed into an integral over & /%" or, equivalently, into an integral
over & with respect to a & * -invariant measure. [ G] —0(¢; will denote the function
on /" corresponding to Gi>¢g; by the definition of ", [G]—g is an
injective mapping. We write

0,= [ 0{eu(d[GT) (2.14)

for the integral over &/% ™ that corresponds to (2.11).
Let

BT ={A:0"(s,)+0}

By (2.4), #" is an additive family of m.fs. Therefore, the image of 4™ in 2 (L)
is the group 7. It is not hard to deduce from (1.9) (cf. [14], inequality (6¢)) that
B+ >H. Hence B+ > %A. We also note that by (2.7) and (2.8)

ST ={GeS :5,°G=5,VAcRB"}

. . (2.15)
P ={GeS 0,(G)=1,YAc B}

If the interaction is invariant under a group of tranformations of IL then %, o*
and therefore also & are invariant under this group. Thus we can consider the
action of the group on /% ~.

Let

A ={ged:o(s)=0"(s,) if AeZ}. (2.16)
Obviously, 4™ is a convex and closed subset of 4, and all states 0, arein 4 *,

2.3. Theorem. All elements of A* are of the form (2.14). The mapping p—g,
from probability measures on /¥ to equilibrium states is one-to-one, and (2.14)
gives the decomposition of g, into extremal elements of A. In case the interaction
is invariant under a group of transformations of IL, u is invariant if and only if ¢,
is invariant and  is ergodic if and only if g, is.

For a proof we refer to [14].

2.4. Sometimes it is more convenient to deal with the groups #* and %
than with " and . Then the following identification is useful.

SIS (B |B) . (2.17)

®  The integral here is taken in the weak sense, i.e. g, is the state fi—[q(/)u(dG) which is well defined
by the continuity of Gg4(f).
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This can be shown as follows: Formulas (2.10) and (2.15) can be also written as
S =%+ and F*=B)

where the orthogonality is defined by the pairing
G, A-0a 4(G)

Consider the induced pairing of % and %#7. Corresponding homomorphisms
S —(B7) and B> have ¥* and & as kernels. Therefore one can define
a pairing of &/¥* and %" /7 which separates points of both of these groups.
Since the group &/%* is compact and #7 /2 is discrete this yields, by well
known theorem on duality for compact groups, the result (2.17).

In case the interaction is_invariant under a group of transformations of
IL,#/%* is isomorphic to (#7/%)" also as a group-space. When /%" is
finite it can be identified with %7 /%, but in general not as group-spaces.

3. Spin} and Asano Contractions

The omitted proofs of the results described in this section are trivial modifications
of corresponding parts of [13] or of papers of the reference list of [13].

3.1. In the spin 3 case ' =%. We consider only m.f.’s with values 0,1 and
identify them with corresponding subsets of IL.. We write then o, instead of s,
as in Section 2.2. In what follows it will be convenient to work with the slightly
generalized framework of Sections 1.1-1.4 which we now formulate.

Let & be a set, whose elements will be called bonds, and let there be given a
mapping Bir—op from % to characters of Z. Since the mapping Ao, from
2,IL) to Z is bijective, for each Be % there exists a unique finite subset B of IL
such that ogz=o0j.

One defines homomorphisms

& —>P(B), )(X)= {Be B:ay(X)= —1},
and f—pf from 2 (%) to 2,(IL) extending the mapping Bi—B. Let

r'=Im(y), # =Ker(f>pf), ¥ =Ker(y)

An interaction is a function from 4 to real numbers. If K is an interaction
and Z is a real number then the interaction AK is defined by (1K)(B)=AK(B).
If K’ is another interaction then K + K’ is the interaction with the disjoint sum
of # and 4’ as the set of bonds, equal to K on # and to K’ on #'.

Suppose now that both IL and % are finite and let K be an interaction with
2 as the set of bonds. The partition function is

Z= ZXeer exXp 235@ K(B)og(X),

and the so-called low temperature expansion (LTE) for Z reads

Z=\¥| nBE?Z X ® Zﬂer nBeﬂ e 2K®)
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Let

ZO — Z[isr nBe[i e—ZK(B)
and define a polynomial M in the variables z4;=(z5)5.4 by

M(zg)= Zﬂer 2#?
where z# = [ [ . z5. Then

M(Z.%)IZB=exp—2K(B) = ZO(K) .

3.2. Let P be a complex polynomial in several variables which is of degree 1
with respect to each. That is there is a finite set % and

P(Z‘%)= Zﬂc-% Cﬂzp

Let #= | J; %, be a finite covering of # and let P(zz)= Y sc 4, ¢; s2° be a family
of polynomials. It is aid that P(z,) is the Asano contraction of (P{zg,)); if

cp=[Ticipna
We will say that the variable zy is contracted if B belongs to more than one of
(2);.

