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Quantized Fields in External Field

II. Existence Theorems

J. Bellissard*
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Abstract. This is the second part of an article devoted to the study of quantized
fields interacting with a smooth classical external field with fast space time
decrease. The case of a charged scalar field is considered first. The existence
of the corresponding Green's functions is proved. For weak fields, as well
as pure electric or scalar external fields, the Bogoliubov ^-operator defined
in Part I of this work is shown to be unitary, covariant, causal up-to-a-phase.
Its perturbation expansion is shown to converge on a dense set in Fock space.
These results are generalised to a class of higher spin quantized fields, "nicely"
coupled to external fields, which includes the Dirac theory, and, in the case
of minimal and magnetic dipole coupling, the spin one Petiau-Duffin-Kemmer
theory. It is not known whether this class contains examples of physical
interest involving quantized fields carrying spins larger than one.

I. Introduction

In the first part [1] of this paper, we have described some general facts concerning
the Green functions and the Bogoliubov S-operator for the problem of a spin zero
quantized field interacting with an external field. The main result was that the
S-operator constructed according to the perturbation scheme is covariant,
unitary, and causal up-to-a-phase if and only if there exists a "non-perturbative"
solution (N-P in [1], Definition Π.2.3) of the following integral equation:

I = A+AAFI = A + IΔFA (I. la)

with

A(x, y) = [v(x) + AβA"(x)]δ(x -y) + ίlAμ(x) + Aμ(y)]&>δ{x -y). (Lib)

v and Aμ denoting respectively the scalar and vector parts of the external field, and
AF the usual Feynman propagator.

Assuming the existence of a N-P solution the main result of [1] mentioned can
easily be extended from the case of a spin zero quantized field to arbitrary integer
spin. For half integer spin the algebraic properties of the Green functions undergo
some well-known modifications [4a, 38] as explained in [1]. The method used
in [1] to construct S have to be changed [2, 6a, 6b].
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Of course, the difficult part is now to find models which yield the N-P character
required in [1] for the Green functions. As we have shown, this can be achieved
either by solving the field equation with external field and Cauchy data, or
equivalently [6 a] by directly finding a weakly causal fundamental solution of this
equation fulfilling the N-P property.

Concerning the existence of the fundamental solution, the following is actually
known:

— for spin zero, there exists a tempered and causal solution, as it follows from
standard theorems about strictly hyperbolic partial differential operators
[3,28,34];

— for spin one-half, the same result holds although the Dirac system is not
strictly hyperbolic. The existence follows from the fact that this system is symmetric
with respect to a positive quadratic form [34, 29].

— for the spin one Petiau-Duffm-Kemmer equation [7a-c] with scalar
electromagnetic or magnetic dipole coupling with an external field, the existence
of such a solution follows from an algebraic trick (cf. [24] and Svensson in [33]).
In the case of a weak symmetric quadrupole coupling with the external field a
fundamental tempered solution has been recently shown to exist by Velo [35],
but it is non causal [8].

The existence of such a fundamental solution then allows us to construct the
kernel of the classical S-operator Scl, which, in principle, describes the scattering
theory in the one-particle space. This kernel defines two operators 7^ and TA on
the space of test functions 5^(IR4) [6 a, b, 33]. They are actually shown to be iso-
morphisms of ^(IR4) into itself by adapting the Capri arguments [6 b] to the
case of spin zero, one half and one. Hence the first defining property for N-P
solutions holds in this case.

Less is actually known about the second one, i.e., the boundedness of the
operators on the one-particle Hubert space with kernel defined by restricting
Green functions to the mass-shell. The boundedness of Scl as defined on the one
particle Hubert space was proved by Schroer, Seiler, and Swieca [4a] for spin
zero, and Seiler [4b] for spin one-half.

On the other hand, the point which is crucial in order to deduce the existence
of the out vacuum, is to show that the part of Scl that connects one-particle states
with one antiparticle states is a Hilbert-Schmidt operator. This was proved by the
same authors only in the case in which the magnetic part A of the external electro-
magnetic field is zero, for spin zero [4a ] 1 and spin one-half [4b]. These results
were announced in another form by Wightman in [6 b ] 2 .

As one can see from the previous check-list of results, a number of holes
remain to be filled in. For this reason, we find it useful to give a reasonably self
contained description which covers three cases of physical interest: spin zero, one
half and one quantized fileds. We push the analysis to the uttermost generality,
hoping for further applications. No new light will be a priori shed on models which

1 The method used in this article relies on the proof of existence of an evolution operator, which
unfortunatly fails in the presence of magnetic field, in spite of the existence of an elementary solution.
2 It is unfortunate that the general discussion given there leaves one point out of control (cf. the
comment following last lemma of Section 4 in [6 a]), without which the existence of a Bogoliubov
5-operator cannot be ascertained.
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involve quantized fields carrying spins greater than one. There, acausalities are
expected to occur [8] and non strict hyperbolicity may require a weakening of
the notion of locality [24, 32], at least when perturbations are not too singular.

The present work is therefore divided into two main parts. In section II we
study only the spin zero case to complete the field theory described in [1]. The
essential new results are contained in the following:

Theorem I.I. Let v and Aμ belong to the space ^J(IR4) of smooth functions
with compact support in IR4 [3, 9]. Then for some ε>0, the equation

I(λ) = A(λ) + Λ(λ)AFI(λ) = A(λ) + I(λ)ΔFA(λ), (1.2)

where Λ(λ) corresponds to (λv, λAμ), has a unique N-P solution which is analytic in
\λ\<ε, in the N-P norm topology sense.

The N-P norm topology is defined in Section II [cf. Formula (II.1.4)].
Here we have no longer any restriction about the magnetic part of the external

field, but only on its strength. On the other hand, if we replace N-P by W-N-P
(cf. [1], Definition II.2.2), then the same result holds for any λ in the complement
of a discrete subset Σ of C. Moreover, if v, and Aμ are real valued, then Σ does not
not intersect the real axis. To our knowledge, nothing was known before about
analyticity. On the other hand, the result of Schroer, Seiler, and Swieca [4 a] shows
that I(λ) is also N-P for λeJR, if v and Ao are real and 4 = 0 .

