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Abstract. It is known that the investigation of the critical point for models
of the type of Dyson's hierarchical models is reduced to the solution of some
non-linear integral equation. In our previous publication the Gaussian
solution was investigated. Here we construct non-Gaussian solutions of the
equation and find the expressions for critical indices connected with them.
Our procedure permits us to construct meaningful ε-expansions.

§ 1. Introduction

Dyson's hierarchical models or their generalization — asymptotically-hierarchical
models — (a.h.m.) are of great interest because the renormalization group method
in the theory of critical points by K. Wilson [3] and M. Fisher [4] becomes
rigorous for such models (see [2] and the papers by Jona-Lasinio [5] and Galla-
votti-Knops [6]). The investigation of critical points for a.h.m. is reduced to the
solution of the corresponding nonlinear integral equation, which can be considered
as an equation for the fixed point of the corresponding renormalization group.
In [2, 8] a case with the Gaussian solution was investigated. It was shown that the
critical indices in that case are precisely the same as predicted by the Landau
semiphenomenological theory of phase transitions of the second kind. However,
the Gaussian solution is stable only when the potential of interaction decreases
sufficiently slowly.

In this paper we construct non-Gaussian solutions of our main integral
equation. These solutions appear as bifurcations branches from the Gaussian
solutions. The total number of the branches is infinite but only one of them has
the necessary properties of stability to appear in general as a limit distribution
for normed mean spin at the critical temperature. In the second part of this paper
we find the values for critical indices corresponding to this branch. They coincide
with the values found in the general theory by Wilson [3].

From the formal point of view the non-Gaussian solutions can be represented
by a series of the parameter ε where ε is the deviation of the given value of the param-
eter from its bifurcation value. These series are always asymptotic because they
describe the functions with different asymptotics at infinity. The method we
apply can be regarded as a procedure which permits to make these ε-series
meaningful. Roughly speaking at a given ε the formal series gives a good
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approximation for the solution only in the domain depending on ε. Beginning
from a family of test functions we apply the transformations of the renormalization
group and construct ε-expansion near every iteration. The values of ε rapidly
decrease because the iterations rapidly converge to the solution which we are
seeking. Therefore, ε-expansion becomes more and more exact on the increasing
sequence of domains when the number of iterations tends to infinity.

Now we want to recall the definition of Dyson's hierarchical models,
asymptotically-hierarchical models and to deduce the main integral equation
(see [1, 2]). Let an integer r> 1 and a positively-defined quadratic form β(ίl5. . ,tr) =
g((t1 + . . . + tr)/r)2 + h(t\ 4- . . . + t,)/r with g, h as parameters be fixed. Assume also
that for any integer n> 1, there is given a volume Vn consisting of rn points divided
into r equal subvolumes Vn_ltί, i=l, ...,r. We consider a classical spin system,
configurations of which can be represented as functions w(x), x e Vn, taking the
values of ± 1. The Hamiltonian of Dyson's hierarchical model depends on a
parameter c, 1 < c < r, and is defined by the following recurrence relation :

Hn(M) = ΣUιHΛ-ι(w ί)-cΓQ(s?-1),...,4'I"1)). (1-1)

Here s\n~1) = (l/rn~1)ΣxeVn _ ι .u(x) is the mean spin in the subvolume F n _ 1 ? ί

of the configuration u and ut is the restriction of the whole configuration u(x),
xe Vn in the subvolume Vn^ί>ί.

Let us introduce gn(t\ jS) = Probn{s(n) = ί; β], where Probtt is the probability,
calculated by the Gibbs distribution in the volume Vn with β as the inverse tem-
perature, s(n) is the mean spin in the volume Vn, s

(n} = (l/rn)^xeVnu(x). Then from
(1.1) easily follows the system of recurrent equations for functions gn:

0π(ί; $ = (3 (̂0/3^^ (1.2)

where Ξκ(β) is the grand partition function in the volume Vk, fejgl. The main
assumption which is made at the investigation of hierarchical models, is that for
β = βcr the typical values of the mean spin have the order c~n/2. Making the
change of coordinates t = c'nl2z and putting Δn = cnl2r~\fn(z\β) = gn(z c~nl2\β)Δ~l

we obtain from (1.2) the following system of recurrent equations for functions
f^ β):

where Ln(β) is a normed constant. From the mathematical point of view, the
previous assumption is equivalent to the assumption that the functions fn(z\β)
converge at n-^oo to a limit and the limit function /(z; β) of continuous argument z
satisfies the equation

f(z;β}=L(β)^..^ll=1f(Zί ,β)e^^ ^δ(ΣZi-rz/l/'c)YYi=1dzί. (1.3)

The constant L(β) is the normalization factor. Equation (1.3) is the main integral
equation in the theory of hierarchical models. _

It is easy to verify that (1.3) has the Gaussian solution f(z;β) = ]/aQ(β)/πe~ao(β}z2

with ao(β) = ((g + h)/(r — c))β. General solutions of (1.3) for different β are related
to each other via the equality f ( z ι β1) = ]/ΓβjJ^ίf(z]/rβ^J^-L; β2). Therefore, it is
sufficient to consider (1.3) with β= 1.
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If the relations (1.2) are valid for n^n0 and the family of initial probability
distributions gnQ(t\β) is arbitrary then the corresponding model is called asymp-
totically-hierarchical model. Here t takes the values from — rn° to rn° and all
probabilities gno(t; β) are defined for some closed interval [/?" ', β+] and are C1-
functions of β. For any fixed interval [/J~, β+] there is a natural topology in the
space of such distributions {gno(t; β\ βe[β~,/?+]}.

Definition 1. The solution /(z; β), 0</J<oo, of (1.3) is called thermodynamically-
stable if there exists an integer n0 and a closed interval [/?", β+] for which one
can find an open set Ω in the space of families of probability distributions
{flfjί j8), j8 e [β~, β+-]} such that for any family {gno(t jS), j8 6 |jΓ , β+]} e β there
exists one and only one β*e[β , β+] for which fno(z; β*) converge weakly to

f(z;β*).
One of the main results of [2, 8] is that the Gaussian solution is thermo-

dynamically stable for ]/r<c<r and for c<]/r it is unstable. Therefore, for
c<]/r it is necessary to construct non-Gaussian solutions of (1.3).

Let ck=r1/(k+ί\k = 1, 2, ..., ε = ck — c. The following theorem is the main result
of this paper.

Theorem 1. For any k= 1,2, ... one can find <5k>0 such that for any ε, 0<ε5£<5k

there exists a normed solution fε(z) of the equation

/fi(z) = Lj..J/e(z!)..Je(z^^ (1.4)

For this solution 0 < fε(z) ^ 2 j/Λ0/π exp [ - (a0z
2 + 40ε|z|α)], α0 = (/z + g)/(r - c),

A0 = A0(k), α is t/ie rooί o/ ί/ιβ equation ca = r. These solutions fε(z) continuously
depend on ε for any fixed z. J

It is possible to show that the branches fε for fc>l are thermodynamically
unstable. The branch fε for fe=l is thermodynamically stable (see § 8 of this
paper).

Theorem 1 gives the existence of the solution of (1.3) for c sufficiently close
to r1/2. In [10] this branch was investigated on computers for r = 2 (see also
Appendix 2 below). The results of [10] doubtlessly show that there is no other
bifurcations for 1 < c < ]/2.

During the proof we discuss in detail only the case r = 2 and Q = (tιjrt2)
2

which corresponds to Dyson's hierarchical model. The general case can be
treated by obvious modifications. The reader can easily notice the similarity
between the methods of this paper and papers [2, 8].

§ 2. The Idea of the Proof of Theorem 1

For r = 2 and Q(t1,t2) = (tί + t2)
2 Eq. (1.3) takes the form:

/(z; j8) = Lc^
2f«00/(z/|/c + M; β)f(z/]/c- M; β)du .

The substitution f(z',β)=f1(z;β}exp(-a0(β)z2l aQ(β) = βc/(2-c) reduces the
latter equation to the equation

/(z; β) = Lcp» e-2«^u2f(z/}/~c + uι j8)/(z/|/c- u; β)du.
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The next step is to give up the normalization condition and to consider the
equation

u)du = A f , (2.1)

After normalization of the solution of (2.1) we shall obtain the solution of the
initial equation (1.3) for β = (2 — c)/(2c). As was mentioned above, the solution of
(1.3) for any β can be obtained from this one by a simple change of variables.

