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Abstract. We consider classical systems of particles in IRd interacting by a
stable pair potential with finite range. We are engaged in subdividing every
particle configuration into clusters of interacting particles and studying the
cluster distributions corresponding to equilibrium particle distributions.

Introduction

Let us consider an interaction in the d-dimensional Euclidean space IRd given by
a pair potential Φ, i.e., the potential energy of particles located at x l v.., xneRd

is given by

V(xl9...,Xn) = Σl*i<JϊnΦ(Xj-Xi)>

where Φ:IRd->]Ru{-r-oo} is Lebesgue measurable with Φ(x) = Φ( — x) for xeIRd.
We suppose Φ to have the following properties:

stability: there exists B^O with F(x lv.., xn)^ — nB for allrc and x l v . .,xweIR< /;

finite range: there exists R > 0 with Φ(x) = 0 for |x| > R.

Because of the finite range property it is reasonable to introduce clusters of
interacting particles. Thus a configuration (x l v..,x f) is a cluster, iff each two
particles of the cluster interact at least indirectly.

This is a special type of physical clusters introduced in 1939 independently by
Frenkel and Band in order to discuss condensation phenomena (see [3]). Recently
Sinai [8] defined similar clusters - clusters in space-time however - for the
existence of the time evolution of particle configurations.

Every finite or infinite particle configuration can now be subdivided into
clusters with possibly infinite clusters defined in the same way. The purpose of
this paper is to study the distribution of cluster configurations corresponding to
equilibrium particle distributions in the sense of the DLR-equations in the case
of only finite clusters with probability 1.

In Section 1 we give the exact definition of clusters by means of cluster func-
tions and denote relations of these functions describing the subdivision of finite
particle configurations into clusters. These relations are used in Section 2 to
derive the cluster distribution corresponding to a grand canonical particle
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distribution of a bounded region. The result is a distribution, formally the same
as a grand canonical distribution, if one introduces a certain measure on the
cluster space and a hard core potential forbidding overlapping cluster configura-
tions.

Section 3 treats the case of equilibrium particle distributions in Rd. We give
sufficient conditions for the absence of infinite clusters with probability 1, the
essential condition being a low activity condition. In this case we show that the
validity of the DLR-equations of the particle distribution is equivalent to cluster-
DLR-equations of the corresponding cluster distributions with the above-
mentioned measure and hard core potential.

In Section 4 we reverse the point of view and start from cluster configurations.
We prove an existence theorem of cluster distributions satisfying the cluster-DLR-
equations under the low activity condition. As a corollary we get an existence
theorem of the corresponding particle distributions. Remark that concerning
the behaviour of the potential for small distances it only presumes stability. We
close in Section 5 with some remarks concerning the connection between the
uniqueness of the equilibrium distribution and the absence of infinite clusters.

Acknowledgement. I want to thank Professor J. Groeneveld for helpful discussions on the formal
resemblance of these clusters with the Mayer clusters and how to use it.

1. Physical Clusters

The notion of clusters initiated in the introduction is equivalent to saying that a
particle configuration is a cluster iff the graph obtained by joining interacting
particles is connected. We use this fact to derive an explicit expression for a cluster
function u defined on all finite non-empty configurations, which is 1 for clusters
and 0 otherwise.

For x, yeIRd we set

for \x

and for x l v..,xπ, y l v . . ,.ymeIR

This function is the usual function h as defined in the theory of the Mayer
expansion ([2]) related to the pair potential φ given by:

JO for \χ\>R
φ(X) l+oo for \x\^R.

The cluster function u is now defined on the topological sum ]Γj°L A (IRdy
representing the space of all finite non-empty configurations in the following way:

where Q is the set of all connected graphs G with vertices 1,..., /.
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Obviously this is the desired function. It resembles the usual Ursell function U
related to φ

We shall make use of this resemblance by introducing f -functions which satisfy
u — t- and t — w-relations. Comparing them with the corresponding U—T- and
T — L/-relations ([2], Section IV.C) we finally get an estimation of u by U, which
we shall need later.