These results yield Theorem II.3.2 according to which the S-operator con-
structed in Part I is strongly continuous with respect to the external field, in a
neighbourhood of zero, and expandable into a convergent series on a dense
domain in Fock's space, including vectors with finite number of particles. This
last theorem seems to be new.

Section III is an attempt to extend Theorem I.I to quantized fields with
higher spins. Let ψ be a Wightman free field defined as the solution of the first
order covariant differential system [18-22, 37]

, (1.3)

where βμ are N x N matrices and m > 0. Then, in order to exploit the algebraic
trick discovered for the spin one field [24, 33] we have been led to give the following
definition:

Definition 1.2. Let Φ be an N x N matrix valued ^ ( Ϊ R 4 ) function. Φ will be
called a nice interaction, if one can find four N xN matrix valued partial differential
operators AR, AL9 BR, BL satisfying the following conditions:

i) The coefficients of AR, AL, BR, BL are polynomials in Φ and its derivatives.
ii) AR and AL are first order partial differential operators.

iii) lΐd( — id) is the Klein-Gordon divisor [5, 6] of L= —iβμd
μ — m then

(L-Φ)(d+BR)= ~(

This definition covers all the known examples of interactions giving rise to causal
fundamental solutions. All interactions are nice in the Dirac equation. Scalar,
electromagnetic as well as magnetic dipole couplings are nice in the spin one



56 J. Bellissard

Petiau-Duffin-Kemmer equation [7]. It would be interesting to search for nice
interactions in other first order covariant differential systems.

Such a definition allows us to treat nice interactions almost as in the spin zero
case, although the right hand side of (1.4) is not strictly hyperbolic. It leads to the
following new result:

Theorem 1.3. Let Φ be a nice interaction. Then the equation:

I(λ) = Φ(λ) + Φ(λ)SFI(λ) = Φ(λ) + I(λ)SFΦ(λ), (1.5 a)

with

Φ(λ)(x,y) = λΦ(x)δ(x-y), (I.5b)

SF(x,y) = d(-id)AF(x-y), (1.5 c)

has a unique N-P solution if λ is real and small enough, and if Φ is hermitian with
respect to the invariant form (the definition is given in Chapter III).

Moreover, for the Dirac equation, the hermitian character of Φ can be relaxed
and I(λ) is analytic in a neighbourhood of λ = 0 in the sense of the N-P-norm
topology. The result of Seiler [4b] shows that I(λ) is, in this case, N-P for any
real λ as long as only scalar and purely electric couplings are involved.

Therefore, the quantized theory can be made in these cases. Presumably as an
immediate consequence the ^-operator is again strongly continuous. However
as indicated in Remark III.4.5, it seems that except for the Dirac field we lose the
essential of analyticity; therefore we do not expect the perturbation expansion to
converge. Would this be the manifestation in the present context of the non
renormalizability of such interactions?

At last an Appendix is devoted to a summary of some relevant results about
Klein-Gordon-like equations.

In spite of these results many problems remain open.
i) Prove that in the spin zero case I(λ) is in fact N-P for any λ in the com-

plement of a discrete subset Σ of C.
ii) Complete in the case of fermion fields the analysis done in Part I [1].

iii) Prove that in the case of the Dirac equation, the subset Σ does not intersect
the real line, in order to eliminate the case in which the vacuum expectation value
of the S-operator is zero [36].

iv) Do there exist field equations describing spins greater than or equal to 3/2
admitting nice interactions?

v) Following Velo [35] does the non causal tempered solution of the Petiau-
Duffin-Kemmer theory with symmetric quadrupole coupling give rise to a weakly
causal distribution? Is it possible to complete the quantized theory by exhibiting
the N-P character? What about the causality of the Bogoliubov S-operator?

vi) Is it possible to extend Velo's result to the case of spin 3/2 with electro-
magnetic or scalar coupling?

II. Existence Theorems for Spin Zero Quantized Fields

ILL Weak External Fields

In our preceding paper [1] we have introduced the family JίEJm, α, M) of Banach
spaces, whose elements are ^ " functions defined in IR4xIR4 with values in a
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finite dimensional Banach space EN, and normed by:

m,α,M

]\u\,\v\<m S U P ,

p, q)\\EJ .

Let us recall that the Fourier transform A of A:

is in Jfc (m, α, 1/4) Vm^O Vα^O. ([1], Appendix 5), if v, A^ are in ^(IR4) [9].
We have also associated to a kernel K the operator K on the one-particle

space ffi + ©J>f _ of our theory defined by restricting the Fourier transform K on
the positive or negative mass-shell. We will denote by SN - P the subspace in
i f p f + ©Jf _) of operators of the type

K= ^ + + ^ + " (II.1.3)

such that K+ _ and X_ + are in the Hubert Schmidt class [10]. We shall define in
S N .P. the N-P norm by:

| |N.P. = Max {||X+ + ||op, \\K_ _ ||op, \\K + _ ||H.s., \\K. + ||H.S.}. (Π

The following results are shown in [1].
Kl) if m ^ l , jS^α, j8>3/2 then there exists a constant C > 0 such that:

> «. 1/4), V L e Λ ^ m , jβ, 1/4),

where zlex is any of the two point functions of the free field ([1], Lemma A.5.6).
K2) The mapping K-+K is linear and bounded from JίEN(m, α, 1/4) to β N t P i

if α > 3/2 ([1], Lemma A 5.4).
Therefore we are able to show the first main theorem:

Theorem II. 1.1. Let v, Aμ be in 5^(IR4) and λ be a complex number. Then the
equation :

K(λ) = A(λ) + A(λ)Δ eκK{λ) = A(λ) + K(λ)Δ exA{λ) (II. 1.6)

(where A(λ) is defined in Theorem I.I) has a unique solution with KeJ^ (m, α, 1/4)
for a^0 and m^.0, which is analytic with respect to λ in a neighbourhood of zero.