A depends on c and (2.1) defines a family of non-linear transformations when c
changes in the interval 1 < c < 2. It has an obvious solution f=ί which corresponds
to the Gaussian solution of (1.3). It is very essential that it does not depend on c.
When one has a smooth family of non-linear transformations of the finite-dimen-
sional space with a fixed point which does not depend on the parameter of the
family, one should consider the family of linearized transformation near this
point and find such values of the parameter for which the spectrum of the cor-
responding linear transformation contains 1. If the second derivative in the
direction, according to the eigenvalue 1, enters the Taylor series with non-zero
coefficient, then through the fixed point there passes a new branch of fixed points
of transformations of our family. One can say that the initial fixed point generates
new fixed points.

The procedure which is applied below, can be considered as an adaptation
of the methods of the finite-dimensional case to our transformation A, acting in
the infinite-dimensional functional space. The linearized operator L1 correspond-
ing to /(z) = 1 takes the form

This operator is known as the Gauss integral operator (see [11]). We consider its
action in the space of even functions /. Its eigenvalues are equal to 2, 2c~ *, 2c~ 2, . . .,
2c~k, ... . The corresponding eigenvectors are the Hermite polynomials, which
are orthogonal with the weight exp( — yz2), y = l — c"1. Thus, the critical values
of c near which one can expect the appearance of new solutions have the form
ck=21/(/c+1), fc=l,2, . . . . For c<ck and close to ch the point / = ! has (fe+1)-
dimensional unstable eigenspace. Accordingly, the new solution must have
fc-dimensional unstable eigenspace for these values of c.

Our method of construction of new solutions of (2.1) has much in common
with the widely-known Hadamard-Perron theorem in the theory of smooth
dynamical systems (see [12, 13]). The direct method of contracting mappings
cannot be applied because we are looking for unstable solutions. The construction
must begin with the construction of the stable separatrice of the solution which
we are seeking. The next step is the proof that the induced mapping on the separa-
trice is a contraction. The first step, i.e. the construction of the separatrice is
usually taken in the following way. One takes a /c-dimensional manifold which
is close in a natural sense to the unstable subspace and finds its intersection with
the separatrice. This intersection lies in one point. This point is determined by
the property that all its images lie in a small region of the fixed point.

Our procedure is similar to the above process. However, we do not construct
the whole separatrice but take a special fc-dimensional family of test functions,
find one point of this family which lies on the separatrice and prove that it converges
to the solution which we are seeking.
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§ 3. Properties of Operators Lf

The differential Lf of the non-linear transformation A in an arbitrary point / has
the form

. (3.1)

In this section we shall investigate several largest eigenvalues and eigenvectors
of the linear operator Lf when the function / is sufficiently close to 1.

Roughly speaking we shall prove that in the case under consideration the
formulae of the perturbation theory are applicable. One cannot hope that the
series of the perturbation theory converge because the spectrum of non-perturbed
operator when f = l consists of numbers 2, 2c~l, 2c~2, ... and tends to zero.
However, we shall show that when the perturbation has the order ε in the ap-
propriate norm the difference of n-th eigenvectors for perturbed and unperturbed
operators is no more than ε°'8 if ε is sufficiently small and n is fixed.

The consideration of this section will not be used below. The reader may
acquaint himself with the formulation of Theorem 3.1. and proceed to the next
section.

Now we are going to formulate the exact condition concerning a perturbation
and to give the formulation of the theorem. Let ε, 0 < ε < 1, be a certain number and

Assume that there is given an even function f(z) e C1^1) such that for z e Dε the
function / can be written in the form

f(z)=l-sG2lftfz) + R(z) (3.2)

where G2k(z) is the 2/c-th Hermite polynomial (see [11]), γ=\ — c~l and

\R(z)l\dR(z)/dz\<ε5^ . (3.3)

For z φ Dε the function / satisfies the estimates

/(z)<exp(-(ε'/2)|zα),α = 2(log2cΓ1 , (3.4)

ε' = ε PO, where p0 is the 2k-th coefficient of G2fc(|/yz),

\df(z)/dz\<\z\*exp(-(8'/2)\z\*). (3.5)

Let us denote the Hubert space of even functions on the line which have an
integrable square with respect to the weight exp( — yz2) by LgV(^1;exp( — yz2)).

Theorem 3.1. Let N be fixed. Then there exists a number ε0 = ε0(ΛΓ) such that
for any function f satisfying (3.2)-(3.5) with ε, 0 < ε < ε0, the operator Lf has (N + 1)
eigenvectors e 0 ( z ' , f ) , . . . , e N ( z ' , f ) and accordingly, eigenvalues λθ9...,λN such that

\λk - 2/ck - 2ε f « „ exp( - yz2)G2k(]/^z)AG2k(]^z)dz\ ^ β*

a2) ||φ;/)-

for zφDc; /-O, . . . T V ;



252 P. M. Bleher and Ya. G. Sinai

a4) in the Hilbert space LgV(K1;exp( — yz2)) there exists the closed subspace
HfN of the co-dimension (N + 1) invariant under Lf and such that

where L^(J^1;exp( — yz2)) is the subspace of the Hilbert space L2

v(JR
1;exp( — yz2))

generated by the Hermite polynomials G2ί(|/yz), i>N. _|

The proof of the theorem will be divided into several lemmas.

Lemma 3.1. // the function f(z) satisfies the condition (3.2)-(3.5) and ε>0 is
sufficiently small, then

\\Lf-Li | |L 2(fli;exp(-yz 2)) = C ?

\\Lf-Li_ -fiG2JI L2(R1;exp(-γz2)) = £2

Proof. We have from (3.1) and (3.5)

(Lf - L, _ εGJg(z) = (2/]/π) f « m exp( - u2)g(z/]/c- u)R(z/γc + u)du

= (2/]/π) f- „ exp[ - (u - z/\/c)2^R(2z/)/~c- u)g(u)du = ̂ ^ K(z, u)g(u)du = Kg ,

where

K(z, u) = (2/1/π) exp[ - (u - z/]/~c)2-] R(2z/]/c - u) .

Moreover

where

K0(z, u) = K(z, M)exp[- (y/2)(z2 - 1/2)] - ( 2 / j / )

β(z, u) = (z/|/c - u)2 + (y/2)(z2 - u2) = (l/}/~c)(z - u)2 + (1/2+ l/(2c) -

- (z2 + u2) ̂ i(l - l/l/ί)2(z2 + w2) - α0(z2 + u2) > 0 . (3.7)

We shall show that

ί^JK0(z,u)|2dzdu<ε3. (3.8)

Let Ωε = {]/z2 + u2 ̂  (d0/3) ]/ln(l/e)}. For (z,M)eΩ ε the point 2z/|/c-w6Dε and
thus [see (3.3)]

dzdw^constε10/3<iε3 (3.9)

for a sufficiently small ε. From (3.2)-(3.4) it follows that the inequality

\R(z)\<l + z*k (3.10)

is valid for all zeR1. Therefore |JR(2z/|/c - M)| ̂  1 + 4(z2 + u2)2/c and for sufficiently
small ε

£ const JS0/3)V4Ϊ(ΪW exp( - 2α0ρ
2)(l + 4ρ4k)2dρ g constβ2^'3'2 (In4flε)

^constε4ln4fcε<iε3.

Thus (3.8) is proved.
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From the Schwartz inequality we have

Then from this inequality, (3.6) and (3.8) one can easily derive

\\K\\ L2(Rί;exp(-γz2))= \\Lf — L1 -εG2k\\L2(Rί;exp(-γz2)) = ̂

The second inequality of Lemma 3.1 is proved. The first one is obtained in a
similar way. Thus Lemma 3.1 is proved.

Similar considerations lead to the proof of the following lemma.

Lemma 3.2. Under the conditions of Lemma 3.1

II*-VZU/-A)0(*)Î

IKvz2(£/-A-EG2J0(z)llcw j
We shall omit the proof of Lemma 3.2. Up to the end of this section we shall

write \\g(z)\\ instead of \\g(z)\\L2(R1.^?(_γz2}).