The f -functions are defined in the same way as the T-functions by replacing
U by u. For the special type of ί-functions we only need one can take the t — u-
relations directly as definition :

ί(x;x l 9...,x z)=-/(x;x l v..,x,) φlv..,^) (2)

with
For the w-ί-relations we use the customary abbreviation u(y) = u(xil,...,xil)

for every finite set y= {z l 5..., z'z} of non-negative integers. Because of the symmetry
of u this is uniquely defined. The analogous abbreviation will be used for other
symmetric functions, too. With this notation the w-f -relations are :

2}uδ) u({l}uy\δ) h({2}vδ;y\δ) (3)

withy={3,. . . ,/}.
The proof of (3) is almost the same as for the [7-T-relations. Thus it is sufficient

to show how the difference between the definition of u and U leads to different
relations.

The T-ί/-relations are ([2], IV (39))

and the ί/-T-relations ([2], IV (37))

with y= {3,. ..,/}.
The replacement of / by — / in the definition of u leads to the same replacement

in (2), and the additional /z-term leads to the additional /z-term in (3).
Comparing the t-u- and the w-ί-relations with the T-U- and C/-T-relations

there follows by induction on 7, since M({!}) = ί/({l}) = 1 holds, the following lemma:

Lemma 1.1. For /^>1 and x,x l 5 . . . ,XιeIR d :

Let us introduce now the space of clusters. The space ̂  of /-clusters is given by

^ = {(x1,...,x i):M(x1 >...,x/)=l}C(lRd)'

and the space m of all clusters by

*=ΣΓ=ι^ = «~1({l}).

In the following we shall designate clusters by capital letters as X, 7, Z.
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For the subdivision of finite configurations (x l v.., xπ) into clusters one easily
sees that

=l on

which implies

Σ^feί^ΦO-XyOΠi^^kM^ ^^i on (R'r, (4)

where the sum ^Γ(π) extends over all ordered partitions (y l v.., yk) of {!,..., n} into
an arbitrary number of disjoint non-empty subsets. Relation (4) relates to the
subdivision of n-particle configurations into clusters. The empty particle con-
figuration (IRd)0 is attached an empty cluster configuration #°.

The /i-term in (4) excludes cluster configurations which overlap in the sense that
at least two different clusters can be jointed to a new cluster. We define a corre-
sponding function H on the space ^J*L 0 mk of all finite cluster configurations by

J) for fc^

It can be conceived as related to a hard core potential of cluster configurations
excluding overlapping clusters.

2. Grand Canonical Cluster Distributions

In order to introduce the method how cluster distributions are derived from
particle distributions we treat the case of the grand canonical distribution in
some detail.

Let z>0 be the activity and β>0 be the inverse temperature parameter. Then
for a bounded Borel set A C IRd the grand canonical partition function is given by

\— VGO f - l «f f p-βV(xι,...,Xn)j J)— 2^n=on z } "]Λne axi...axn.

Since there is no interaction between non-overlapping clusters relation (4)
yields :

with V(γ) defined in the known way.
Thus:

ί+ Σ?=ι n ! ~ V f.. ,U Σ(B) fcrl

^
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The prime on the sum indicates that it only extends over the ordered partitions
of {!,... ,n} into successive non-empty sections. If we now set

Λ*={X = (x1,...,xl):xίeΛ for i = l v . . , / ; / ^ l } (6)

and define the measure μ on <$ by

dμ(.l(xl7...,xl)=lΓίzle-βv^-^dx,...dxl (7)

then we finally get

with 3(^4) defined for every Borel set A C ̂  by

(8)

The distribution of the cluster configurations corresponding to the grand canonical
distribution can now easily be derived in the same way. The only problem is that
to a fixed particle configuration there belongs no unique labelling of the clusters
and thus no unique probability measure on Σ?=o ̂  as cluster distribution. We
naturally take the symmetric version 1 with restriction on Λ\ given by :

l kΓίH(X1,...,Xk)dμ(X1)...dμ(Xk). (9)

This distribution is formally equal to a grand canonical distribution by
replacing the Lebesgue measure by the measure μ and introducing the potential
of cluster configurations mentioned at the end of the last section. It also has an
interesting meaning from the point of view of stochastic point processes. If H is
replaced by the constant 1, we would get the Pqisson point process with respect
to the measure μ restricted to A^. The function H however excludes certain con-
figurations. So we can conceive the distribution as "the Poisson point process with
respect to the measure μ^ and exclusion function H". It is in fact the conditional
distribution of the Poisson point process under the condition of non-overlapping
configurations.