Remark Π.1.2. This theorem also applies if v and Aμ are matrix-valued
functions.

Proof. Let m ^ l and β^a, /?>3/2. Using the result Kl) one finds:

\\(A(λ)Δexriμ)||m,α,1/4^ Cn\\A{λ)\\n

m

+JΛlA . (II.1.7)

Because (cf. [1], Proposition 11.2.4), \\A(λ)\\miβΛIA is finite, the Neumann series:

K(λ)= Σ Λ ^ 0 A(λ)lΔtxA(λ)T (Π.1.8)
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converges in Jί^ (m, a, 1/4), if λ is small enough since A(λ)==O(λ). Since A(λ) is

a polynomial in λ, K(λ) is analytic for small λ.

Corollary II. 1.3. The solution K{λ) of (Π.1.6) defines an analytic family K(λ)
of elements of S N P for λ small enough.

Proof. This can be seen by using K2).

11.2. Strong External Fields

Let us denote, as in [1] the kernel K(λ) defined by Eq. (II. 1.6) by Jr(λ) [resp. Ja{λ),
I{λ\ Ί(λ)~\ if Aex = Ar (resp. Δa, ΔF, ΔF) and let K(λ) = ΓJR{λ)Γ~1 [resp. ΓJA(λ)Γ~\

where

The main result is then the following (see [1], Definition II.2.2).

Theorem Π.2.1. Let v, Aμ be in ^ ( R 4 ) [3]. Then there exists a unique W-N-P
solution for Jr(λ) which is analytic in λ, in the whole complex plane in the following
sense:

i) λ->Jr(λ) is analytic if one chooses the simple convergence topology [30] of
linear continuous operators from 0 M (R 4 ) to ^(IR4) [9].

ii) λ-+JR(λ) is an analytic family of bounded operators, such that J+-(λ) and
J-+(λ) are compact [10].

Remark 11.2.2. The same theorem holds for Ja(λ).

We first need some partial results:

Lemma Π.2.3. If υ, Aμe<g%(WL*) and /ίoe(C, then (l-A(λ)Δr) defines an analytic
family of automorphisms of 5^(IR4) for the simple convergence topology in a neigh-
bourhood of λ0.

The proof of this lemma is the main content of the appendix. This result can be
extended without change to the case in which v, Aμ are in ^(IR4) with support in
[tθ9 ί J x R 3 for some to,t±eTSL Capri [6b] and Wightman [6a] have already
proved than (l—AAr)=Tr is an automorphism of 5^(IR4).

Lemma Π.2.4. // v, Aμe^o(ΊR^) and λoe<C, then JR(λ) defines an analytic family
of bounded operators on J^f+®J^_ in a neighbourhood of λ0.

The proof of this lemma is also in the appendix.

Lemma II.2.5 [39]. Let D be a domain in C, J f be a Hubert space, and K(λ)
an analytic family of bounded operator on Jtf". If there exists a subdomain D' in D,
such that K(λ) is compact for any λ in D\ then K(λ) is compact for any λ in D.

Proof of Theorem 11.2.1. i) Because Jr(λ) = (l-A(λ)Ar)~1A{λ) the first part
of Theorem Π.2.1 follows from Lemma Π.2.3.

ii) From Corollary Π.1.3 we know that JR(λ) is N-P for small λ. Therefore if λ
is small, Jr+_(λ) and J r_+(/l) are Hilbert-Schmidt and thus compact. From
Lemmas II.2.4 and II.2.5 the other part of Theorem Π.2.1 follows.
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11.3. Existence and Properties of the Bogolioubov S-Operator

We are now able to prove Theorem I.I.
Theorem Π.3.1. Let v and Aμ be in ^(IR 4 ) , and Xe<£.
a) Then the equation

I(λ) = A(λ) + I{λ)ΔFA(λ) = A(λ) 4- A(λ)AFI(λ) (113.1)

has a unique W-N-P solution except if λ belongs to some discrete subset Σ of (C.
b) λ^I(λ) is analytic in <E\Σ for the simple convergence topology of linear con-

tinuous operators from 0M(IR4) to ^ ( R 4 ) .
c) λ->Is(λ) is analytic in <C\Σ for the topology of S£(2te +Θ^f _).
d) 3ε > 0, such that I(λ) is N-P and λ->Is(λ) is analytic for the N-P norm topology,

if\λ\<ε.
e) // v, Aμ are real, Σ does not intersect the real line.
ί) // v, Aμ are real and Ai = 0{i=l, 2, 3) then Is(λ) is N-P for all real λ's.

Proof. From Theorem Π.2.1 one knows the existence and unicity of Jr(λ) as
a W-N-P kernel. The equivalence theorem ([1], Theorem II.4.1) gives the existence
and unicity of I(λ) if and only if, i + + + Jr +_(λ)Jaf_+(λ) is invertible. Since
λ^Jr +_(λ) [resp. A->Jfl _+(/l)] is an analytic family of compact operators, then,
for all λ, by a slight extension of the classical Fredholm alternative [10-12] there
exists a discrete subset Σ of (C such that i + + + Jr +_(λ)Jat-+(λ) is invertible in
(C\Γ. This proves a)-c).

d) Follows from Theorem II. 1.1.
e) Follows from ([1], Theorem II.4.1).
f) Follows from a theorem given by Schroer-Seiler-Swieca [4].