Lemma 3.3. Under the conditions of Lemma 3.1 the operator Lf has the main
eigenfunction e0(z;/) with eigenvalue λ0(f) such that

Proof. We shall use the method of the contraction mappings. Let us denote

S={/(z):||/(z)|| = l},

S * = { f ( z ) : f ( z ) e S 9 \ \ f ( z ) - l \ \ < δ }

and consider the non-linear mapping Uf:g(z)->\\Lfg\\~1Lfg(z), Uf\S-+S,
δ = ±εi5/ίβ and fi be sufficientiy smaιie We shall show that UfSδζ=Sδ and Uf\Sδ

is a contraction mapping.
Let C/i be the mapping Uf corresponding to the function f = i and Dg be the

differential of this mapping at the point g.
It is easy to see that the spectrum of the operator D1 consists of the numbers

c"1, c~2, c~3, ... and Dl is selfadjoint. So \\DV\\ =c~1 <1 and D^ is a contraction
operator. Hence, we deduce that the differentials Dg of the operator U1 at the
points g close to 1, namely at the points g e Sδ, are contraction operators and
then we deduce that the differentials DgUf9 g e Sδ are also contraction operators.
That means that Uf\Sδ is a non-linear contraction operator. Moreover, it follows
from our considerations that for gί9 g2 eSδ

\\Uf(g,)-Vf(g2}\\^(\ + c^}\\gi-g2\\,

if ε is sufficiently small. Furthermore, due to the evident estimate

the latter inequality implies Uf:Sδ^Sδ.
Thus, the mapping Uf:Sδ^Sδ is contractive and therefore there exists a fixed

point e 0 ( z ; f ) of this mapping. It is evident that the function e 0 ( z ; f ) is the eigen-
function of the operator Lf:

Then from the inequalities \LS-L^\ <ε31/32, \\e0- 1|| <fε15/16 we obtain the
estimate |A0-2|<c1 5 / 1 6. Q.E.D.
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Lemma 3.4. For z.ueR1 and α^ 2

\z + u\a + \z-u\a^2\z\* + u2\z\«-2<x(a-l)/2. J

Proof. Let us divide the both sides of the inequality into |z|α (for z = 0 the
inequality is evident) and denote uz ~ l = d :

Without losing generality we can consider d ̂  0, d φ 1. Let F(d) = \ 1 + d\a + 1 1 - d\* -
2-(α(α-l)/2)d2. Then

and F'(0) = 0, therefore, F(d)>0 for d>0. Then F(0) = 0 and thus, the inequality
F'(d)>0 for d>0 implies the inequality F(d)>0 for d>0. Q.E.D.

Proof of Theorem 3.1. We have

Therefore, from proof of Lemma 3.3 it follows that there exists the main eigen-
function e$(z',f) of the operator LJ and ||eg(z;/)— 1|| <ε15/16. The hyperplane
H0 which is orthogonal to the function eg(z;/), is invariant with respect to the
operator Lf. Using the method of contraction mappings (see Lemma 3.3) in the
hyperplane H0 we shall prove the existence of the eigenfunction g1(z;/)e//0

close to ex(z; 1) —G2(]/yz). Then we shall prove the existence e*(z;/) etc. As a
result, N+l eigenfunctions e0(z;/), . . . , e N ( z ι f ) and eigenvalues λ0, ...,λN of the
operator Lf will be constructed. Besides, the following inequalities are true for

~z) | |<ε 7 / 8 ,
o7/8

and at the end we shall construct the subspace Hf N C Ll^R1 exp( — yz2)), satisfying
the condition a4) of Theorem 3.1.

Let us now prove that \λk — 2/ck — ε(G2k,LG2kG2k)\<8*. For this we must find
the eigenfunction ek(z\f) using the perturbation theory up to the terms of order ε
included. We have

let ek=G2k + εφ, λk = 2c~k + εl. Then, in the formula Lfek = λkek equating all the
terms of order ε, we obtain

φ(z) = ψ(z) + αG 2 f c ( j/z), ψ(z

The function LG2kG2k is the polynomial of 4/c degree and therefore it is easy to
find ιp from the latter equality (it is also the polynomial of 4/c degree).
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Thus, the function φ is found and

Then, using the method of contraction mappings we prove the estimates

μfc-2c-*-e(G2k,LG2kG2k)|<ε*

if ε is sufficiently small. Thus, the condition a:) of Theorem 3.1 is proved.
Let us now prove a3). It is necessary to point out that all the previous con-

siderations were of a general character and they are applied to various problems
of the perturbation theory. The proof of the conditions a2) and a3) is based on the
nature of the perturbation of the main operator, reflected by conditions (3.2)-(3.5).

Let us consider the function g0(z) = exp(— (ε'/2)|z|α) and the operator 7} = λ^lLf.
The main eigenvalue of the operator Tg is equal to 1 and others do not exceed
\(c~l + 1)< 1, therefore, the iterations gn=Tn

fgQ tend to the function conste0(z;/)
in the space L2(Λ1;exp( — yz2)) where const ̂ 1. In reality there takes place the
convergence in C1 on compacts because 7} is an integral operator with a smooth
kernel.

More precisely from Lemma 3.2 it follows that

The following estimate is evident from the definition of the function g0 :

H0ι-0ol l^ε 1 5 ' 1 6 .

Besides, due to the inequality

\\9n^-d

we have

ii^+i-
and

Let D<0) = [-40),40)], where έζ0) = 0,01(l-c-*)-yin(l/ε). It follows from the
latter estimate that

||0Jcιu>H^ l + constε1 5 / 1 6.

Therefore the inequality

^(z)^(2 + |z|-)exp(-(ε'/2)|zn (3.11)

is fulfilled for all n in any case for z E D(

ε° \ It is evident that the function gQ(z)
satisfies this inequality for all zeR1.

Now let us assume that the function gn(z) satisfies inequality (3.11) for all
z e R1 and prove that the function gn+1(z) satisfies this inequality for z e R1\D(

ε°\
The following inequality results from properties (3.2)-(3.4) of the function /(z) :

+ χD(z))exp(-(ε72)|zn,
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where χD(z) is an indicator of the interval D = [ — d,d], containing all zeroes of
the polynomial G2k(]/yz). It is very important to point out that D does not depend
on ε. From here

^
Let us now use Lemma 3.4. As 2 = cα/2

^
It is easy to verify that the main contribution into the right-hand side of this
inequality is made by the item

From the inequality |2-!0|<ε15/16 we have 2/(λ0]/c)< l-(c- l)/8 and thus for
zφD^

S0^|z|*(l-(c- l)/10)exp(-(ε72|zr) .

So we have proved inequality (3.11) for the function gn+1 for zφD(®\ As we
have established it for zeD< 0 ) too, inequality (3.11) is valid for all zeR1. That
means that the first inequality of condition a3) of Theorem 3.1 is proved for the
eigenfunction e0(z;/). The second one is deduced similarly and its proof is omitted.

Now we shall sketch the proof of conditions a3) for all the other eigenfunctions.
Let us consider such μ,

μ<constε15/16

that the function ^0(z) = G2(|/yz)exp(-(ε72)|zα|) + μe0(z;/) belongs to the hyper-
plane HQ which is orthogonal to eg(z;/). Then the iterations gn=Tn

fgQ, where
f,

inequality
= λΐ1Af, converge with £ t(z;/) and, besides, the function g0(z) satisfies the

As above it is proved by induction that all the sequent functions gn satisfy this
inequality too, therefore it is fulfilled also for the function ^(z;/). Similar con-
siderations are true for the sequent eigenfunctions.

Let us now prove a2). Let #0(z) = exp(-(εy2)|z|α). We have established already
that the iterations gn=T*}gQ, Tf = λ^ Af converge to the eigenfunction e0(z;/)
in C1 on compacts and satisfy inequality (3.11). Let us show now that there exists
a sequence of numbers {nJ^Lo, n^oo^^ such that

!K-i!lcl<βε)^
7/8. (3-12)

It is evident that as a result, we shall prove a2) for the eigenfunction e0(z;/).
Let n0 = Q, n1 = [0, OOOllnε"1]. Let us expand the function hQ = gQ— 1 in the

Hermite polynomials up to the order M (the value M will be indicated below):

where (H0(z), G2/|/yz)) = 0, j = 0, 1, ..., M. Let us denote

r(z) = - εG2fe(j/9z) + R(z), Tf=T, + Tr
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and write

0ι = Tfβo = Tι9o + Trg0 = T! 1 + T^o + Trg0 = 2/λ0 + T^Q + Trg0 .