We finish this section with some properties of 3

Lemma 2.1. Let A, Bc% be Borel sets. Then:

(i)

(ii)

(iii) 4nB = 0=>3(^uB)£ 3(A)3(B).

(iv) AnB = 0,η=μ(An{X:H(X,Z) = Q for at least one ZeB})

Proof, (i) and (ii) are trivial.
(iii) and (iv) : For A n B = 0 we have :

dμ(Y1)... dμ(Yi)dμ(Zί)...dμ(Zj) .

Another possibility is to go over to the symmetrized spaces, which we shall do in the next section.
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The inequality H(Yl9...9 Yi9 Z lv.., Z^H(Yl9...9 TQH(Zl9...9 Zj) yields (iii).
In the case An{X\H(X, Z) = 0 for at least one ZeB} = 0 we have

from which there follows 3(AvB) = 3(A)3(B).
In the general case we set Aΐ = An{X:H(X,Z)=Q for at least one ZeB} and

A2 = A\A1. Then we have:

and

which yields (iv).

3. Equilibrium Cluster Distributions

We briefly state the notions concerning infinite particle configurations and
equilibrium distributions satisfying the DLR-equations.

Let 3£ be the set of all locally finite labelled configurations in lRd, i.e. the set
of all finite and infinite sequences (xf) with elements x felRd such that every compact
subset of lRd contains only finitely many members of the sequence. Setting two
such sequences to be equivalent, if they only differ by a permutation of their
indices, we denote by \9Γ\ the set of all equivalence classes as the set of all locally
finite non-labelled configurations in IRd. The equivalence class belonging to (xt )e^
will be denoted by [(xf)]. The set [$"] is equipped with the weak topology with
respect to the set of all functions ]̂  /(X ), / running over all continuous functions
with compact support. In this topology [#"] is a Polish space ([5]).

For each Borel set #ClRd let 9CB be the subset of sequences in S£ with elements
in B and [3£B~] be the set of the corresponding equivalence classes. Then the
mapping πB\[βΓ\-*\β£ B~\, which cancels all elements of a configuration outside B,
is measurable with respect to the σ-algebra 33 resp. 23β of the Borel sets of
resp. [_&B]. The mapping

yields an identification of the measurable spaces ([£ZΓ|, 93) and ([̂ β], 93β) x
([#"[:*]> ®CB) If #ClRd is a bounded Borel set then 3K'B= £„%#" and [#*] =
Y°° (ft"}2_,«=0 \n /symm

Furthermore we use the following denotation: Let £ClRd be a bounded Borel
set and λB be the Lebesgue measure on B. On 9£B = Σ^=o "̂ we have the measure
whose restriction on Bn is n !-1 λ®n. Then we call the corresponding measure on
\J%B\ the non-normalized Poisson measure fi(λB).

For every bounded Borel set ylClRd and every configuration [CVf)]e[^ΓCyl] the
conditional Gibbs distribution of particles in A under the outer configuration
CO7/)] is the probability measure PΛ\[(yι)] on \βA\ w^h the density

(10)
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with respect to the measure fe(λΛ). Evidently this expression for the density does
not depend on the representatives of [(xlv.., *„)] and [(̂ )] and thus is uniquely
defined.

<2Γ(Λ|[(j>i)]) is the obvious normalization factor, called the conditional partition
function.