Theorem (Ruelle [21]). Let P(zy) be the Asano contraction of (P{zg,)) and let
for each Be %; a subset R; g of the complex plane be given which is closed and does
not contain 0 if zg is contracted.

Suppose that P(zg) is nonzero if zg¢R; p, all Be ;. Then P(zg) does not
vanish when zz¢ — [[;(—=R; p) for all Be#; here for a finite sequence (R))}-,
of subsets of C

[Ti=i Ri={z, ... z,:z;€R, i=1, ..., n}

3.3. Proposition([ 13] Section 2.2). M(zy) is the Asano contraction of (M(zg,)
if and only if the subgroup of P (%) generated by | ); #'; coincides with A" (we write
then: [|); #",1=2").

3.4. Let now IL be a v-dimensional lattice in the sense of Sec. 1.4 and let #
be a family of bonds as in Section 3.1. We assume that in addition to the mapping
BB there is defined another mapping Bsupp(B) from % to 2,(IL)\{#}, and
that always

BcCsupp(B).

We also assume that 8 is a Z'-set and that the actions of Z® on # and IL commute
with both BB and Bi—supp(B); this setup will be of use in Section 4 (cf. Section
4.4 for definitions).

Suppose now that 4 is as above, that K is a Z’-invariant interaction with
bonds % and that for any aell

Y cupp (B0 1K (B)| <00

° In contradistinction to [13, Section 2.2] here M depends not only on the family Z but also on the
mapping Bi—B.
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Then for a finite subset A of IL one defines
#1={BeR:supp(B)CA}, A y=H (A ,)
Z4= Y xex, €XD ) peg, K(B)op(X)
Zhi=Yperean [Ipcpe 2P

If (A) is a Van Hove net then the limits

.1 .1
p=lim—1logZ,, p° = lim — log Z§

4 4 4 4]
0= limilogly |
4 4 4
exist and

p=p"+5°+ ) pea, K(B)
for any fundamental family of bonds 4,.

3.5. Let now IL and % be as in the preceding section and assume that % has
a finite fundamental family. Let I, be a fundamental subfamily of IL. For a subset
A of Z’ we set

A= {a+x:aelly, xe A} .

Theorem. There exists a parallelepiped AyCZ’ such that for any large enough
parallelepiped A CZ’

A= #%]

where {A;} are the translates of A, contained in A.
Thisis a special case of Theorem 1, §5 of [5]: Define a function s: 2 (%)—Z’ by

s(B)=Upep {x€Z":supp(z _(B)) intersects IL,}

and consider the natural action of Z* on 2 /(%) and on itself. Abelian groups
can be always considered as Z-modules, in our case even Z,-modules, and it is
easy to see that since %, is finite the Z,[Z*]-module 2 (%) is a finite A[G] module,
A=7Z,,G=7’, in the sense of [5]. Now to get the needed result we can apply
Theorem 1, §5 of [5] to M =2 (%), My= " and the convenient family of [5, §6].

3.6. The correlation functions will be investigated with help of Proposition 1.3.
Therefore we need information on the change of the polynomials M(z,) under
suitable changes of the interaction, [13, Section 1.7]:

Suppose that Ay, ..., A,e# and let B =RBI{A,, ..., A} Let ay, ..., 0,6 P(B)
be such that o, =A; and let o;=0,0{A4;}. Then A (#') is generated by A (B)v
{a, .00}

The polynomials M(z,) have especially simple structure when o; are minimal
subfamilies of 4 that yield 4;. Namely, consider a family « of bonds with the
property that 5 («) is trivial; let A=& and o' =aU{A4}. Then, [13, Sec. 2.3],

M(Za')z % [(1 +ZA) nBea (1 +ZB)+(1 ~ZA) HBeoz(l _ZB)] . (31)
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We will need the following property of M(z,):

There exists a function §—¢(0), 8, >0, such that |z,—1| <6 and |zg+ 1] >¢&(9),
Beo, imply that M(z,)#+0

This follows readily from (3.1) and can be sharpened as follows.

Let D(A) be the interior of the circle which is symmetric with respect to the
real axis and is passing through points (1—A)(1+4)~! and (14+2)(1 -4~

Then M(z,)+0 if z,e D() and z,e —D( P |) 0<i<1.

3.7. If |u|=2 then M(z,)+0 for z, real, 0=z, <1, and |z|< 1, Bea.
This can be shown straightforward; cf. also [17] Theorem 1.3, and Lemma 1.4.