Hence,

MZ) = 0ιW - 1 = (2A> - 1) + Σf= o (

+ Γiϊf « + T^0(z) = £f= o

where

δ<f» = (2/λo - l)π*y ~ * + (2/A0)«5<0

0) , (3.13)

δf = (2/(λ0cW, 7= 1,. . ., M , (3.14)

H, = T,HΌ, (3.15)

Sι = Γp f f o. (3.16)

Analogous expansions are obtained for all the sequent functions hn(z) = gn(z)—i
and the following estimates are true:

(3.17)

(3.18)

(3.19)

(3.20)

It is very important that the validity of all these estimates is proved on the basis
of the following properties of the function gQ :

1. 0o satisfies the estimate (3.11),

2. H0 0ω-l| lci(D e)^e 1 5 / 1 6, (3.21)

3. | |#0(z)-l| |^ε3 1/3 2. (3.22)

Relations (3.17)— (3.20) are easily proved by induction. Let us now use estimates
(3.17)-(3.20) for n = nί. Then we receive for zeDε that

if ε is sufficiently small. We have used here the following considerations: the
estimates Iδ^lπV^ε0-99 and ^J

Λl0|(5|/)

lG2,(|/yz)|^constε31/32[lnε-1)M are
deduced from (3.22), the estimate |SΠl(z)|<ε3ί/32"° 001 - from (3.20) and the
estimate |HΠl(z)|<ε is proved in the following way

[see (3.19)]. Next c-»ι = εo oooι inc Let u§ choose M=107(lnc)"1 (M does not

depend on ε). Then it follows from the latter inequality that ||HWl ||cι(jDε)^ε. Q.E.D.
Thus it is proved that the function gnι satisfies the same conditions 1, 2, 3 as

the function gQ(z). Now in a similar way we prove that the function gn2(z\ n2 = 2n1

satisfies these conditions too and so on. As a result, we establish (3.12) Theorem 3.1
is proved.
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§ 4. Inductive Assumptions, Formulations of Main Lemmas
Proof of Theorem 1

We shall begin with some notations. Let

a = (G2k, AG2k) = J« „ e- ^2G2k(]^z)A(G2k(]/^z))dz

and ε = (ck — c)/a. In Appendix 1 we show that αΦO. Below we consider only the
case ε>0. All our assertions should begin with the phrase: "Let ε be sufficiently
small". For this reason we shall omit it everywhere. Let us put Dn = [— dn, dn~] where
^IQClnε^+lnCl-eΓ^/ίc-l). We shall take ω>l which is the root of the
equation 5ω~1-(l-ε)~1/10°, i.e. ω-l«ε/(1001n5). Furthermore, we shall
consider the sequence of integers ni=[ωni_l + n0], ί=l,2, ..., nQ = 2log5ε~1.
Our procedure will be slightly different for n = ni and ni<n<nί+ί. At each step
we shall deal with a family of functions fn(z\ a) = AnfQ(z; a\ where a is a parameter
of the family, all the values of which form the /c-dimensional parallelepiped:
a={a0, ..., flfc-i}, |αf g^-^, z = l, . . . ,/c. All the functions of the family are even.

Inductive Assumptions for n = nt. Conditions (t/M.)

For ft = ftj the k-dimensional parallelepiped 5Bnι={a = (aQ,al9...,)ak- L): as\^
ε5/3(l-ε/2)"f, s = 0, ..., fc-1}, for each 0 = (α0, .. .,0 f c_ 1) eS,,, the even function
/M.(z; α) is given so that

u x) for some α (0)eSn. the function f n ι ( z ' , a ( 0 ] ) = f i satisfies the conditions of
Theorem 3.1; therefore the operator Lfτ has JV-f 1 eigenfunctions es(z\fj) = e®,
5 = 0, 1, . . . 5 Λ / " with eigenvalues λs(fi) = λ® and the in variant space Hj.N\ besides
\λf — 2c"s|<ε4/5, s = 0, 1, ..., JV; the number N does not depend on ε and will be
indicated below;

u2) the function gnι(z'9a) = A f n ι ( z ; a ) — fni(z;ά), αe93^, can be represented in
the form

gni(zι a) = ̂ -4ajeJ\z) + dni(a)e^\Z) + Rni(z; a)

here the function RHι(z\ a) being expanded on the subspace HfitK and one-dimen-
sional subspaces generated by e(^\ 5 = 0, 1, ...,X has zero projections on these one-
dimensional subspaces; for z E Dn.

u2ι) |

u22) |KM ί(z;α)|<ε8/3(l

\dRnί(z a)/dz\ < ε5/2(l -

\dgnί(z;a)/daj\-ej(z Ji)\<ε5l2(l-3ε/5Γ; j-0,.. .,fc-l;

u3) for z φ Dn.
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where α = 2(log2c)"~1 and is sufficiently close to 2k for small ε;

259

2\dfnι(z; a)/δz\ £(1 + |

I VJnt(z a)\ g(l + |z|2fc+ Vxpί -(ε'/2)|zr) ,

I Vadfnί(z; d)/dz\ g(

Inductive Assumptions for nt<n^ni+1. Conditions (Vn)

Let a fc-dimensional parallelepiped 2Iπ={α==(fl05 •• > β f c - ι ) : ^il^i^5 / 3(l— ε/2)"
c(n-«i)/ιo^ J _ Q ? j? ...5 /c— 1} and for each <2 e 2ίπ an even function fn(z; a) be given.
We put gn(z; a) = Afn(z'9 a)-fn(z, a) and denote

v k=l-3ε/4, v,.-/l7. + ε*<c-2α'k)/3, fc<j^AΓ+l

where λj are eigenvalues of the operator Lj. acting in the Hubert space L^R1;
exp( — yz2)) of even square-integrable functions with the weight exρ( — yz2),
y = l — c"1. Then the family [gn(z;a\ αe3ίπ} satisfies the conditions:

gn(z; a)^^=^s4'^)

where N is the same number as in the conditions (Un) and will be indicated below
and

vu) |<5|f'(α)|^2r-

v12) /ίn(z;α) = 0 for z^D π ; hn(z;a)eHfl,

1 = 0, l,£m ) = const

t (z' a)\\ <ε3(l —

3 ,

v14) lk(z;α)i|C(D(i)<ε8/3(l-2ε/3)"3"-"-'

a
dz9n(z;<

v2)ΐoτ zφDn

v21) Og/π(z;α)<exp(-8'/2|z|«);

C(Dn)

v23)

+ |z|2k)exp(-ε'/2|zr);

+ |z|2/I+1)exp(-ε72|z|α;

<ε5/2(l-3ε/5)"i
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Now we shall formulate three lemmas from which we shall deduce Theorem 1.
In the formulations λ is a certain constant larger than 1.

Lemma 1. Let n — n{, ana for n = nt the conditions (Un) are valid for the family
[fn.(z\a\ αe33Mι}. There exists a subset 93^C23Πί and Cl -diffeomorphism φn:

93i,.->3lM. such that for the family {fn.(z\φ~.l(d)\ aetyn.} the conditions (Vn) are
valid. Moreover \\φnι — Id||cι<ε2 where Id is the identity transformation in the
k-dimensional space.

Lemma 2. Let for n,ni^n<ni + 1 the family {/π(z; α), a e 2In} satisfies the condi-
tions (Vn). Then there exists a subset $^c9ϊπ and C1 -diffeomorphism φn:9ί^-> 9Iπ+1

such that d(ψn(a'l ιpn(a"))^λd(a',a") and the family [Afn(z\ιp^l(a)\ aE&n + 1}
satisfies the conditions (Vn + 1). For n = ni + 1 — l the conditions ( V n + ί ) are valid with
the functions e(^\

Lemma 3. Let for n = ni + ί the family {fn. + ί(z; a\ a e 9In . + 1 } satisfies the condi-
tions (VHι + ί) with the functions e(>\ Then there exists a subset Wn. + 1 C 9IΠ . + 1 and
C1 -diffeomorphism χni + ί:Wni + ί-+1Btti + i such that for the family {fni + l(z 1x^^(0)),
0e23M .+ l} the conditions (Un. + ί) are valid and \\χn. + l — Id|| ̂ ε2.