An equilibrium particle distribution is now defined as a probability measure P
on \9C~\ which satisfies the DLR -equations ([7]):

For every bounded Borel-set ΛcR d and every /eL1^], P)

(11)

holds with the above mentioned identification.
The DLR-equations signify that PΛ\[(yι)] is one version of the conditional

distribution of particles in Λ under the outer configuration [(j>f)].
We now pass over to cluster distributions corresponding to equilibrium

particle distributions.
The subdivision of infinite particle configurations into clusters can only be

performed in the space of non-labelled configurations. The formula resembles (4)
with the sum extending over all non-ordered partitions and without the factor
fc!"1. We shall not use it explicitely, however.

Let us first treat the problem of the absence of infinite clusters with proba-
bility 1. It will turn out that the essential condition is the following. If we set for
every Borel set Λ ClRd:

A* = {X = (xi,...,xl):xieA for at least one z /^1} (12)

then the condition is

μ(Λ*) < oo for every bounded Borel set Λ C lRd . (13)

Because of Lemma 2.1 i, (13) is equivalent to

3(Λ*)< oo for every bounded Borel set /tc!Rd . (13')

We shall show below, that the radius of convergence of μ(Λ*) being a power
series in z does not depend on A and is strictly positive. Thus (13) holds for
sufficiently small z. Before that we prove the following theorem.

Theorem 3.1. Let (13) be satisfied
i) // P is a limit of grand canonical distributions, then there exist only finite

clusters P-a.s.
ii) For a non-negative potential Φ^O there exist only finite clusters P-a.s. for

every equilibrium distribution P.

The proof of this theorem uses the following lemma, which we shall need
later, too.

Lemma 3.2. Let (£, /) be an arbitrary measurable space, and let vbea symmetric
measure on (]^L0 £", σ(Σ^°=o <Π) ™itn restriction n Γ1 vn on (En, <Γ). Let At δ and

A*={(xί,...,xn):xieA for at least one i\ n^l} .

Then

X+ ΛΛ x E") ̂  v(Λ*) ̂  Σ»= o n Γ X+ ΛΛ x F1) .
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Proof. Call

;4* = {(x l v..,xM): XI^A for at least one i}

which yields the result.
Proof of Theorem 3.1. We first prove Part ii).
Let Λ C JRd be a bounded Borel set and [()>/)] e [^Cyl]. We regard the conditional

Gibbs distribution PΛ\[(y.)], subdivide every particle configuration in A into
clusters regardless eventual clustering with outer particles. The result is the
probability measure QΛ^{(yί)}

 on Σ*=o ^* with density

|̂[(W)]̂ ^̂
(14)

with respect to the non-normalized Poisson-measure /(μA) defined in the same
way as fi(λB). We used the notation

W(X,y)=Σi=lΦ(xi-y) for X = (x l ϊ...,x l)

and the normalization factor 3(^*1 [(Ml)-
Let ε>0 and N be such that μ(Λ|N)^ε with A^N= \J%=NΛ*n<gn. This is

possible because of (13). Furthermore let ΛcΛ'ClR? be a bounded Borel set and

Then using Lemma 3.2 there follows:

i v . , Xk)~] : ̂ e^lN for at least one m, k^ 1})

^Σ^o^'M^^J. J^^^o^iv
= o Hi

=ι Πi

This holds for all such A and [(yi)]e[^cyi'] Fiχ '̂ now with dist(yl, CΛ')>
(N— l)R. Then no particle outside A can interact with a particle belonging to a
cluster of Λ* N:= /I* n IJ^Γ/ ̂ .

Thus the DLR-equations and the just proved inequality yield:

P({all particles of Λ cluster only with finitely many other particles})

^P({all particles of A cluster with at most C/V— 1) particles})^ 1 — ε .

Since this holds for every ε>0 there follows:

P({all particles of Λ cluster only with finitely many other particles}) = 1 .

Taking an increasing sequence Λn t IRd the result follows.
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Part i) is proved in the same way. Let P be a limit of grand canonical distribu-
tions Pm belonging to an increasing sequence Λ'm ] IRd.

If we take for a bounded Borel set A and m such that ΛcΛ'mm the proof of ii)
Pm instead of PΛ'm\[(yι)] then we get the result similarly.

Proposition 3.3. The radius of convergence of μ(Λ*) as a power series in z
does not depend on A and is the same as of the following series not depending on x:

-l ~l Γ f 0-βV(x,Xί,...,xi)1.(γ v v v
l5..., xl)axί...axl .