4. Analyticity and Uniqueness

4.1. Reduced Pressure. LetIL be a v-dimensional lattice in the sense of Section 1.2
and let IL, be a fundamental subset of IL. Let 4 be the family of bonds of a spin

5 system with an interaction K and with a finite fundamental family %,. For a

finite subset A of IL the partition function
Zy= ZXeezA exp Zse 2., K(B)sp(X)

where # ,={Be %:supp BC A} will be written as
Z =S 41 (€xpY pea, M K(B)Z] ;

here % , is the symmetry group of the subsystem in A defined as in (2.9).
It is not hard to see that the Van Hove limits

s%= lim — 10 |# lim — Y 5.5, mPIK(B 4.1)
|A| g AI P |A ZB B ( )

exist, the second being equal to Y p. 5, m'®'K(B). Therefore also exists
0= lim — lo Z8
p P IAI g A
and
p=p°+5"+ Y pea, "' K(B);
p° will be called the reduced pressure.

4.2. To introduce the spin 4 system on IL™ corresponding to the system of the
preceding section we define first the bonds. For each Be # we need such a family
B™ of bonds (in the sense of Section 3.1) of the spin 4 system that

B
Haesupp(B) (O-a, 1 +... +Ua, ) (a) ZCGB"” GC

Let us therefore introduce for each (a,i,n)elLx {1, ...,m} xIN a variable X, ; ,;
let B™ be the family of monomials of the polynomial

B
Haesupp(B) nng)l (Xa,l,n+ +Xa,m,n)
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and let

e@m = UBE@ Bm .
The support is defined by

Supp (Hr Xa,-, iy, nr) = {(ar’ ir)}r )
the action of Z* on 4" by

Tx(]__[r Xar, i, nr) = nr Xar+x, iy, Ny
and B—B by

],—_[Xar, ir,nrH Zr {(ar’ lr)}

where ), means addition in the group 2(IL™). We define an interaction K™ of
spin % system:

K™(C)=K(B) if CeB" .

and an interaction R™ with {(a, i), (a, j):a€ll,i,j=1, ..., m} as the set of bonds and
(L.5) as the coefficients.

4.3. The reduced pressures of the original and the spin % systems are related
as follows:

p°(K)=mp°(K™ +R™). 4.2)

This follows from (1.4) and the following observations: &%, and % ;. are of the
same cardinality since, due to the interaction R™, in every configuration of & 4m
the spins at (a, r) and (a, 5) are aligned; |B"| =m'®l and | 4™ =m]|A|.

4.4. From now on we assume that ( Jp.4supp(B)=IL. Otherwise, as is seen
from the definition of equilibrium state, one can factor out the zero-interaction
state on IL\| ) g4 supp (B).

We note that the bonds of R™ are in ™. More precisely, for any (a, i))elL™, i <m,
there exist Cy, C,e #™ such that

Cl + 62 = {(aa l)’ (aa l+ 1)} . (4’3)
For, let Be % be such that aesupp(B) and consider, for instance,

_ B(a) B(b)
Cl '—Xa,i,l Hn(=2 Xa,l,n Hbesupp(B) l—[n=1 Xb,l,n
b*a
_ B(a) B(b)
CZ—Xa,i+l,1 nnSZ Xa,l,n nbssupp(B) Hn(=1 Xb,l,n
b*a

then (5.3) holds.

We also note that if A is such an m.f. that Ac & then A™C ™.

For it is seen from the definitions of A™ and Ci—C, Ce A™, that if A=A, + A4,
(in the sense that A(a)=A,(a)+A,(a), all acll) then A™C AT+ A% If we now
define A,(a)=1if A(a) is odd and 0 otherwise, then A,(a)= A(a)— A,(a) is an even,
non-negative integer and A=A, + A,. Since, as noted above, {(a, i), (aki+1)}e
RB", ATC A" Tt is also clear that AT C 7"
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4.5. Theorem'®. Let 1L, B, B, be as in Section4.1. Then there exist positive
numbers rg, Be 8, such that

(a) there exists a function f of complex variables zg,=(zp)p.gm,, analytic in the
polydisc |zg| <ry such that for any interaction K with bonds %

f(Z@O)[anxp —2K(B) =PO(K)

if exp —2K(B) <ryg;

(b) if exp —2K(B)<ry then for each mf. A such that A, o(s,) has the same
value for all ge Ak, and o(s,) extend to an analytic function of the variables z 4,
as in (a) (for definitions of 4 and £ cf. (2.6) and following text).

We consider first the spin 5 case.

