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§ 1. Introduction

Putterman, Kac and Uhlenbeck [4] have proposed a purely quantum mechanical
explanation for the origin of vortex lines in rotating He II, suggested by considering
an ideal Boson gas in a rotating cylindrical bucket. Blatt and Butler [3] showed
that a rotating ideal Boson gas undergoes phase transitions similar to those
occurring in rotating He II. Their main result is that the total angular momentum
J of the gas, considered as a function of the angular velocity ω of the bucket,
increases linearly between a sequence ω 1 ? ω 2 , . . . of critical values of ω. At a critical
value of ω the angular momentum jumps by an amount Noh, where No is the
number of condensed particles. For ω between two critical values ωι and ωι + 1

we have

J = j(N — N0)mR2ω + Nolh,

where N is the total number of particles, m is the mass of a particle and R is the
radius of the bucket. The contribution from the N — No particles in the normal
fluid is as if they were in solid body rotation. The contribution from the No

particles in the condensate is what one expects from a quantized vortex line of
strength Ih/m on the axis of the bucket.

The centrifugal density distortion in the normal fluid is negligible, since ω is
assumed to be of order h/mR2. Then the kinetic energy of rotation when m is the
mass of a helium atom and R is 1 cm. is much smaller than kT for temperatures
around 1 °K. This is not so for the condensate and these particles are pushed out
to the rim of the contained for ω>ω1. The reason for this behaviour can be seen
informally as follows: The Bose condensation takes place into the single-particle
state which is the ground state of the Hamiltonian H = H0 — ωJ3 where Ho is the
free-particle Hamiltonian and J 3 is the operator corresponding to the component
of angular momentum along the axis of the bucket. The eigenvalues of H are
Ek — hωl where fe = (π,/, m) stands for the three quantum numbers appropriate
to the cylindrical geometry and the Ek are the eigenvalues of Ho. We assume
that the walls of the container are perfectly elastic so that the normal derivative
of the wave-function is zero at the boundary. This is a reasonable assumption in
thermal equilibrium (see [9]) but quite inappropriate for a discussion of the
approach to equilibrium which would be necessary for an investigation of the
formation of vortices (see [4]). The eigenfunctions of H are the same as those
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of Ho a n d a r e g i v e n b y KkJ^(rlnr/R)eilθcos(πmz/d) w h e r e rln is t h e nth n o n -
negative zero of JjZ| and d is the height of the container. For ω<ω1 the ground
state is fc = (l,0,0) and the condensate is uniformly distributed, since the cor-
responding eigenfunction is a constant. For ω = ωί there is an accidental de-
generacy between the states fc = (l,0,0) and fc = (2,1,0) and for ω1<ω<ω2 the
ground state is fc = (2,1,0) with eigenfunction ψ21 given by k2ίJ1(r21r/R)eίθ. The
probability density \ψ2i\

2 Ω a s a maximum at the walls of the cylinder and the
probability current density has a non-vanishing ^-component {h/mr)\ψ2l\

2 cor-
responding to the velocity distribution of a vortex line of strength h/m on the axis
of rotation.

The purpose of this paper is to give rigorous justification for the above
statements, proving the existence of condensation in the thermodynamic limit.
The strategy is a modification of that given by Kac [1] in unpublished lectures
and which has been worked out in detail for the free Boson gas in [2]. We assume
the reader is familiar with this paper and where a proof is similar to one in [2]
we omit it. Full details are to be found in [6].

The idea is to compute the generating functional of the representation of the
cyclic representation of the canonical commutation relations corresponding to
the state which is the thermodynamic limit of the canonical ensemble with fixed
number density and fixed angular momentum density. The rc-point functions can
be read-off from the generating functional. However, the canonical ensemble
is hard to handle directly and so the grand canonical ensemble for fixed mean
number density and mean angular momentum density is used. The resulting
generating functional is decomposed to get the canonical one at sharp values of
the number density and angular momentum density.

In § 2 we describe the procecure for passing to the thermodynamic limit and
state as Theorem 1 our main result which describes the limiting form of the
generating functional. As a step towards the proof of Theorem 1 we need to
establish the existence of condensation; the essential result is stated as Theorem 2.
The existence of condensation has already been studied by Blatt and Butler [3]
and by Putterman, Kac and Uhlenbech [4] (see also [5]). In § 3 we discuss our
results before proving them in § 4. The results about the representations of the
CCR which we shall require are reviewed in [2] and we shall not repeat them
here.

We are deeply indebted to Professor M. Kac for showing us his unpublished lecture notes on the
subject of this paper. We are grateful to Dr. E. B. Davies for many stimulating discussions.

§ 2. The Thermodynamic Limit of the Grand Canonical State

Let A1 be the cylindrical region in IR3 of unit volume

Λ1 = {xe]R3:x2

ι+x2

2<a2,\x3\<(2πa2)~i}

and for each L > 0 let ΛL be the region

ΛL={xs]R?:L~1xeΛί}

and let § L be the space of square-integrable functions of ΛL. Take HL to be the
self-adjoint operator in § L determined by — \A in ΛL and the boundary condition
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δφ/dn = 0 on dΛL where dφ/dn is the normal derivative. Let JL be the operator
on ξ>L corresponding to angular momentum about the x3-axis. Let NL be the
number operator on Fock space 3 ( § L ) a n d let HF

L and JF

L be the operators on
3(§L) induced by HL and JL respectively.