Proof of Theorem 1. Let us take the initial family of functions

/(z;αHφ(z)(l-εG2k + ε2Σ^

where φ(z) e C^? φ(z) = φ(- z\ φ(z) = 1 for |z| < djε) and φ(z) = 0 for \z\ > dno(ε) + 1,
coefficients bt are found from the formulae of the perturbation theory

where et(z) are the eigenfunctions of the operator Lf(z.0}. It is easy to see that this
family satisfies the conditions (t/HO). Now_we can apply Lejnmas 1, 2, 3 and con-
struct a decreasing sequence of sets »„, SΛO = 2ί l l oDS I I O +ι=φ~1+ι(93π o+ι)^
®no+2 = Vn"o1

+2%o1

+l(»»o + 2) for which Π"=»o»n = 5 G 9Ino.

We shall show that the limit \imAnf(z 9 a ) = h(z 9 a ) exists uniformly on any
«— >• oo

finite interval and Ah = h. Let fn + 1(z) = A"f(z', a\ /0(z) = /(z; a). Lemma 2 can be
applied to the function gn(z) = fn+1(z)—fn(z) from which it follows that

(ε/2)|zΠ, zφDn.

Therefore for any fixed / the series fo(z) + Σ™=1gn(z) converges uniformly on Dl

and for its limit /ι(z)^0 the following estimate is valid

From this estimate we have Ah = h. Theorem 1 is proved.

§ 5. Proof of Lemma 1

Let be n = nt. Let us denote hj(z) = χDn(z)ef(z\ j = 0,..., N, where χDn is the indicator
of the interval Dn = \_ — dn, dn~], e{f\z) is the j-th eigenfunction of the operator Lj..



Critical Indices 261

Firstly we shall show that

\\««hj(z)hάz)e-v2dz-δi\<ε21* (5.1)

where δ{ is the Kronecker symbol. According to the Theorem 3.1

and for |z|>ίί0 = 10(c-l)'1l/ϊmΓΊ \ef(z)\<\z\2^1. Therefore

Consequently,

(5.2)

The Hermite polynomials {G2j{z]/y)} are orthogonal in the space L2(R1;
exp( — yz2)), therefore inequality (5.1) follows from the last inequality. Then from
(5.2) we may readily obtain:

\^aohj(z)h(z)e^z2dz\<2ε^5 (5.3)

for j = 0, . . ., N and h(z) e H f ι ι N .
Inequalities (5.1) and (5.3) allow to expand the function Rn(z; a) in functions

{hj(z)} for small ε [see the condition (ί/n.)]

Rn(z\ a) = ^=0δ<ϊ»(a)hfr) + Kn(z , a) ,

where for αe23π supp/ϊM(z; a)CDn and hn(z; a) e Hj. j j v and obtain for any
j, O^j^iV, the following estimates

ε^H^z α)!!, (5.4)

\\hn(z a)\\^(ί+ε2/3)\\Rn(z a)\\, (5.5)

IΓ^αJIgα + ε^HFAίz fl)!!, (5-6)

||PΛ(z;α)||^(l + ε2/3)||FA(z;α)|| , (5.7)

where || || = || ll^^i^p,-^,).
As a result, we have the expansion of the function gn(z; a) as follows

gn(z a) = £5 1 1 (aj + ̂ \d))ef(z) + (δn(a) + δΐ\a))e«\z)

+ Σ^^Λi}(a)e^(z) + hn(z a). (5.8)

The estimates u22) in the condition (l/Bι), and the estimates (5.4), (5.6) show that

c8/3(l -2ε/3)Πί , (5.9)

\ <0.9 2y- V/2(l - 2ε/3)" . (5.10)

Let us define the mapping <pn:<!&n-+Rk by the formula:
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Then the estimates (5.9) and (5.10) mean that

||φn-Id||cl^
2 (5.11)

that is, φn is C^diffeomorphism which is close to the identical one. For the point
x e 393Π, the boundary of the cube 93 „,

\φn(x)-x\<ε*\x\.

Let us denote <lln={\aj <^ε5/3(l— ε/2)"}. From the last inequality it follows
that

where <pw(93n) is the image of the cube 23n under the mapping φn. Let us put
®ή = 9n 1(<&n) We have proved that the mapping φn : 93^2XM satisfies the estimates
formulated in the lemma. It should be verified that expansion (5.8) of the function
gn(z\ a) satisfies all the requirements of the condition (Vn), provided the variables
a=φ~l(b] are substituted in this expansion. Let us denote

tn(z 9 b ) = 0.

We have for

In the same way we verify the remaining parts of the condition (Vn). Lemma 1 is
proved.

§ 6. Proof of Lemma 2

We have

9n+l = Jn+2~ Jn+1 = ̂ Jn+1 ~ ̂ -Jn =-^fn(Jn+1 ~ Jn)

+ A(fn +!-/„) = L7ιgn + (Lfn _ j)gn + Agn

= Lfιgn + fn + %. (6.1)

Firstly we show that for z e Dn

1 , (6.2)

II> + 1 , (6.3)

ε/2Γ-3"-^-. (6.4)
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In order to derive (6.2) let us first establish, that for zεDn.

|/π(z;α)-7;.(z)|<β7/3(l-β/3Γ . (6.5)

Let us denote α(ll) = α, αϋ) = ιp7 V7>+1)) for j = n- l , . . . ,w f , b(nt) = φ'1 (aM).
From t;14)

|/n(z; α) - /Jz; &<"'>)) ̂  £;!,}, |̂ (z; α^)| ̂  2ε7/3(l - 26/3)" (6.6)

and from w3) it follows

!/»,(*; &(Bi))- 7,(z)l =l/B((z; *">>)- fni(z; 0)|
^"'Ί sup |Ft/Bι(z;fc)|^85/2(l-e/2)"'e-1/20<k+1

beSnί

<ε7/3(l-ε/3)" ίβ1/10(l-£/2)" l(l-ε/3)-nι4/c+1. (6.7)

Inequality (6.5) will result from (6.6), (6.7), if we show that

ε1 / 1 0(l-ε/6)X*+ 1<l. (6.8)

From the form of dn., denoting x = e(l — ε)n\ we have

ε1/10(l-ε/6)X2f+1<^

where L is limited, and x^O for ε->0. Thus, (6.8) and therefore (6.5) are proved.
Let us consider now (6.2). Suppose zeDn+1. Then

u a)

a)du\

From κ3) it obviously follows that /π^2, and, putting uπ = 0.9(l — c~*)rfn + 1, we
have

/2<Lexp(-Mπ

2)<(ε(l-ε))1+1)12.

In case |u|<wm and zeDn+ί, we have

\u gdB+1/|A + «B = dB+1(l/|/ί + 0.9(l-l/]/ί))

(6.9)

since

-^

From (6.9) it follows that in estimating the value /x we may employ the properties
of functions fn(z\ a)-JΪ(z) and gn(z; a\ zeDn, Using vί3) and (6.5), we obtain
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Performing summation of the estimates for /x and I2 we obtain (6.2). The relation
(6.3) can be proved analogously.

Let us now prove (6.4). We have

Vat'n(z -9a) = L Vafngn + (Lfn - Lf) Vagn .

We shall use the inequalities, resulting from (Vn):

"-^ for

Let us divide the integral, which determines LΔafngn, into the sum of two
integrals :

LΔafngn(z; a) = (2/J/£)[ J%n+ J^J e~^^afn(z/]/c- u\ a)gn(z/]fi + u; d)du .

For the external integral we have the estimate:

so far as for zeDn and \u\>un, we shall evidently have \z/]/c±u\<K3u. The last
inequality follows from the fact that exp( — ι/2)<ε4(l — ε)n due to the definition
of un. For the internal integral on the base of the condition vί4):

v

Summing the estimates of the external and internal integrals, we obtain the
estimate for the value \LΔafngn\. Analogously (Lfn — Lf)Vagn can be estimated.
So, the first inequality in (6.4) is proved. In a similar way we prove the second
inequality for \Vat'ή\ in (6.4).