Let M*(z4,) be the polynomial in the variables z,, obtained from M(z4,)
by substitution zg, Be %4, for each zy, B'e 4 ,, for which B’ is congruent with B.
Since

MA(Z@O)IZB =exp — 2K(B) = Z?l(K)

and M“ has non-negative coefficients, to be able to apply the Lee-Yang method!*
it is enough to find a van Hove net 4, such that M“o(zg,) +0if |z5| <rp. By Proposi-
tion 3.3 and Theorem 3.4, there exists a parallelepiped A,CZ" such that for each
large enough parallelepiped A in Z', M(z4 ) is the Asano contraction of
(M(zg u.)), where {A;} are the translates of A, that are contained in A. M(z4 4)
is a polynomial with free term equal to 1. Therefore it is non-zero if all its arguments
are small enough, say |zg| <r. On the other hand each Be4 is contained in no
more than |4y| of {# &4. Therefore, by Theorem 3.2, M(zLo) 0 if |z <yl Be
28%°. This yields the required property of M"'LO(Z%).

To prove (b), again in the spin % case, we consider an interaction K’ with
one-element family {4} of fundamental bonds and such that AeB. We fix ae P (%)
such that =4 and such that no subset of o has this property. If Ce #(K') then
by o we denote the translate of « that yields C and we set oz =aU{C}. For ACIL,
we set

B =B ,0{CeBK)}:0cCRB,} .

Since A (%) is generated by A4 (#,) and {oc:0cC%,} (Section 3.5), M(z4,)
is the Asano contraction of M(zg,) and (M(z,.))y.c s, (Proposition 33). On the
other hand, for each §>0 there exists &(6) such that |zo—1|<d and |zz+1|>¢,
Beog, implies that M(z,,)+0, all Ce #(K’) (Section 3.6). The variables z. are
not contracted in passing from M(zz,) and (M(z,.))c to M(zg4,). Therefore, by
Theorem 3.2, if M(z,,)%0 for |z5<rp then M(zg,)#0 for |zg <rg (1—g)
and |zo— 1| < §; here the power || is due to the fact that a bond of % can appear
in at most |o| of ac’s.

10 Cf. [13] in the case of spin § regular systems in Z'. Ref. [20] containes a remark that the results
of [13] refer only to systems with even bonds. This, and some of the claims of generalizations, seems
to result from overlooking Section 2.5 of [13] and of the need of a result like Theorem 3.5.

11 See [11, p. 111] (also [13, Section 2.4]). The multivariable version of the Vitali theorem can be
found in [18]. We don’t have a reference for corresponding generalization of the Hurwitz’s theorem
but it is not hard to see that it holds.
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Let us now take A of the type P™ where P is a large enough parallelepiped
inZ*. By the first part of the proof M(zg ) =#0 if |z5| <rp(rs =7/l there) and, by the
argument above, the polynomial M“(z,4,) if the variables zz, =(z4,z,) obtained
from M(zg,) as M*(zg,) from M(zg,) is non-zero if |zg|<rg-(1—¢)*4l, Be 4,,
|z, —1]<0.

It is clear that

A
M (Z?/%)lza=exp—ZK(B),ZA=exp—2K’(A) .

differs from Z%(K 4+ K’) in a way that does not affect the thermodynamic limit.
Therefore we conclude that for each 6 >0 there exists ¢(6)>0, &(6)—0 as 6—0,
and a function f; of the complex variables zg analytic in the polydisc
|zgl <rp-(1—e)*l Be B, |z, — 1| <e and such that

JoZap)|zn=exp— 2K(B), z.4=exp—2K(4) = p’(K+K).

Now Proposition 1.3 shows that (b) holds in the regions exp —2K(B)<rg:
(1—¢(8))1*4l, § varied. Letting 6—0 concludes the proof in the spin 4 case.

The above statements about the existence and properties of f; remain true,
with obvious modifications, in case K’ is any interaction with a finite fundamental
family of bonds and such that Z(K')C Z(K). Hence the (a)-part of the theorem
for higher spins can be proved by reference to (4.2) and by noting that, because of
(4.3) and Section 3.7, the polydisc of analyticity of p°(K™+R™) in the variables
Zgokmy» R™ real, is the same as the one of p°(K™). The method of the proof of b)
in the spin 4 case when applied to p°(K™+ R™+ 1K™) yields (b) for general spin;
one has to use the fact that 4™ C #™ (Section 4.2).

4.6. Corollary. For any ferromagnetic, finite range interaction system on a
lattice the entropy is the same for all translation invariant equilibrium states at low
enough temperature and has s° (cf. (4.1)) as the zero-temperature limit.

This can be proved as Proposition 2.6 of [13].

4.7. Remarks. (a) If L=7" then s°=log2 when 4 is trivial and s°=0 other-
wise. In general 0<s° <log2. It seems that is always a multiple of [IL,| ™! x log2.

(b) After [13] was published, I came across the paper [9] by Leff where the
entropy of ferromagnetic spin 4 systems at low temperatures is discussed. In [9]
it is not assumed that the interaction is of a finite range; the assumption that
nearest neighbours interact is not essential: the one-dimensional Ising system
used for estimates in [9] can be replaced by trivial systems in the sense of [13,
Section 3.5]. However, in [9] a different definition of the entropy is employed
making hard a comparison with Corollary 4.6.