It is ^(eβB+1RdVd)~1 with Vd being the volume of the d-dimensional unit ball and
for non-negative potentials even ^(e §\X\<R e~βφ^dx).

Proof. According to Lemma 3.2 we have for every bounded Borel set

*)Z ΣΓ= o I ! " V+ 1 \Λ I . . .J(Ri)1 e-ev^'-'**u(x, xlt. . ., x,)dXl. . .dxt

since the series (15) does not depend on x because of the invariance under trans-
lations of u and V and

The upper and the lower bound are up to a factor λ(Λ) power series in z with the
same radius of convergence. Thus the first part of Proposition 3.3 is proved.

For the second part we use the known results of the radius of convergence of the
Mayer series ([6], Theorem 4.3.1).

Lemma 1.1 and the estimation

yield the result for stable potentials.
From (1) there follows

For Φ^O we can define a potential φ' and the corresponding function h by

(l-h(x, y))e~βφ(x~y) = l-e-βφ'(χ-y) = l-h'(x, y) .

Since h^h' holds, there follows

with u' defined by replacing h by h' in (1). The proof of Lemma 1.1 applies to this
case, too, yielding

with the Ursell function U' with respect to φ'. From this the sharper result for
non-negative potentials follows.

For the purpose of deriving cluster distributions corresponding to equilibrium
particle distributions without infinite clusters with probability 1 we have to
introduce the space of cluster configurations. The notions are the same as for
particle configurations. So we only have to state the symbols we use for them.
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We call ®J the set of all locally finite labelled configurations in <β and [̂ ] the set
of all locally finite non-labelled configurations in # with the corresponding
topology. Furthermore we have for Borel sets Ac^ the sets <%/ A and [$/A~] and the
mapping J7Λ:[SΓ]->[^J.

Let us consider now an equilibrium distribution P on [̂ ], such that there
exist only finite clusters P-a.s. We want to describe the corresponding probability
measure Q on \β/~] by its conditional distributions of clusters in Λ^ under con-
figurations outside Λ% by means of equations analogous to the DLR-equations.

We proceed from the DLR-equation (11) for a bounded Borel-set ΛcΉtd.
Let us first fix the configuration [(yi)]e[^"Cyl]. Then to the measure PΛ\[(yι)] there
corresponds the measure QΛ^yi]] on £„% (Λj;?ymm = [̂  J defined by (14). We
shall separate each cluster configuration of \^f A J into clusters interacting with the
boundary particles and those which do not.

We denote the interaction region of an arbitrary particle configuration
[(**)] e[ίΓ] by

(16)

and analogously for cluster configurations [( f̂c)]e[^]

(17)

If [(X fc)] e [̂ ] and !JX)]e[^l is the configuration of the particles belonging to all
clusters Xk, then

With this notion the above-mentioned separation of clusters corresponds to the
identification of \_®/ Λ J with

[^.n/αϋ-.JBJx^.nc «[(«)».] (19)

as measurable spaces equipped with their Borel sets.
The distribution of clusters in Λ^ interacting with [(y;)] under QΛt\{(yi}] is now

derived by regarding QΛ,\[(y.}] on (19)_and integrating over the second factor.
The result is the probability measure Qi,^^] on [&Atni(i(yt)])*] witn tne following
density q\Myt)} with respect to

= i π/
-1;!-1H(z1,...,z

.., Xk) ΓK,= i ΓR= i H(Zm, Xa)dμ(X1)...dμ(Xύ

..., Z,.)])) . (20)

Comparing (20) with (14) one gets (Ljtoi)] JpY 6i,|[<y,)] on tne nrst factor of (19)
and the following conditional distribution Q^ito-Muzi....^,)] on tne second factor
for fixed [(Z1,...,ZJ)]:Q^|[(w)]>I(Zli...(Zj)] has *the density ίX|[(Λ)1,[(Zlj...,Zj)] with
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respect to

QΛ*\[(yi)U(Zι,...,Zj)]([(Xl v j

(21)

Until now we kept [(MJ^C^c/i] fixed. Now we return to the DLR-equation
(11). If we regard a particle configuration in lRd and subdivide it into clusters,
then the clusters in C/L^ consist of the particles belonging to CΛ and those in Λ,
which cluster with particles in CΛ. Thus the distribution π(PCyl) and the conditional
distributions Q\^. lead to the distribution /Ic/ι*(6) °f clusters in CΛ%.