Using the results given in [1] (Chapter III) about the construction of a Bogo-
liubov 5-operator up-to-a-phase one finds:

Theorem Π.3.2. Let v, Aμ be real functions in ^ ( R 4 ) and let S0(λv, λAμ) be the
quantized S-operator [1] :

S0{λυ, λAμ) = det(l + - 1 + _(A)J_ +(λ))1 / 2:έ***™*:. (IL3.2)

Then, if Φf G is the coherent state with wave functions f, G, defined by Φf G =

BO) (λ,f, G)^S0(λv, λAμ)Φf G is analytic in the domain \λ\<&, fe Jf+,<
in the topology of Fock space, for some ε > 0 3 .

Bl) (v, Aμ)^>S0(v, Aμ) is continuous in a neighbourhood of zero in the space
of real valued <^(IR4) functions.

B2)

S0(λv, λAμ) = ip + iλ JR4 {: φ*φ:(x)υ(x) + i: φ*^φ: {x)Aμ(x)}d4rx + O(λ2) (11.33)

on the dense domain spanned by vectors with finite number of particles.
Moreover if λeIR is small enough, or if At = O (ΐ= 1, 2, 3). Then
B3) S0(λv, λAμ) is relativistically covariant.
B4) S0(λv, λAμ) is unitary.
B5) S0(λv, λAμ) is causal up-to-a-phase.

3 This implies the analyticity in λ on the domain of vectors with a finite number of particles, which
we believe to hold also in the spin 1/2 case. Note that Jf'_ is the dual of 2tf _ (see [1]).
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Proof. Properties B3)-B5) follow from Theorem II.4.1 of [1], and the fact
that I(λ) is N-P under the hypothesis of the theorem:

Property BO. One can write [[1], Eq. (IΠ.3.1)]

S0{λυ, L4 μ )Φ / ι G = det( i + + -I+ 7 1 / 2

+1 + - {λ)b + φ
(H_ - +il- -(λ)) (11.J.4J

Note in particular that

J_+(A) = / + -W* (Π.3.5)

since v and Aμ are real functions.
The analyticity of:

(KJ,G)^eia+Kb + ΦffG in the domain ||X]|H.s.<oo
(11.3.6)

and / J f G J T

and of:

K->det( l -K) 1 / 2 if X is trace class with | |K | | o p < 1 (Π.3.7)

yields: BO).
Property B2. It is a simple consequence of BO) and of the fact that I(λ) is

O(λ) as λ->0. In view of the analyticity with respect to / and G, one can generate
vectors with a finite number of particles by taking derivatives with respect to /
and G in Eq. (II.3.4).

Property Bi. Recall that ([1], Appendix 5) by Theorem Π.l.l and by property
K2), of Section II. 1 the map

( M μ W s (Π.3.8)

is continuous in the N-P norm topology at least in a neighbourhood of zero in
^(IR 4). The analyticity property [Eq. (II.3.6)] for generalized coherent states
implies that:

(υ,A^S0{υ,AJΦftG (II.3.9)

is continuous if v, Aμ are small enough.
If we now restrict ourselves to real valued functions then S0(v, Aμ) is unitary [1],

hence uniformly bounded, and

(v,Aμ)^S0(v,Aμ) (Π.3.10)

is strongly continuous in a neighbourhood of zero in the subspace of real valued
^ ( I R 4 ) functions.

III. Higher Spin Quantized Fields in External Fields

11 Li. A Special Class of Free Fields

We now consider a charged Wightman [13, 14] free field describing an irreducible
system of mass m>0, spin "5" and charge 1, transforming under the restricted
Poincare group as follows:

U(a,A)ψx(x)U(a,AΓ1= Σβ^M'^Ax + a), (IΠ.1.1)

where L is some finite dimensional representation of the group SL(2, C).
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The classification of such fields was given by several authors [15a, 15b, 16],
at least for fields without internal symmetries. If one introduces the l/(l)-symmetry
which specifies the charge, these results can be trivially extended. The main result
is the following:

Proposition III. 1.1 [16]. A necessary and sufficient condition for the Wightman
charged field, with transformation law given by Eq. (III. 1.1), to be an irreducible
free field is that:

i) There exists a positive λ, and irreducible SU\2)-invariant spin "s" orthogonal
projector Po in the space EN of the representation L.

ii) The non zero two point Wightman functions are:

<ψ(gMf)*> = λ I dΩm(p) </( -p), L[p] - ̂ PoRLCp]" >g(- p)> .

Here dΩm is the Lorentz invariant measure on the positive mass-shell, [p] is a
solution of

R = L{% -ί) (ΠI.1.4)

(σ l 5 σ2, σ3 are the Pauli matrices),

where L(A, B) is the analytic continuation of L to SL(2, C) x SL(2, C) [14, 16, 17].
/ is the Fourier transforms of the function / [which will be assumed to

belong to ^ ( R 4 ) ® ^ ] .
We shall restrict ourselves to a class of fields defined by a first order system of

partial differential equations [5,6]. Recalling that [16] it is always possible to
choose an inner product <, > in EN such that

we shall assume the following axioms ([5]):

51) There exists a linear mapping p->β{p) fromIR4 to ^{EN) which is covariant

L{A)β{p)L(A)~ι=β{Ap) V Λ G S L ( 2 , C), VpeIR4. (IΠ.1.6)

52) There exists an invertible element η of J£{EN) such that:

η can be chosen [18, 19] up to a sign such that,

S3) Let T(p) be an ^{ENyvalued tempered distribution such that:

L(A)T(p)L(A)-ι = T(Ap), (III. 1.9 a)

(ΠL1.9b)
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Then ηT(p) is a linear combination of the Fourier transform of the two-point
Wightman functions of the irreducible Wightman field.

Before characterizing this class of fields, let us remark that axioms SI and S2
restrict the choice of the representation L [18-20]. However, for an arbitrary spin
"s" it is possible to construct such a field [21, 22, 40]. For instance, the Dirac
field and the Petiau-Duffin-Kemmer field are in this class.

Now we have the following preliminary result:

Lemma III.1.2. Let ψ be a charged Wightman field satisfying Eq. (III.1.1), and
axioms Si—S3. Then ψ is a free field with non negative mass.