(¢) It can be shown that s° is the entropy of the state defined as follows: it is
the image of the Haar measure on % under the mapping & —% defined by

(Xa)aell,_’(m' Xa)aell_e'%‘ .

In case of spin 3 systems & —Z is the inclusion mapping.

(d) From (2.11) and Theorem 4.5 one deduces the following about the zero-
temperature limit of invariant equilibrium states:

The limit points of invariant equilibrium states as T—0 are & " -invariant
measures on & concentrated (in the spin § case) on &. For example, %i_r'% 0" is the
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Haar measure of &7, and %irr(l) o™ is the Haar measure of &. Here implicit is the

fact that for low enough temperatures the group &* is temperature independent
[cf. Section 7.6(b)]. For higher spin systems one has to consider the image measures
in & asin (c).

4.8. We now summarize the results obtained so far. Combining Theorems
4.5 and 2.3 we get the following picture.

For any ferromagnetic, finite range interaction the invariant equilibrium
states are at low enough temperature described by Z*-invariant measures on the
compact group /%" with ergodic states corresponding to ergodic measures.
Since /¥ is the dual group of #* /% (Section 2.4) and Z# is temperature in-
dependent and defined directly in terms of the interaction the problem is in a
sense reduced to finding 4. This is discussed in the next section.

5. Examples. Systems in Z*

5.1. Suppose that the ferromagnetic finite range interaction on a lattice IL has
only even bonds, as in the case of

- Z Jabsgsg 9 Jab>0 (61)

Then 4 is trivial and therefore ¥ =%. It is also not hard to see, directly from (1.2),
that any equilibrium state is %-invariant. This yields & =.%" and the conclusion
that for such systems there is only one invariant equilibrium state for low enough
temperatures.

In the case of spin 1 systems with interaction (6.1) the invariant equilibrium
state is unique at all temperatures: the energy when written in terms of spin 3
variables g, ,, 0, , takes the form

Za,b Ja,bstfsg = Za,b Ja, b(z +20a, lo-a, 2) (2 + 2O.b, 1> Gb, 2)
:4Za,b(Ja,b+Ja,b’ca+‘]a,btb+‘]a,btarb)

where 1,=0, 10, ,T,=0, 10 ,; i.€. it has the same structure as ferromagnetic,
spin 3, two-body interaction with an external field. This remark can be developed
into a proof (cf. the proof of Theorem 4.5).

5.2. Aslightly larger family than that of Section 5.1 is formed by trivial systems.
These are systems for which 4 is generated by translates of one of its elements.

In this case the invariant equilibrium state is again unique at low tempera-
tures. In case of spin ; systems one has uniqueness for all temperaturs [13].

5.3. IfIL splits into more than one %#-component [13, Section 4.9]:
IL= UiILi

and &, & are the corresponding groups then
LIS =L LT

and the action of Z¥ on /%" is reduced to the action on {IL;} and & /& .
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54. Interactions of the Type
_Za,bJa,bSaSb9 Jab>0

onZ’. By Section 5.3 it is enough to consider the case when Z" is connected with
respect to the interaction. Then [13, Section 4.9] &4 is the family of all finite, even
subsets of Z* and hence & has just two elements E, F:

E,=1,F,=—1, all aeZ’.

On the other hand, by Section 5.6, #" =2 (Z") which implies that & ={E}.
Thus &/%* has two elements, both of them invariant under Z*. It follows that
there are exactly two ergodic states at low enough temperatures.

The same holds for interaction of the type

— Yanadab, Asss4— Y gJ(B), J>0
with even m.f.’s 4, B, provided Z" is connected with respect to the family
{{a, b}: there exists Asuchthat J(a, b, A)%0}.

5.5. Ferromagnetic interaction of the type

- ZA J(A)s,— Za JaSa

leads to a unique invariant equilibrium state at low temperatures since in this
case #=2 (). Similarly for any ferromagnetic interaction with #=2,(L), as
for instance

Za,b J(ao b)sasb"' Za,b,c J(aa ba c)sasbsc

__5.6. The inequalities (1.9) and (1.8) imply that for a system of arbitrary spin
A~ at low temperatures is the same as for spin 3 system with bonds

{B:Be %)} .

This allows the results of [6] to extend as described below; for completeness we
repeat the definitions from [6].
One defines in the abelian group 2 ,(Z") a ring structure by setting

A‘B= zaeA’beB{a‘Fb} A,BG@/(ZV);
the sum ) is taken here in 2 (") and a+b in Z". The mapping
A characteristic function of A

gives an isomorphism of this ring, in fact an algebra over the field IF, = {0,1},
with the group algebra IF,[Z"]. We write IF,[Z"] instead of 2 ,(Z') when con-
sidering this ring structure.