If [(Λ)]e[^cJ
 and C(ziv .,Zj)]e[^nl.([(y.)])J are composed in this way to

]» then (21) can be simplified to

)Γ1kΓ1H(X^..,Xk) (210

and we are led to the conditional distribution QΛή:\[(Ym)] on [̂ J with the density
3U,|[(yw)] with respect to

^ ^ (22)

i. denotes the indicator function of a set.
Inserting the different distributions derived above into the DLR-equation (11)

we finally get the following cluster-DLR-equations:
For every bounded Borel set ΛcIRd and every FeL1([(&~], Q)

fw FdQ= f^j d/7c

Before we prove that conversely the cluster-DLR-equations (23) imply the
DLR-equations (11), we have to show that they imply cluster-DLR-equations
for more general sets.

So we define for a Borel set AcΉ with μ(A)<oo and [(^m)]e[^Cyl] the con-
ditional distribution 6^|[(yw)i on {.^ A\ with density qA\[(γm)] with respect to fe(μA):

^^ (220
The general cluster-DLR-equations are :

For every Borel set Ac% with μ(A)< oo and every Fe &([<¥], Q)

.,̂ ]). (230
Let Q be a probability measure on \β/~] which satisfies (23). First we treat the

case of a Borel set AcΛ^ for a certain bounded Borel set ΛcIRd. Separating the
configurations in Λ^ into clusters, which belong to A, and those, which do not,
the same procedure as above shows that (230 is satisfied for these A.

In the general case of a Borel set AcΉ with μ(A)< oo we take a sequence of
bounded Borel sets Λn | IRd. Then (230 holds for/t^n^l and a convergence theorem
for conditional distributions ([4]) yields (230 f°Γ A.
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Since (23') implies (23) as a special case, thus (23) and (23') are equivalent.
A probability measure Q on \β/~\ satisfying (23) is called an equilibrium cluster
distribution.

Let us consider now an equilibrium cluster distribution Q. We dissolve the
clusters into particles and get a corresponding probability measure P on [<F]. Let
ylClRd be a bounded Borel set. Since μ(A%N)< oo for every JV, (23') holds for A^N.
We separate the particles of A^N into particles, which are in A, and those which
are not. Our familiar procedure yields DLR-equations for the particles in A
belonging to a cluster of Λ| N. The DLR-equation (1 1) follows from the limit AΓ-» oo.

We thus proved the foTlowing theorem:

Theorem 3.4. Let P be a probability measure on \_9C\ such that there exist
only finite clusters P-a.s., and let Q be the corresponding probability measure on [̂ ].
Then P satisfies the ΌLR-equations (11), iff Q satisfies the cluster-ΌLR-equa-
tions (23).

The cluster-DLR-equations are formally the same as the DLR-equations,
when we use again the measure μ and the hard core potential excluding overlapping
clusters. Likewise they suggest the notion of a Poisson point process with exclusion,
though Q cannot be written directly as a conditional distribution, since the
condition would have probability 0.

4. Existence of Equilibrium Cluster Distributions

The formal agreement of the cluster-DLR-equations with the DLR-equations
by use of a hard core potential suggests to transfer Dobrushin's methods ([!])
for an existence theorem to our case.

For this purpose we need some preparations.