Proof. Let W(p) be the Fourier transform of a non zero two-point Wightman
function for ψ. By S3 it is solution of

W(p)(β(p)-m) = 0. (III. 1.10)

By a classical theorem on distributions [3, 9], the support of W(p) is contained
in the subset σ ofIR4 in which β(p) — m is non invertible.

Because EN is finite dimensional and β(p) is covariant by S1, σ is a finite union
of hyperboloids (with one or two shells). In view of S3, the only possible solutions
of (III. 1.10) must describe an irreducible Wightman field. Therefore, σ is reduced
to a two-shell hyperboloid, since zero mass as well as imaginary mass solutions
are excluded from the Wightman theory, and the decomposability into several
hyperboloids is excluded by the irreducibility hypothesis. Therefore 3m'>0 with

σ = { p e I R 4 ; p2 = m'2}. (IΠ.1.11)

Now [13, 14]^
i) suppW = σnV+ by covariance and spectral condition.

ii) W is a covariant positive measure, and therefore it satisfies the Klein-
Gordon equation

(p2-m'2)W(p) = 0. (ΠI.1.12)

iii) ψ is a generalized free field by the Borchers-Greenberg theorem [23].
i)—ϋί) prove that ψ is a solution of the Klein-Gordon equation corresponding

to mass m.

Lemma III. 1.3. Let β be a linear mapping from R 4 to EN satisfying SI—S3.
Then the minimal equation of the matrix βo = β(p/m) where p = (m\ 0) is

for some integer n.

Proof. We have shown that σ is the hyperboloid p 2 = m'2. Therefore the
spectrum of β0 is reduced to { + 1 , — 1,0}. Because of the covariance law one finds
Rβ0R~1= —βo; thus, + 1 and —1 have the same multiplicity.

On the other hand, if T(p) is a covariant distribution solution of (III. 1.9 b),
its support is contained in σ, and one can decompose T as a covariant linear
combination of transverse derivatives of the invariant measure dΩm:

T(p)= Σβ=±i Σ»=
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Putting z = ± j / p 1 if pe V±, Eq. (III. 1.9b) becomes by a suitable redefinition of C*:

which can be written in the form:

(j80-ε)C; = 0,(/ϊo-ε)C;. 1 = /ϊoC;,...,(i8o-β)Cfio = i8oCβ

1. (IΠ.1.16)

A necessary and sufficient condition to have

C5=o=... = c; (iπ.1.17)

is that the eigennilpotents corresponding to the eigenvalues ± 1 , be zero [12].
This proves the lemma.

If one modifies β(p) in such a way that nϊ = m one finds:

Corollary III. 1.4. The matrices β(p) satisfy:

ίβ(p)-mr1=d(p)(p2-m2y1 VpeR, (IΠ.1.18)

where d(p) is the Klein-Gordon divisor [5,6,22] :

d(p) = (β(p) + rn)lβ(p)/mγ-((P

2-m2)/m)ΣΓ4 ίβ(p)Mlk2 . (ΠI.1.19)

If p2>0 the eίgen-projectors of β(p) corresponding to the eigenvalues ± j/p2 are

Proof. These results are standard consequences of the covariance and spectral
theorems for finite dimensional matrices.

We are now able to characterize the free fields of interest, within the class we
have considered.

Proposition III.1.5. Let ψ be an irreducible charged Wightman field, fulfilling
Eq. (III. 1.1), and axioms S1-S3. Then ψ is a free field with mass m > 0 and spin "5",
and the eigenprojector Po is given by

P0 = aηΠ+{p), α > 0 ρ = (m,0). (III.1.21)

Proof. If ψ is such a field one can easily check [cf. Eq. (III. 1.2)] that

Therefore ηP0 commutes with β0 and is annihilated to the right and the left by
β0 - 1 Since the eigennilpotent of β0 for the eigenvalue -f-1 is zero, we get

where, for short, we have put Π+=Π+(p).
On the other hand, since ηΠ+ is hermitian, we get:

Im(??i7 + HKeφ/7 + ) J -. (III. 1.24)
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Therefore the initial and final projectors [31] of ηΠ+ are equal to the same
projector P, which is of course SU(2)-invariant and, by Eq. (III. 1.23)

If P0=j=P, there exists P'o orthogonal to P o less than P — Po, SU(2)-invariant and
irreducible such that (III. 1.22) holds for P'o. This would imply the existence of
another solution for ψ, which is excluded by S3. Hence:

P0 = P. (III. 1.26)

Thus, by definition of P, and the Schur lemma,

ηΠ+=ηΠ + Po = PoηΠ+ = PoηΠ + Po = *-1Po. (IIL1.27)

α is a real number since ηΠ+ is hermitian, and α can be chosen positive by possibly
changing the sign of η.

Definition III. 1.6. J^± will denote the Hubert space spanned by classes of
functions on the positive mass-shell with values in EN, and defined by the inner
product

(φ\φ')± = jdΩm(pKφ(p),(±)2s+nηΠ±(p)φ'(p)> . (IΠ.1.28)

This definition is motivated by the form of the two point functions

" ι = η Π + {p) (ΠL1.29a)

= (-)2s+nηΠ_(p) (ΠL1.29b)

where use has been made of R = L(1, -f) = L(-ί)ηRη~1 and Eq. (III. 1.20).

Ill.2. Nice Interactions

Let us examine the problem where ψ is coupled to an external field through the
following interaction lagrangian density:

^ ( x ; φ)= :ψ*(χ)ηφ(χ)ψ(χ): (IΠ.2.1)

where Φ e ^ I R 4 ) ® ^ ^ ) .
In the introduction we have defined "nice" interactions (cf. Definition 1.2) and

we want to show that in this case, the problem can be reduced to the treatment
of a scalar quantized field interacting with an external field as far as the existence
of the Schwinger kernel is concerned. In order to do so we will use the equivalence
theorems ([1] Theorem Π.4.1), classical theorems about the Klein-Gordon oper-
ators (see Appendix) and the techniques applied in Section II to the case of weak
external fields.