Let X,,..., X, be the elements of IF,[Z"] corresponding to the elements of
the natural basis of Z":

Xi={(5ij)jv'=1}°
For aeZ® we set

Xe=X%.. X%
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Each element of IF,[Z"] can be written as
ZasA Xa (62)

and, under the above identification of IF,[Z"] and 2 (Z"), (6.2) is identified with A.
As is easy to see, X% aeZ’, are the only invertible elements (units) of IF,{Z"];
multiplication by X° leads to the translation by a of the corresponding subset
of Z’. The subalgebra of IF;[Z"] generated by X, ..., X, is isomorphic to the
algebralF;[ X, ..., X,] of polynomials in v variables over IF;. Since each element
of IF;[ X4, ..., X,] admits unique facorization into prime elements and each
element of IF,[Z"] after multiplication by a unit is in IF;[ X, ..., X,],IF;[Z"]
has also the unique factorization property. It follows that for any family of elements
of IF,[Z"] there is a unique up to a X“-factor greatest common divisor.

An element A of IF,[Z"] will be called regular if there exist a,a,,...,a,eZ’
and polynomials Py, ..., P, in one variable such that

A=XP,(X)...P(X™),

and X%, ... X (together with their inverses) generate IF;[Z"]. If a;={(J;))j=1}
this amounts to saying that A4 factorizes into cartesian product of subsets of Z.
A, or the system, is called regular if % contains a regular element.

Theorem. Suppose that & is regular. Then for low enough temperatures B~ is
the principal ideal (D) of IF,[Z"] generated by a greatest common divisor (g.c.d.)
D of {B:Be%). L

In other words, #7 is the smallest Z'-invariant subgroup of 2,(Z") that
contains D. As in [6], it is natural to conjecture that the theorem holds without
the regularity assumption. We illustrate the theorem by showing that in the
example of Section 5.4 B =2 +(Z") at low enough temperatures, and by applying
it in Section 5.8; further examples and a discussion can be found in [6].

Suppose that % consists of all finite, even subsets of Z'. Then # contains
1+Xy,...,1+X, It follows that the interaction is regular and that D=1 is
a gcd. By Theorem " =IF4(Z"]- 1 =IF,[Z"](= 2 (Z")).

5.7. If, in the setup of the preceding section, D is a g.c.d. for 4, then, as far as
the problem of determination of ¥/%* is concerned, we can in the spin } case
pass to a system with bonds %'

#={B-D:B'e#'}.
After this reduction

B =2,I), S+ =1{0}
and, see [6, Remark],

SIS =T

Therefore, the following yields a criterion of the finiteness of the number of ergodic
equilibrium states at low temperatures in general.

& isfinite if and only if there exist n,,...,n,eZ such that {0,n,e,},...,{0,n.e,} e A.
(Here ey, ..., e, can be replaced by any family of v linearly independent elements
of Z")
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Finiteness of % is equivalent to the finiteness of @f(lv)/%’ If {0,nye}, ..
{0, n,e,}€ # then, obviously, each element of 2 (Z) is congruent mod % w1th a
subset of [0, (n; —1)e;]x...x[0,(n,—1)e,]; this shows that our condition is
sufficient. Suppose now that 2 (Z”)/%7 is finite. Then there exist a finite subfamily,
say .o, of Z,(Z’) with the property that for any CeZ(Z") there exists Ae.o/
such that C+ Ae 4. Let therefore A,e.o/ be such that {ne1}+A € B, nel. Since

o is finite A, = A, for some n'+n". It follows that {n'e,, n"e;}e 2% and, by in-
variance under translations, also {0, (n'—n")e,}e4. Repeating the same with
ey, ..., e, we get that our condition is also a necessary one.

An alternative formulation of the criterion: % is finite iff % contains a set of
the form {(0, a): a running through a v-dimensional sublattice of Z"}.

It can be shown that if, in a reduced case, the above condition is not satisfied
then the system admits infinitely many ergodic states at low enough temperature.

5.8. In this section we consider in some detail factorizable models: models
onZ’ such that 4 is generated by polynomials in one variable. For any factorizable
model there exist Py, ..., P,elF,[Z] such that the ideal Z of IF,[Z"] is generated
by Pi(X}), ..., P(X,). The Ising model in v dimensions is of this type with P(X)=
1+X,i=1,...,v

It is plain that if at least two of {P;} are non-zero then the g.c.d. is a unit.
Therefore by Theorem 5.6, in such a case 8" =2 ,(Z’) and hence /S " > .
Moreover, if some of {P;} vanish then (cf. Section 5.3) the problem reduces to a
similar one in a lower dimension with all of the polynomials non-zero, and it is
not hard to see that one has continuously many ergodic equilibrium states at low
tempreatures, cf. [14]. If all of the polynomials are zero, or only one of them is
non-vanishing, we are in a situation described in Section 5.1 and 5.2 with unique
invariant equilibrium state at low temperatures.