Lemma 4.1. Let (13) be satisfied and /LcIRd be a bounded Borel set. Then

fl^[(y<ι>)]-M[<

Proof. Let [(y^)], [(^2))]e[^Cyl*] and set
In the case jWζjW we have

J l<?Λ*|[(yα>)] — 3U*|[(y<2

H(X,,...,Xk)dμ(X1)...dμ(Xk)

- H(X, X,,. .., Xk)dμ(X)dμ(X1). ..dμ(Xk) (24)

e-MΛ*nu<;>u<'>> ) + μ(Λ*n(/(2V(1))) (25)

We used for (24) Lemma 3.2 and for (25) Lemma 2.1 iii) and then i).
In the general case we introduce / = /(1)u/(2>. Applying the special case to

7 ( 1 )C/ and 7 ( 2 )C/ the result follows.
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Corollary 4.2. Under the assumptions of Lemma 4.1 the set of all densities

] is precompact in

Proof. For ε > 0 and N > 0 we consider a finite ε-net in {x : x φ A, dist (x, A)^
lRrf. We subdivide every subset of it into clusters. Thus we get a finite set of con-
figurations of [^CΛ*] Lemma 4.1 shows that for <5>0 there exist ε>0 and N>0
such that the corresponding densities qΛ*\. form a finite δ-net in L1([<S^Λ*], /z(μΛ*))

Corollary 4.3. Under the assumptions of Lemma 4.1 and for AcAn j IRd

/or w->oo.

Proof. Clear.
Now the proof of Theorem 1 of [la] can be transferred directly. Thus we

briefly outline the proof.
There follows from Corollary 4.2 that for a bounded Borel set /LcIRd the closed

convex hull Sί̂ * of all densities qΛ*\. in Ll\\β/ Λ^\, /i(μΛ^)} is compact. We equip
the set of all probability measures Q on [̂ ], such that ΠΛ*(Q) has a density with
respect to /t(μΛ*) for every bounded Borel set /LcIRd, with the projective topology
of the ^([^^/(μ^-topologies of these densities. Taking a sequence An f lRd

the intersection [°)π 21̂ * is non-empty and coincides with the closed convex hull
of probability measures which are limits of β^eSΪ^ with an arbitrary sub-
sequence SI^Hj .

Because of Corollary 4.3 and by means of the separation method this is the set
of all equilibrium cluster distributions. The statement of Theorem 1 of [la]
concerning translational invariant equilibrium cluster distributions is likewise
transferred, if we introduce on the cluster space Ή translations with elements of
Rd by translating all particles of the clusters.

Thus we have:

Theorem 4.4. Let (13) be satisfied. Then the set of all equilibrium cluster
distributions is a non-empty closed convex set coinciding with the closed convex hull
of the set of distributions which are limits of conditional distributions qΛ*\. with
different boundary conditions with bounded Borel sets A f IRd. The set of all trans-
lational invariant equilibrium cluster distributions is a non-empty closed set, too.

Because of Theorem 3.4 we have the following corollary.

Corollary 4.5. Let (13) be satisfied. Then the set of all equilibrium particle
distributions P, such that there exist only finite clusters P-a.s., is a non-empty
convex set. The set of all such translational invariant equilibrium distributions is a
non-empty convex set, too.

5. Final Remarks

To derive uniqueness theorems for equilibrium cluster distributions there are two
possibilities. The first one is to transfer again methods for equilibrium particle
distributions (Theorem 6 of [la]) the second one is to apply Theorem 3.4 and use
directly uniqueness theorems for equilibrium particle distributions, which are
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known for more general cases than existence theorems ([6], Section 4.2). The
second way leads to the uniqueness for small activity. Though this condition ([6],
4.2.33) and the condition of Proposition 3.3 for the validity of (13) are not com-
parable, we conjecture the following: The condition (13) is necessary and sufficient
for an equilibrium distribution P to have only finite clusters P-a.s. the passage
to infinite clusters thus occuring at the radius of convergence of (15). In the case of
finite clusters the equilibrium particle distribution and hence the equilibrium
cluster distribution is unique. The first conjecture is suggested among others by
the independent use of (13) in Theorems 3.1 and 4.4. Remark at this opportunity
that the proof of Theorem 4.4 does not work by replacing /I* by Λ^ because of the
influence of the outer configurations.

Note Added in Proof. After printing of the article we proved part of the conjectures in Section 5,
namely that condition (13) implies the uniqueness of the equilibrium cluster distribution (to be
published).
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