Now we make use of the representation for gn(z',a) involved in v^). In the
expression

LJ&n(z α)= Σ5=έ ajLItef+ ^=k^(a)Lj^ + Ljhn + Ljtn

we consider each term separately, beginning from the right one. Let us introduce
the operator

We shall show that for zeDM + 1

\(Lj-Lj)tn(z; fl)|<84(l-ε)"+1 . (6.10)

From the conditions Ft)

Hence

\(Lf-Lfi)tn(z; α)| g(4/V^) J|B| >Une-«2(l + \z/]/~c-u\)2N+2du

<ε4(l-ε)«+1K1exp(-0.1«n

2)Mn

2Λ'+2,
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that proves (6.10), since Kί exp( — 0.1^)w^+2^0 at MM->OO, whereas due to
smallness of e we may consider all un to be sufficiently large.

For zeDn + 1, \u\<un it is obvious that z/]/c±ueDn. Thus,

Let us put ίπ + 1(z;α) = ίή(z;fl)H-ί^(z;α) + Lj.ίn(z;α). Having summed the esti-
mates (6.2), (6.3), (6.10), (6.11), we obtain the resulting estimate for ίw + 1(z; α):

The same consideration allows to obtain an estimate for the vector-function

Now we turn to the function hn+ί(z; d)= χDn + ί(z)Ljhn(z; a).
According to the assumption of v12) hne H^ N. Therefore from the Theorem 3.1

it follows :

\\hn+ΐ(Z> α)llL 2(K 1;exp(-yz 2))= \\LfJϊn(Z> a)\\L2(Rl',exp(-γz2))

^VN+i\\hn(z;a)\\L2(Ri.exp(-yz2)}. (6.12)

So far as hn(z; a)eHfιtN for any αe9ϊn, then

dhn(z cή/dcijE HjιN, j = 0,. . ., k - 1 .

So, analogously to (6.12), we shall have

||5/ϊw+ι(z;α)/dflJL2(^

From the inequalities

we get directly the following

ll^+ι(^β)llc(D, + 1)^2,l| |/ιn(z;α)||C ( D n ), (6.13)

(6 14)
(6.15)
(6-16)

Now we have

,(z; a] (6.17)

where λ0,...,λN are the eigenvalues of the operator Ljτ. From the invariance of
HfιtN it follows that LjhneHjiίN but, generally speaking, hn+1φHfiίN.

Thus, we consider the expansion

ι(z;α), (6.18)
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where hn + 1<=HjiίN. From the Theorem 3.1

\\hn+ t(z; α)|lL 2(Ri;exp(-yz 2))< 1? 1 ll^n+l^l #) I I L2^1; exp( - yz2))

Let us introduce the mapping ipn:Wn-^Rk, putting

From the last estimates, from (6.13), (6.15) and from the condition ι;12)

(6.19)

(6.20)

where tp(0)(α0, ...,%_!) = (A 0α 0,. . .,>l k_ 1α k_ x). Let us insert expansion (6.18) into
(6.17) and denote the vector ψ(a) by a:

gn+ ,(z; α) = ΣJlo1 ̂ (^)+ Σ

From (6.19) it follows that φ(9ίjD2lrt+1. Let us put

Lemma 2 is proved.

§7. Proof of Lemma 3

In this section we assume n = nί + 1

We shall estimate firstly \Rn(z;a)\ for zεDn=[-dn,dn]. From the condition ι;n)
and the Theorem 3.1 we obtain the estimate

Hence

Σ?=k+1 |̂ (α)e,(Z)| gε8/3(l - 2ε/3)« (l -
(7.1)

Let us show that for;> fc

(Vj./(l -3e/4)"""'^J'+ L <c-*0'-fc)no. (7.2)

Indeed:
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The left-hand side of Eq. (7.2) does not thus exceed

In order to prove the inequality (7.2) it is sufficient to show, that

From the definition of the numbers n0, n l 5...,ω, dn we have

[(ω — l)nj ̂  (ω — iχ — 1 ̂  (ω — l)π/ω — 1 — (ω — I)n0/ω,

log 5 c)/(8ω) ̂  (i _ ε)λ ? ^ = (Iθg5C)/320 ,

ί-(log5c)/50>^,

ε)"1^ constl/lnε~A +

Consequently, if we denote x = &λ(l— ε)nλ, then

ε->0

the fact that should have been shown. Turning to the inequality (7.1) we can see
that

<ε8/3 + 1°85C(l - 2ε/3)Λί(l - 3ε/4)n~"1 , (7.3)

_ no

since c~-n°-5 2 Io8^<εiog5c due to the choice of n^

Let us estimate now the other terms entering into Rn(z\a\ From the con-
dition ι;15) we have \tn(z\ α)|<ε7/2(l-2ε/3)M. From v12)

It may be shown now that S'<ε3(l — 2ε/3)n. The idea of proving consists in the
fact that by choosing the number N sufficiently large the increase of e+yd" will
be compensated by the decrease of the value c-(2/3)(^-fe)(«-»i)> We have

n-ni = [(ω- l)nj + n0 ̂  (ω - iχ. + n0 - 1 ̂  (ω - 1/ω) (n —

— 2

5 C)/(60ω)

* = [(1 -ε)-^-1]^, v = 16(J/c +

Hence

The required inequality for S is obtained, provided (N — k)μ, (N — k)λ^
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Let us estimate now \hn(z\a)\ for zeDn. The discussion presented below has
been already employed in [2]. Suppose Orgzrgd^ and

O, uφ[0,-2]

From ι;13)

\hn(u'9a)\>\hn(z'9a)\Π(u-z)

and, therefore :

|ΛΛ(z;α)|<||ΛΛ(̂  (7.4)

Performing the summation of the estimates (7.3), (7.4), we obtain

\Rn(z a)\ < ε8/3 +± 10*5C(1 - 2εβ)n .

Analogously the following inequality may be proved

Let us turn now directly to proving the conditions (Un). We have

gn(z a) = Σkj=o<*jφϊ + ̂ (a)ek(z) + Rn(z a) . (7.5)

It should be recalled that here e$ are the eigenfunctions of the operator Lj..
We verify first that the function /Wl + 1(z;0) = /n(z;0) satisfies all the conditions of
the Theorem 3.1. Suppose b(j) = φj'ί(φj+1(...φ~^ί(0)...)\ j = ni9...9n — 1 where
<p.:2Iϊ-*Sϊz + ι are the mappings constructed in Lemma 2. Then from u14) for
zeDn we have:

β

Whence

|/Λ(z; 0)- /Jz; fo^| < 2ε7/3(l - 2ε/3)Λ . (7.6)

Then, so far as ||/Πι(z; α(0))-(l -εG2k(z; y))||cι(J)o)= 0(ε4/3) the analogous equal-
ity is valid for /κ(z; 0) also. Thus, in the segment ί)0 function /„ satisfies the con-
dition of the theorem. From the conditions (Vn] it also follows that it satisfies the
conditions of the Theorem 3.1 outside D0 too. Consequently, Theorem 3.1 is
applicable, and we may introduce the eigenfunctions e j ( z ι f i + ί ) 9 fi+ι=fni + ί(

zlty>
j = 0, 1,...,N. From (7.5), υ2) and w2 3)

^

where α(0) is introduced in u^). Thus,

^



Critical Indices 269

From this inequality, using the consideration of the Theorem 3.1, it is easy to
derive the estimates

forj^O, 1,...,JV. From here

^;7ί)=Σ^ = o(^ + cJ >w(^;/ί+

where δj

m is the Kronecker symbol,

\cjm\, \\Rn(

Inserting this expansion into the equality (7.3), and performing the substitution
of the variables similar to the identical one in the space of the parameters
α = (α θ J...,α k_ 1) we obtain the condition (Un) at n = ni+1. Lemma 3 is proved.

§ 8. Derivation of Formulas for Indices

In papers [2, 8] there have been obtained results concerning the indices of the
asymptotic hierarchical models under the condition |/r<c<r. As it will be seen
in what follows the cases j/r < c < r and c = j/r — ε differ essentially. For the sake
of simplicity we consider the case r = 2.