We identify restrictions of the configurations to straight lines parallel to the
coordinate axes with the configurations of one-dimensional systems. We then
note that Xe#(P,, ..., P,) if and only if for each line parallel to i-th axis the
restriction is in S(P)),i=1,...,v. We therefore begin with the case of v=1; we
write P(X) instead of P,(X) and B for the corresponding bond.

(Xuez isin L (P) if and only if

[lhes Xasp=1,VacZ (6.3)
If P=0,ie. B=0 then & =% Otherwise we can choose P= ) , 5 X" to be

1+a,X+...+a,_ X?" '+ X7 0,=0,1, (6.4)

and it is clear that the coordinates X,,a=1,...,p, of Xe& can be chosen ar-
bitrarily with all the other determined by Condition (6.3); we could identify the
group & with &'; . It follows in particular that Card (&)=2P. The action of
Z on & (P) depends on P in a more subtle way than the cardinality of &, as the
examples below demonstrate.

Let P(X)=1+X+X?+4...+ X?. Then, as follows from (6.2) X=(X,)e¥
iff it is periodic with period p+1, i.e.

Xa+p+1=Xas VQGZ,
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andZactson ¥ asZ,.,.'* If p+1isa prime member, as in the case of 1 + X + X* +
X3+ X*, there are no nontrivial subgroups of Z,,; and hence the orbits of Z
have either 1 or p+ 1 elements. Since, as is not hard to see, for p prime E(E,=1, Va)
is the only Z-invariant element of . there are exactly

1+(2°=1D/p+1)

orbits in this case.
In a similar way, if P(X)=1+ X?, p prime, one can see that there are

24+(2P-2)/p

orbits, two one-element and the rest of p elements.
For P(X)=1+ X+ X* one can see by inspection that there is an element X
of & containing the interval

e e e it S

It follows that the orbit of X is of fifteen elements. Since Card (&)=2%= 16 there
are only two orbits: {E}, Orbit (X).

Similarly, there are only two orbits in the case of P(X)=1+ X +X3. This
can be seen by drawing any element of . different from E. We will deduce it from
the following fact, proof of which is omitted:

IfZ acts on & as 'L, and if P is a prime polynomial then n is a divisor of 27 — 1.

To apply this to our polynomial we observe that were it not prime it would
have 1+ X as a factor, which is impossible since P(1)=0. Therefore, n is a divisor
of 22—1=7 and hence n=7. Since Card (¥)=2%=8, there are only two orbits:
{E} and one of seven elements. In the same way we prove that there are only two
orbits for such prime P for which 2?—1 is prime, as for instance in the case of
PX)=1+X+X".

We now pass to the general case and we consider a system in Z” with none of
P, ..., P, equal to zero. Let all the polynomials be chosen in the form (6.4), and
let p; be the degree of P,,i=1,...,v. We first note that, as is not hard to see, if Z
acts on & (P;) as Z,, then Z' acts on & (P;. ..., P,) as Z, x...xZ, . The discussion
of the number of elements of & (P) shows that # (P, ..., P)) is of 27! P» elements;
this also gives a majorization of the number of ergodic equilibrium states at low
temperatures. For some models more precise information is deduced from our
discussion of one-dimensional systems:

1. Let P,=...=P,=1+X. Then &(P,, ... P,) can be identified with & (P,),
with Z' acting on & as Z,,. For P,=1+X+X?+...4+X? p+1 prime, we are
getting exactly

1+27-D/p+1)

ergodic equilibrium states at low temperatures, one mixing (¢ *) and the others with
(p+ 1)-element supports in &(4).

2. P,,..., P, as above, P, =1+ X7, p prime, yield 2+(2?—2)/p ergodic equi-
librium states at low temperatures, two of them (¢* and ¢~) mixing. The rest
have p extremal equilibrium states in the decomposition.

12 We say that Z' acts on & as G if G is the quotient group of Z* by the subgroup of these elements
of Z* that act trivially on &.
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3. P,,...,P, as above, P;=1+X+X*; two ergodic equilibrium states at
low temperatures, one mixing, the other one decomposing into a combination
of fifteen extremals.

4. P,,...,P, as above, P,=1+X+X3 or P,(X)=1+X+X’, again two
ergodic equilibrium states at low temperatures.

5. v=2,P,(X)=14+X+X2+.. .+ X", P,=14+X+X>+...+ X% with p+1
and g+ 1 prime; similiarly we could consider the case of PAX)=1+X+X?+...+
XPii=1,...,v.