First of all, one has to exhibit some non trivial nice interactions

Proposition ΠI.2.1. Let ψ be the Dirac field. Then any external field in
<#o(β>4)®&(EN)isnice.

Proof Take βμ = yμ and [cf. Eq. (1.4)] BR = BL = Φ.
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Then:

AR = - Φ2 - 2mΦ - ί(ydΦ - Φyd), (Ill

(IΠ.

(Ill

(III

.2.2 a)

,2.2b)

.2.3 a)

,2.3b)

since

{-ίyd + rn + Φ)(-iyd-rn-Φ)=-(Π+m2)

{-iγδ-m-Φ)(-iyδ + m + Φ) = -(Π+

and AR, AL are differential operators of degree one.

Proposition III.2.2 [24]. // one assumes

β(p) (βiP)2 ~ P21) = 0 Vpe IR4 (IΠ.2.4)

then the minimal coupling is a nice interaction.

Proof. If , 4 μ e ^ ( I R 4 ) then the minimal coupling is obtained by replacing
— idμ by Vμ = —idμ — Aμ in the field equations. Thus Φ = βμA

μ.
Let us choose BR and BL in such a way that

L. (ΠL2.5a)

Because of Eq. (ΠI.2.4), one finds:

d(P) = m + j8(F) + ^ e—. (ΠL2.5b)/

Therefore

d{V)(β{V)-m)=VμV
μ-m2+ — μ PK '. (ΠI.2.6)
μ m

The last term in the right hand side can be written as:

- V m G ^ A A s - ^ Λ a ) ^ ^ ( I I L 2 7)

Equation (IΠ.2.4) tells us that the symmetric part of the tensor βμιβμ2βμ3 - gμiμ2βμ3

is zero, therefore, all symmetric terms in the expansion of VμιVμ2Vμ3 disappear.
Using the commutation relation [dμ,Av^ = (δμAv)9 one can see that (III.2.7) is a
partial differential operator of degree less than or equal to one.

Remark 111.23. One should first note that Proposition IΠ.2.2 covers the
Petiau-Duffin-Kemmer theory [26]. Using general results about the matrices βμ

(see for instance [18] or [19]) one can construct all solutions β such that Eq.
(IΠ.2.4) holds. In particular, for any spin "5"', it is possible to find such /Fs.
Unfortunately, it can be easily seen that if 5 ̂  3/2 the projector ηΠ + (see Propo-
sition III.1.5) is not irreducible, under SU(2) but reducible into a direct sum of
an even number of SU(2)-irreducible projectors. This fact leads to difficulties [25]
in the particle interpretation of the quantized out field.
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Proposition III.2.4. The dίpole coupling in the Periau-Duffin-Kemmer equations
for spin 1 fields is nice.

Remarks 111.2.5. It has been remarked by Velo and Zwanziger that combining
the minimal and dipole interactions the P.D.K. theory does not produce any
acausality. The nice character of these interactions confirms this result.

Proof The P.D.K. field can be looked at as the 10-component field [26]
ψ = {Vv9 Gμv) which fulfills the system

μ μ μ μ μ=0. (IIL2.8)

The dipole coupling is defined by:

Φψ = (iFvρVβ,0), (IΠ.2.9)

where Fve is some skew-symmetric tensor with ^ ( I R 4 ) coefficients. The choice
BR = BL = B with

leads to first order partial differential operators for AR, AL.

111.3. The Retarded Kernel

One can extend the result of Capri [6b] to nice interactions:

Proposition IΠ.3.1. Let Φ be a nice interaction. Then \ — ΦSr (resp. 1 — ΦSJ is
an isomorphism of ^ ( R 4 ) ® ^ , and λ->(l— λΦS,)'1 (resp. λ^>(\ — λΦS<)~x) is an
entire analytic function, in the simple convergence topology.

Proof First of all, we recall that (see Lemma II.2.3 and Appendix) 1 — AR(λ)Δr fl,
\-AL(λ)Δra (where ARL(λ) is computed by multiplying Φ by λ) are isomorphisms
of ^ ^ ^ ( I R 4 ) ® ^ . On the other hand, by a classical theorem on distributions,
1 — λΦSr is a linear continuous map from Sf to Sf.

If we prove that 1— λΦSr is one-to-one then by the closed graph theorem
([27], Theorem 2.15) \-λΦSr is an isomorphism.

Since Φ is nice one has

) + AL)d(-id)Arf=-(l-ALAr)d(-id)f (IΠ.3.1)

by repeated use of the associativity of convolutions [9]. Therefore, since l — ALAr

is an isomorphism of Sf, (l — ΦSr)f = 0, V / G ^ , implies:

(d(-id)f = 0 V/e^ ^ i ^ O (IΠ.3.2)

because d is a polynomial.
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In much the same way, Ίϊheίf

(l-ARAr)h = (D+m2-AR)Arh

= - {iβd -m-Φ){d{- id) + BR)A rh

= -(l-ΦSr)(-iβd-m) (d(-ίd) + BR)ΔJι

= -(l-ΦSr)[l-(iβd + m)BRAr-}h. (ΠI.3.3)

Therefore if geίf the function:

f=-ll-(iβd + m)BRAr-](l-ΛRAr)-1g (IΠ.3.4)

is a solution of

(l-ΦSr)f = g. (IΠ.3.5)

Remark that here, the existence and associativity of the convolution is due to
the fact that both Sr and Ar in (IΠ.3.3) have their supports in V +.

Finally the analyticity in λ of {\—AR(λ)Ar)~ι, leads to the analyticity of

Corollary III.3.2. The kernel J ^ ί l - Φ S , ) " 1 * (resp. J ^ ί l - Φ S J " 1 * ; is a
continuous map from ΘM = ΘM{JR4)<g)EN to Sf. It is therefore a regular kernel (see
[1], Definition 11.2.1).