The values of the critical indices we derive by studying the asymptotic be-
haviour of the recursive relations (1.2) when n-+co. Function fn(z;β) in (1.2) is
defined on the discrete finite lattice of points Mn = {cn/2( -1 -I- ί/2n~ 1)}?L 0 with the
step An = 2(]/c/2)n, since YjXeVnu(x)is an even number, which does not exceed 2"
in modulus. The summation is carried out in (1.2) so, that z/]/~c±ueMn.

As in the papers [2] and [8] we obtain the critical indices for a.h.m., their
initial distribution fno(z β) satisfying some relations of the inequality type for a
sufficiently large value of nQ. These inequalities determine the open set Ω which
is deliberately non-empty in the space of all a.h.m. In this way we show that the
branch gcι is thermodynamically stable.

Let us suppose c be fixed, and j/2 —c>0 is small. Let /(0)(z; β)Φ const be the
solution of Eq. (1.3) constructed in the Theorem 1, and e^z β) are the eigen-
functions of the operator Lg(Ό) (see the Theorem 3.1) with the eigen numbers λt.
The eigenfunctions are considered to be normalized by the condition

so that ef(z; β) for z~ j/lnε"1 has the asymptotics z2j. The set Ω consists of the
families of the probability distributions /Πo(z; β) = QXp(-a0(β)z2)pno(z; β) de-
pending on β, which satisfy the following conditions (the number n0 is large, it
is enough for it to exceed 107ε~2):

The condition (17). There exists a segment of inverse temperatures [/Γ, β+]
and C1-function b(β) defined on [β~,β+], such that

β). (8.1)
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and in this case

uO λ"l"b(β±)= + ε3'2; \b'(β)\>V* for 0eDr,0+];
u2) \R(Z;β)\ + \dR(Z β)/dβ\ + \dR(Z;β)/dz <ε2

for \z\<4βyinε~\ βe\_β~,β+~\

u3)0<Pllo(z;j8)<exp(-(0e72)|zr);

\dpno(z;β)/8Z\<\Z\
4exp(-(βε'/2)\z\«);

\ d p n ΰ ( Z ; β ) / d β \ < \ z

5

G χ p ( - ( β ε ' / 2 ) \ z \ « } ;

\d2pnΰ(Z;β)/dzdβ\<\Zfexp(-(βε'/2)\Z\«)

for |z|>4jβ]/ln(l/ε), βelβ~,β+].

Theorem 8.1. Suppose the value ]/2 — c is sufficiently small, and the condition
(U) is fulfilled. Then in the segment [_β~, β+] there is one and only one critical point
J8CP for which fno(Z /U=*/c(0)(z; /U

Note. It follows from Theorem 8.1 that the value of the critical index η = 0,
2

provided the dimension of the model is da = - - r— . I
Iog22/c -1

Theorem 8.2. Suppose the value J/2 — c is sufficiently small, the condition (U) is
fulfilled, and βe[β+,βcι). Then

For β-+βcr asymptotically σ^^^-β^, γ=ί-logλl(cλ1/2). J

Theorem 8.3. Suppose the value |/2 — c is sufficiently small, the condition (U)
is fulfilled, and βe [/?_, βcr). Then there exists a sequence of the numbers 0< Mi(β)<
M2(β)<..., \irnM n(β) = M(β) such, that (c/2)"/2/n(z(c/2)"/2;^)-Gn(z;^)^0, where

n~^ oo

Ga(z β) = i(2πσ2(j8)) ~ * (exp ( - (z - 2"/2 Mn(β))2/2σ2(β))

For β-^βcr the asymptotical formulas

M(β)~\β-βcr, ω^ilog λ lc; (72(j8)-|jβ-]8crΓ, y=l-log λ l(cA 1/2)

are valid.

Refinement of Theorem 8.3 (calculation of the correlation radius). In the
assumptions of the Theorem 8.3 there is a number N = N(β) such that ϊoτn<N the
condition \(c/2)nfn(z(c/2)n; j8)-/0(z; β)|<ε2/3 is fulfilled, and for n>N the con-
dition \(c/2)nfn(z(c/2)n',β)-Gn(z;β)\<ί 213 is fulfilled; the value ξ = ξ(β) = 2N(β}/d* is
the correlation radius, and for j8->/3cr ξ(β)~\β-βcr\~\ v = ilogλl(2/c).

Let us consider the Gibbs distribution in the volume Vn at the external field
value H and at the inverse temperature β and put

fn(Z; β, H) = ((2/)"/Ξn)Σ(rc/2)"Σ, e^σW = zexp(-^n(σ) + HXx e F nσW) . (8.2)
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Theorem 8.4. Suppose the value \/2 — c is sufficiently small, the condition (U] is
fulfilled, J8e[]8-,j3+], and \H\<ε\β+-β~l #ΦO. Then there is a sequence of
numbers Mn(β, H) - >M(β, H) such that

n->oo

(c/2)nfn(z(c/2)n'9 β)-(2πσ(β, H))--exp(-(z + 2"/2Mn(A H))2/2σ(/?,H))^0.

Theorem 8.5. In the assumptions of Theorem 8.4 we have:
a) M(β, H) is the monotonously increasing function of H
b) lim M(β9 H)=± M(β) (see Theorem 83)

H~> i 0

c) function H = H(β, M), which is an inverse one to the function M(β, H\
permits for β, M— >Ό the expansions;

c,) in the region |M|/|τ|ω> Inε'1, τ = (β-βcr)/βcr, ω^log^c

H = (L1(βcr-β)\M\δί+L2\M\δ2+...)sgnM, (8.3)

where δί = 1 — 21ogc(c/l1/2), (52 = 3 + 21ogc(2/c2), Lί>Q, L2>0 are constants, ...are
the terms of higher order in the expansions; for c— >j/2 L^l, L2~(j/2 — c);

c2) in the region |M|/|τ|ω<(lnε~1)"1, β<βcr

. (8.4)

where γ = 1 — logλl(cλ1/2), L3 is a constant; for c-»j/2 L3^l.

Note. The presence of two asymptotical expansions in different regions of the
equation of state H(β, M) in the neighbourhood of the critical point is a very
important phenomenon. It shows the type of the expansion H(β, M), when the
Landau theory cannot be applied.

The Theorem 8.1 is derived in the same way as the proof of the basic theorem
(see also [2]), and we shall omit it. The proofs of the remaining theorems also
involve essentially the technique of paper [8]. We present two lemmas without
proof which elucidate the derivation of Theorem 8.3. These lemmas are proved
analogously to the corresponding lemmas in paper [8], and we shall omit it too.
Let us denote N = N(β) = min {n : λ\ b'(βcr) \-\β-βcr> (4/5)βcr/(2/c - 1)}, ε0(u) - ε1/3

for /ln(l/ε)<M^έΓ2 / 3

5 ε ( M ) = e 1 / 3 | f i 2 / 3 MΓ 1 - 5 for ε~ 2 / 3<

Lemma 8.1. Suppose n0<n< N(β), j/lnε"1 ̂  |z(0)| ̂  c

(n~no}/2 1/lnε"1. Then there
exist the numbers Ln = Ln(β,z(0}), μn = μn(β,z(Q}\ sn = sn(β,z(Q)] independent on z,
such that

fn(z; β} = Lnexp(-μn(z-Sn)
2)(l + Rn(z)) , (8.5)

where \Rn(z)\ = \Rn(z; z(0^)|<ε0(z0) for \z-z^\ <l/(l/μπ)ln(z(°Vε) and the re-
cursive relations are fulfilled

~ (8.6)

). (8.7)
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where Lί9 L2, L3 >0 are independent on β and z(0), and for ε-»0 L^ ~1, L2,L3~ε,
£2£-ι_+l ^^ /z^αHy, /or ^^^""^l/lnc"1 and z>z(0)+|/(l/μjln(z(0)/ε)

Lemma 8.2. For /?e[/?~, βcr] ί/zere is α sequence of the numbers zN(β)+1(β)<

zN(β) + 2(β}< >, £~°Λ9<zN(β) + ι<ε~°'51 sucn ^at all the statements of the Lemma
8.1 are valid for n > N(β) for the points z(0>, |z(0>| > un(β) = zn(β) - ]/μ^(β,zn(β))lnzn(β)
and t = zn(β) is the solution of the equation sn(β, t) = t. Besides, for \z\ < un(β}fn(z β) <
2fn(un(β)l β). For n-^oo there exists the limit c~n/2zn(β)^M(β). J

Let us elucidate the derivation of the critical index, connected with magnetiza-
tion, and the equation of state in the vicinity of the critical point.