If p#q the only nontrivial subgroups of Z,., xZ,,, are Z,,; x {0} and
{0} xZ, .. On the other hand, it is not hard to see that E is the only {0} xZ,, ; —
orZ,,; x {0} — invariant element of . It follows that there are

1+2"-D/p+1)(g+1)

ergodic equilibrium states at low temperatures, one mixing (¢*) and the rest with
(p+1)(g+1) — element supports in &(4).
If p=gq there are altogether

L+p(27 = DAp+ D +[27 —p(2P - 1) - 1]/p+1)°

orbits of Z? in &, and therefore as much ergodic equilibrium states at low temp-
eratures. Of these one is mixing, p(2? —1)/(p+ 1) have (p+ 1) — element supports
in &(4) and the rest is of (p+ 1) — element supports!>.

One can combine the other one-dimensional examples in a similar way.

6. Remarks

6.1. The description of 4™ given in Theorem 2.3, and presumably also Theorem
5.6, generalizes to continuous spin systems with se [—1,1]. But an analogue
of the Uniqueness Theorem 4.5 is lacking here.

6.2. An extension of a method of Lebowitz and Penrose [16] allows us to
prove a clustering property of invariant equilibrium states in the region described
in Theorem4.5: if 4, Be# then (s, ,55)— 0(ss)o(sp)=0( ) for suitable
x>0, x increasing with the inverse temperature.

In fact one obtains much more precise information about the clustering
properties (results for spin 3 case were obtained and reported by the present
author in Spring 1973 at Ecole Polytechnique in Paris).

6.3. If one applies a version of the present method to investigate systems at
high temperatures one gets uniqueness (part (b) of Theorem 4.5) for all m.f’s A
and the interaction need not be ferromagnetic: for high temperatures the variables
are zg=th K(B) which are small for small |K(B)|. If one changes the interaction
as in Proposition 1.3 then, for any m.f. 4 the additional terms contain a factor
th A which is mall for small . For low temperatures for A¢% one would get
additional terms of the form exp — 24 which are close to 1 for small A.

13 1t follows from the text that all the ratios of integers in this section have integral values. This
refers in particular to (2 —1)/(p+1) and [27" +27—2]/(p+1), p+ 1-prime. The fact that, for prime
p+1,2P" 427 _2=0(mod p?) is an amusing corollary of our analysis.
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6.4. The version of the present approach sketched in [13, Section 4.10 (b)
gives uniqueness of the invariant equilibrium state in the situations covered by
Suzuki and Fisher [2], Theorem 1.

6.5. Estimations of Section 3.6 yield some analyticity and uniqueness for a
class of interactions of infinite range, but it is not clear if the domain of analyticity
includes in all these cases the low temperature region.

6.6. This paper suggests several problems.
(a) Is it true that for all temperatures

Alca*

or, equivalently, do all invariant equilibrium states, at fixed temperatures, agree
on {s,:Ae#}? In this form the question makes sense for non-ferromagnetic
systems too.

Let A(K) be the subalgebra of AW=%(Z) generated by {sz:BeH(K)}. An
alternative form of the above problem is: do all invariant equilibrium states at
fixed temperature agree on A(K)?

For spin § A(K) is exactly the linear span of {s,:4c44}. But it is not hard to
find examples for higher spin where the linear span of {s . Ae B} is strictly larger
than W(K). -

(b) 4" is determined by #*. On the other hand some information on %7
can be obtained by pure algebra. For instance, in the case of the regular systems
of Section 5.6 one can show that #* can change at a finite number of points only;
this holds presumably in general. That means that, when the temperature is
varied, one can parametrize the equilibrium states, in a sense, in a piecewise
continuous fashion. It would be helpful to have a good hypothesis on how B*
changes with temperature, which elements of ﬂ(l“)_appear in B first when the
temperature is lowered; for high temperatures #* = 4 as follows from the uniquess
of the equilibrium state.

(c) Problems connected with the results of [6] will be formulated in a paper
containing proofs of these results. We mention here only one:is it true that models
with external field, or, more generally, such models that % is a principal ideal,
have unique invariant equilibrium state at all temperatures?

(d) It can be shown that all spin 4 models on Z* with two fundamental bonds
are self-dual. On the other hand, it is easy to find examples of such models with
a large number of phases at low temperatures (cf. Section 5.8), and even with a
large number of ideals intermediate between #* and %. Do all these phases
appear at the same temperature given by Kramers-Wannier argument?
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Note Added in Proof. A proof of a strengthened version of Theorem 5.6 is contained in [247];

the regularity assumption is not needed if g.c.d. Z#=1 (as in examples of Sect. 5.8.).