Corollary ΠI.3.3. If Φ is a nice interaction, 1 — SrΦ (resp. 1 — SaΦ) is an iso-
morphism of ΘM, and λ-^il—λS^)'1 is an entire analytic function in the simple
convergence topology.

Proof. Indeed

(l-S.ΦΓ^l+SΛ- (ΠI.3.6)

III.4. N-P Property of the Schwinger Kernel

The main theorem is the following:

Theorem III.4.1. Let Φ be a hermitian nice interaction. Then for small enough
real λ the kernel

isN-?ifSexe{SnSa,SF,Sp}.
Moreover in the Dίrac case, λ-^Kex(λ) is analytic for \λ\<ε in the N-P norm

topology.

To prove this theorem, we need some preliminaries.

Lemma III.4.2. Let Φ be a nice interaction, and Jr(λ) be the kernel (l—λΦSr)~~ XΦ.
Then there exists P^.0 and VαΞ̂ O, 3β>0 such that λ-+Jr(λ) (where denotes the
Fourier transform) is analytic, in the topology of ^EJP1^ α> P) Vm^O for | λ |^

Proof. With the help of Eq. (III.3.4) one finds:

Jr(λ)= -λ(l-(iβd + m)BR(λ)Ar)(l-AR(λ)Ary
 ιΦ .
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By Theorem ΠI.1.1, {l — AR(λ)Δr)~1Φ is analytic in \λ\<ε(a) for the topology
oϊ^VEN(m9 ot, 1/4) Vm^O Vα^O. Using Lemma A.5.6 in [1], (iβd + ni)BR(λ)Ar maps
linearly and continuously JίΈN(m, α, 1/4) into JiE^(m, α, P) for some P§:0 which
depends on the degree of the differential operator BR(λ). This is true Vm^O, Vα^O
because BR has ̂ ( R 4 ) coefficients. The analyticity is also preserved because
BR(λ) is at most a polynomial in λ.

Corollary IΠ.4.3. // in Lemma III.4.2, βμ are the Dirac matrices, then P can
be chosen equal to 1/4.

Proof. Indeed in this case BR(λ) = λΦ. P can be computed using Lemma A.5.6
of [1] which yields the value 1/4.

In particular in this case if JR{λ) is the operator on J f + φ J f _ associated with
Jr(λ) (see § II.2), then

is analytic if \λ\ <ε in the N-P norm topology (see Corollary II.1.3 or Appendix 5
of [1]).

Lemma IΠ.4.4. Let Φ be a nice interaction. Then the components Jr+_(A) and
Jr_+(A) are Hilbert-Schmidt operators, and analytic in λ for |λ|<ε(α) for α large
enough.

Proof. The proof is the same as in Lemma A.5.5 of [1]. We have only to recall
that the inner product in ffl depends on the spin through the projector Π+(p)
which is, on the mass shell, a polynomical (see §111.1).

Now, we can prove the rest of Theorem III.4.1. Since Jr is a regular kernel
(Corollary ΠI.3.2), Jr++ (resp. J r __) is densely defined on a domain @+ (resp.
ΘJ) such that Jεε9εC@» ε= ± 1 (see [1], Proposition II.2.5). On the other hand,
the unitarity relations give us ([1], Table 1 and §11.3):

+ ) ( i + + - i J * + + ) = i + + + J Γ + - J * - + (25 even), (III A3 a)

+ ) ( l + + - i J * + + ) = ll+ + - J r + _ J * . + (2s odd). (IΠA3b)

Therefore, Jr++ (resp. J r __) can be continued as a bounded operator on JfV
(resp. on jjf _). Thus Jr is N-P.

In much the same way Ja is N-P. Since λ-+ Jr+ _(/l) is analytic in the Hilbert-
Schmidt norm,for \λ\<ε, i + + +Jr+ _(λ)Jα_ +{λ)(2Seven) or 1+ + - Jr+_(λ)Ja_+(λ)
(2S odd) is invertible for \λ\ <ε\ e' small enough. Therefore, the Feynman analogs
I = KF and I=Kp can be constructed by the equivalence theorem ([1], Theorem
Π.4.1).

This remark achieves the proof.

Remark III.4.5. If the spin "5" is larger than or equal to one, the argument
concerning the analyticity property does not go through because t + UR(λ) could
be unbounded when λ is not real:

Lemma Π.4.2 only establishes analyticity in the sense of JίEN(m, α, P). Now
IΠ.4.3 only proves that JR(λ) is bounded if λ is real. On the other hand, Con-
dition K2) of Section Π.l only insures boundedness on jf+ ©Jtf_ if P ^ 1/4; but
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as explained in the proof of Lemma II.4.2, P depends on the degree of the dif-
ferential operator BR(λ), hence upon spin. It cannot be proved to be smaller than
or equal to 1/4 except in the spin 0 and 1/2 cases.

Thus for spins larger than or equal to one, the present method does not allow
to derive any analyticity property for the Bogoliubov S-operator.

Conclusion

We can summarize our analysis from the physical point of view:
Spin 0 is nicely under control: in this case the Bogoliubov ^-operator is even

analytic for weak fields as stated in the Theorem Π.3.2.
In our opinion a complete analysis of the spin 1/2 case should easily lead to

identical results.
For spin 1, the Bogoliubov S-operator exists for real weak fields, but analyticity

is probably lost.
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for their constant help.

Appendix

Study of the Retarded Kernel

AΛ. The Operator {l-AΔr)

Theorem A.I.I. Let (αα)α=0,i,2,3,4 be functions in ^(R4)®^f(EN) where EN is
some finite dimensional space. Then, the operator (1 — AAr) with

A{x,d) = Y}=oaOL{x)^a +a4(x) (A. 1.1)

is an automorphism of ^ = c9
ί?(lR4)®EN, and λ-»(l— λAΔ,)'1 is an entire analytic

function in the simple convergence topology.