Suppose n>N(β). Using Lemma 8.2 we may show [8], that

\\fn(z\ β)-Gn(z; zn9 μπ)||C(Λi)<εofoι) ,

where

Gn(z zw μn) = Ln [exp ( - μn(z - zn)
2) + exp ( - μn(z + ztt)

2)] ,

zn = zn(β) is the solution of the equation sn(β,t) = t, μn = μn(zn(β)). Therefore, the
spontaneous magnetization is determined by the formula M(β)= \imc~ n/2zn(β).

n ~* co

Denote Mn(β) = zn(β}/cn/2 and consider such m, that j/lmΓ1 < cm/2Mn(β) < 2J/ΪTUΓ1.
It may be shown that m<N(β) [8]. From the asymptotical formulas (8.6), (8.7)
it follows that

n(β, zn(β)))sm(β, z^)(l + O(sί/3)) , (8.10)

μn(β, zn(β)) = a0(β) + (2/cΓ™(μm(β, z(°>)-α0(j8))(l + O(ε1/3)) . (8.11)

So far as ]/lnε~ 1 < z(0) < 2|/lnε~ 1

9 we may use the formulas (8.8) and (8.9). The
errors in the relations (8.8)-(8.11) can be neglected. Then for Mn(β) we derive
the equation:

m-a^

[the term (]/c/4)n maQ — >0, which is inessential in deriving the asymptotics, may

be omitted]

(8.12)
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where f=(β — βcΐ}/β, L4 = (L2 — L3)/L1>0, since, as has been formulated in
Lemma 8.1, L2LJ1->| for ε->0. Further j/lnε'1 <cm/2Mπ<21/lnε~1, whence it
follows that

(λjc)m = L5 M~2logc(λ^c} ,

Thus,

M ^ R 1 ̂' '

As a result we have found the critical index β = [2(l + logc(λ1/cj]~ί. The neg-
lecting of errors in the formulas (8.8)— (8.11) is substantiated as it has been done
in the paper [8].

Let us derive now the equation of state. Suppose fn(z\ β, H) is the density of
the distribution of the random value (|c/2)"XJceFn

M(;)c) in the Gibbs ensemble at
the inverse temperature β, and at the external field H. It may be easily seen that

/π(z; j8, H) = Ln ; β, 0) .

For large values of n the function, as may be derived from the Lemmas 8.1,
8.2 [8] is close to the Gaussian density with the average zn = zn(β,H) satisfying
the equation

Let us denote Mn = Mn(β,H) = c~n/2zn(β,H). It is clear that Mn(β,H) is an odd
function of M , thus, we may consider H>Q.

Let us consider such m that j/lnε"1 <z(0)<2|/lnc~1, z(0} = Mnc
m/2. It is easy

to show that m<N(β) for β>βcτ [8]. Then analogously to (8.13) we obtain the
equation

(8.14)

τ = (β — βcr)/βcτ,LΊ,L8>0 are the constants, which gives the asymptotics of the
equation of state in the neighbourhood of the critical point in the region β^βcr,

Mβ< βcr the asymptotics (8. 14) holds true, provided |M| cN(β}/2 > j/ϊmΓ1. Since

this condition is equivalent to the following one

In fulfilling this condition the number m, determined from the condition
j/lnε"1 <Mcm/2<2{/lnε~1, is less than N(β\ and therefore the asymptotics
(8.14) takes place.
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If the following condition is fulfilled

|M|/(|τ|-logλιc)<(lnε-1)-1

then m$>N(β), and

/m(z; β) = LmQχp(-μmz2)

Thus, in this case the derivation of the equation state is reduced to the case of
the Gaussian fixed point studied in [8]. The asymptotics of the equation of state
in this case can be given by :

H = const. |τΠM,

where γ=l — logλl(cλί/2) is the critical index calculated in Theorem 2.

Appendix 1

Calculation of the Number

)π^

Let us make a substitution of z = t

where

Using the equality e-t2G2k(t) = (π^2k(2k) \^Γl(d2ke't2 /dt2k] and integrating by
parts, we obtain

)dt = (π-^

- (d2k/dt2k]

»J^e-<2-«2G^

Proof. Suppose i^j. We have (l/yc)2 + (|/y)2 = c-1 + l-c"1 = l. Therefore,
the matrix

=

l l / y
is orthogonal. Let us make a substitution of the variables in the integral
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We obtain

= {»«, J^e-^-^G/w) [2/c- lyG^ + βίw, i fldwdt;

where the degree of the polynomial β(w, z;) with respect to w does not exceed
i — 1 < j, and, therefore,

Since f?OTG/f)Gί(ί)e~ ί2* = <5/, tne lemma is proved.
Let us use the known property of the Hermite polynomials :

In a combination with lemma this gives the following:

u - ([(2k) !] */(fc O3) (2/c2 - l/c)VfaO*Γ *

The number a is calculated.

Appendix 2

One of the authors (Bleher) has investigated the renormalization group trans-
formation for the hierarchical model in the case d= 1, r = 2, with the help of the
computer. As a result all the critical indices for all the values of the parameter
of the hierarchical model were found.

In the case under consideration the renormalization group transformation
can be considered as the nonlinear integral mapping:

where 1 < c < 2 is a parameter of the hierarchical model. The first aim of the com-
putations was to find all the thermodinamically-stable fixed points (TSFP) of the
mapping Q. From the mathematical point of view it means that we seek fixed
points for which the linearized mapping LfQ has explicitly one eigenvalue the
modulo of which is bigger than one.

It is one of the results of the computations that for all the values of the
parameter c, 1 <c<2, there exists one and only one TSFP of the transformation
Q. For |/2 <c<2 this is the evident fixed point f(x) = const. The graphs of the
TSFP for various values of the parameter c, l<c<j/2, are shown on the Figs.
1-5. Probably for c->l TSFP degenerates in a discrete measure. The branch of
nonconstant TSFP have been considered rigorously before for sufficiently small
ε = |/2 — c>0, where ε = 0 is the point of the bifurcation of TSFP. The numerical
computations show that there are not bifurcations of this branch of TSFP for
allε,
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Fig. 1. The graphs of the TSFP (the continuous line), of the first eigenfunction (the interrupted line)
and of the second eigenfunction (the dotted line) are plotted for c = 2° 45

-4.0 -3.0 \ -2.0 /HO .Q2JJ3X 2.0 . 3.0 4.0

•0.4 \../

Fig. 3. c-2o :

f < •
-1.0

Fig. 4. c =

1
//

f 1

χ /-2.0 -1.0

1.0
0.8 (I

0.6 |

0-4 / (

¥ ^ j/ I
102 1.0 2.0 N /

^

I

^ z

Fig. 5. c-2° 03



Critical Indices 277

Fig. 6. The dependence of the first eigenvalue
on the parameter Iog2c
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Fig. 7. The dependence of the second eigenvalue
on the parameter Iog2c
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Our second aim was to compute the spectrum of the linearized mapping LfQ
for TSFP. It is a very interesting problem because of as it was pointed out before
all the critical indices of the asymptotically hierarchical models can be expressed
via the first eigenvalue λ^ > 1 of the operator LfQ. On the Fig. 6 the dependence
of λί on the parameter c is plotted. One can see that there is a good agreement
of this curve with the theoretical ε-expansions λi=(ί+εβ + 0(ε2)) j/2 for c = j/2 - ε
and A! = l + |/8 for c=l + ε. The last expansion is taken from the paper by
Kosterlitz [13].

Finally on the Fig. 7 it is plotted the dependence of the second eigenvalue of
the linearized operator LfQ on the parameter c. It is evident that 0</12< 1 for
all the values c, 1 <c< J/2. This points out that the considering branch of TSFP
has not any other bifurcation for 1 < c < j/2 indeed.

On the Fig. 1-5 the two first eigenfunctions of the operator LfQ are also
plotted for some values of the parameter c.
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