In order to prove this theorem one introduces the following family of semi-
norms: if / G ^ then

liyil«.*o.^=ΣiA.ι^~fϊirf*jR3 rf33c||S^yc*,*>lll«.=ΣiMi^-. ll^ yilS.ro.r,, (A.i.2a)

Pm,to,tM) = suP' S U P S U P \\Sμaa(s,x)\\EN. (A. 1.2b)
α s e [ ί o , ί i ] \μ\£m

x e R 3

Here

Let #fmMM

 b e t h e Hubert space obtained by completion of ^(]ί0, tx [ x 1R3)®EN

with respect to the norm || | |m > ί o > f l.
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Lemma A. 1.2. Let (fn)n^o be a converging sequence in the space

\Jto,tι ( ]m^O ^m,to,ti

with the topology defined by the family || ||m>f0>fl (inductive limit topology with
respect to tθ9 tj. If there exist JVeN and a compact subset K of R4 such that

supp/ncK VneJN, n^N (A.1.4)

thenfn converges in ^ ( I R 4 ) ® ^ .

This lemma follows from the definition of convergence in %Q ([3, 9]).

Lemma A.1.3. The following estimate holds:

where the positive constant C depends only on m.

Lemma A.1.4. (A priori bound [28, 29],). Let f be in Jfm>t0;ίI. Then

ί f o . , , (A.1.6a)

sM. (A.1.6b)

Proof. These inequalities are well-known if feW™ with support contained in
]ί 0 , t1 [ x R 3 [28]. By completion, they hold for any / in ^mytOytl •

Lemma A. 1.5. Let ί0, i teIR be such that

The last inequality is obtained by recursion on (A. 1.5) and (A. 1.6). Theorem
A. 1.1 is then proved since

a e6*J(R4)(g)J?(£N)=>supp(AJ r)"/C (J .suppίαJ V n ^ l .

A2. Properties of the Classical S-Operator (Spin Zero Case)

We are now in the case E = <£, and jf± coincide with the Hubert space

Then we want to show the following theorem.

Theorem A.2.1. Using the notations introduced in Theorem Λ.ί.ί, the kernel
(A + -A_)(l-AAAr)~xA, (λe<C), defines an analytic family of bounded operators on
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Remark A.2.2. This bounded operator is nothing but JR defined in [1] § II
(see [1], Proposition II.5.1).

Let us introduce the following notations: For a function / on R 4 we define
/ and / as follows:

/(ί, x) = ̂  e^-^fip0, p)d°d*p = y e-^'xf{U p)d*p

φ(t9 x) = J R 3 e
i{^-P-Mp)d3p/2wp ωp = (m2 + p 2 ) 1 / 2 . (A.2.2)

The restrictions of/ to the mass shell will be:

f±{p) = f(±ωp9p). (A.2.3)

Finally, let us define:

P S U P S U P iR3|^fl a(5 ? Jp)|rf3p. (A.2.4)
α |/i|^m se]ίo,ίi[

Let K be the operator defined by

Kf(t,p) = {m2+pψ*f(t,p) (A.2.5)

and

A ' ^ X A K ' 1 . (A.2.6)

Lemma A.2.3. One /ιαs.

i) Δ±f=-iπf1{s,x).

ϋ) UXφllo. to. t^ί^ί ί i-^l lφl l i , (A.2.7)

iii) ||X/l±/||^ ίo, ί l = (2π) 3π 2(ί 1-ίo)ll/± l l i± .

This is merely the result of a tedious calculation.

Lemma A.2.4. // f±

9 {df/dpa)
±,e^± for α = 0,1, 2, 3 ί/zen

/)o, tθfί l/(ί1-fo) = 0. (A.2.8)

Proof. If ( | )o,ίO,ίi i s ^ e scalar product in ^o,ro,ri> o n e

(KΔ + f\KA_f)0M = C^ds^ei^(dip/2ωp)f(ωp,p

By Lebesgue's lemma ([27], Theorem 7.5) lims F(s) = 0, and the result follows.
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Lemma A.2.5. The following estimate holds:

\\K- 1AKf | | O i t 0 i t l ύ C q Q Λ o M ( { K a X ) \ \ f \ \ γ , o M . (A.2.9)

In order to prove this lemma we have used the inequality

(1 + P

2)/(l + q2) ̂  2(1 + (p - q)2) (A.2.10)

and the properties of the Fourier transform (notice that the norm ||/||TO>ίo>ί l is
easily computable with the Parseval equality in terms of/).

Lemma A.2.6. // [ja supp(αα)C]£0? ̂ i[ x fl*Λ then:

Proof. Let A+ be the adjoint of the operator A in ^o,ίO,ti>^+ ^s associated
with a first order differential operator. Then:

> W Λ p , 1 (A.2.12)

Proof of the Theorem A.2.1. One can remark that, if Jr={l—λAΔr)~ίA

( ( (A.2.13)

with the notations introduced in the beginning.

Let now / ε # o s i n c e aΛe^o, by Lemma A.2.4:

s o o rγAf\\l,S0J{Sί-s0). (A.2.14)
Sθ"^ - 0 0

Since A + — zl _ = zdr — zlfl, we have also:

^f. (A.2.15)

Now let φ+ be in ̂ (IR3). Then by Lemma A.2.3

^ Cslimχ (H(A)n(tl - toγ/n !)

t! - tor/n!) ||(?)± | | ^ J . (A.2.16)

Therefore, the operators from Jf ε to Jfε, {&, ε'e { + ,-})

(A.2.17)
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are bounded on ^(R 3 ) which is dense in fflv They can therefore be continued
as a bounded operator from J^ε->Jfε,, and their norms are majorized by Cn/nl
for some positive C. Therefore, the perturbation expansion for {A + — AJ)-
(l-λAΔr)~1A converges in the norm topology in
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