Consider a free Boson gas in the bucket ΛL. To describe the equilibrium state
of such a system when rotating about the %3-axis we take the density operator on

ZL

β>z>Ω = trace[exp{ - β(HF

L- μN{- ΩJF

L)},

where β— 1/kT is the inverse temperature, z = Qxpβμ is the fugacity and Ω can be
interpreted as the angular velocity of the system. Let WF(h) be the free Weyl
operators, then using standard results about Fock space we can show that the
generating functional

defined for h e § L is given by

where

^ i 2, f l(Λ,Λ)=<ft,2[exp{j8(HL-ΩJ ί3}-z]- 1Λ>. (2.1)

We wish to determine the limit as L-+00 of s#βfZtΩ(K h) when the mean density ρ
and the mean density 1 of angular momentum in the x3-direction are held fixed.

Let {ψjjr:fc= 1, 2, 3,...} be a complete orthonormal set in § L such that

where the ordering is taken so that

EL

i-Ωl1^EL

2-Ωl2^....

Then φ\ is given in terms of φk = φi by

φϊW-L-WφάL-^), (2.2)

EL

k=L~2Ek. (2.3)

For the set {φk} we shall take:

KltnJ\ιι(rltna~1r)e>ιθcos(π2a2mx3 4- πm/2), (2.4)

where 1 = 0, ± 1, + 2 , . . . , m = 0,1,2,..., n = l , 2 , . . . , rί>n is the nth non-negative
zero of Jj,| in increasing order and X 0 > 0 = l and for |/| + n ^ l

KI,,, = 21 '2r ί > 1 1[2πα2(r I

2

> Π-/2)1 'V | I |(r (, I I)]-1.

Consequently the set of energies {Ek} is given by

( 2 α 2 ) - 1 ^ Π + 2 - 1 π V m 2 . (2.5)
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We shall also require the sequence of positive real numbers {ωk} given by ω o = O
and for / ^ 1

The number operator NL is given by

and the number of particles in the feth level is given by the operator

ni=Ψ*{φi)Ψ(φi).

Using (2.1) we have

= z/(exp{β(EL

k-Ωlk)}-z)

and

<iVL> = Σΐ= i zlπp{β(EΪ - Ωlk)} -zT1

Similarly

We require <NL> to have the value ρL3 where ρ is the mean density and <JL>
to have the value λL3 where λ is the mean angular momentum density. This
determines z and Ω as functions of L through the constraints

Q = L-3 Σ?= i z(L)[exp{j8(£ί - Ω{L)lk) - z(L)] " 1 (2.6)

and

l = L^Yj=1z(L%^xV{β(EL

k-Ω{L)lk}-Z{L)Tι . (2.7)

Our objective is to find

for h in some dense subset of L2(1R). It is sufficient to determine

^/?,<7,#> h)=lims/%MLhΩiL){h, h).
L-* oo

Then

We interpret μβ,ρj{h) as the generating functional for a representation of the CCR
for an infinite free Boson gas with mean density ρ and mean angular momentum
density X. Let ga be defined on the interval [0,1] by
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zt->(2πj8)~3/2g3/2(z) is continuous on [0,1] and increases monotonically to a
maximum ρc at z = 1 so that for ρ ^ ρc, the equation

ρ = (2πβy3l2g3/2(θ)

has a unique root θ(ρ).
Let ^ be the space of C00 functions on R 3 having compact support.

Theorem 1. The quadratic form stfβ^-λ is given on 3 by

ρ>ρc,

where

k (2.9)

with

fz(s) = (2πβ)~?>l2Σ^1e-s2l2nβn-3l2zn, (2.10)

and

u<o,

A necessary preliminary to the proof of this theorem is the determination of
the asymptotic behaviour of the solutions z(L) and Ω(L) of the constraint Eqs. (2.6),
(2.7) for large values of L, or of the solutions ζ(L) and ω(L) of the transformed
equations

1 , (2.11)

= L~3 Σ?= i lML))ζ(L) (exp{βL-2ηk(ω(L))} - ζ(L))~', (2.12)

where

) = Ek-ωlk,

so that 0 ^ ηι(ω)S ^ 2 ( ω ) ^ Some of the properties of the set {εk} we shall require
are given without proof in Lemma 4 in the appendix. We write lk(ω{L)) because
the ordering depends on ω. One can show [6] that ωt<ωι + ί for all /^0 and for
ωe [ω/? ω ; + 1 )ε 1 (ω) = (2α2)~1r^1 — ωl so that /1(ω) = Z. Thus lt(d) is an increasing
step function with steps of unit height starting at zero. Also from Lemma 4 I2(o^ι) =
/ - I for /;>1 and /2(ω0) = 0 so that
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and therefore ηι(cot) = η2(0^) = 0. Thus the first two terms of (2.11) and (2.12)
become infinitely large as ζ approaches 1, if ω approaches one of the values ωv

This means that we have to isolate the first two terms rather than just the first
as we did in [2]. Therefore let

CΓ 1 , (2.13)

(2.14)w
and

(2.15)

The properties of ζ{L) and ω(L) are given by the following theorem. Since <n£>
must be positive and finite for all k we require O^ζ(L)^ 1.

Theorem 2. For ρ^ρ c, aL(ω(L), ζ(L))->0, ω{L)-^2λ/a2ρ and ζ{L)-+θ(ρ) where
θ(ρ) is the root of the equation

ρ = (2πβΓ3l2g3/2(θ).

For ρ>ρc, αL(ω(L)Lζ(L))->ρ-ρc, C(L)->1 and
(a) if the line y = (λ — ωa2ρc/2)/(ρ — ρc) intersects the step function y = l1(ω) at

ω' e (ωb ωι+1) for some /^ 1 then ω(L)-^ωr and cL(ω(L\ ((L))-»0, while
(b) if the line passes through the gap at ω = ωι a distance t from the bottom

of the gap then ω(L)-^ωι and

in case (a) Z1(ω(L))->/ and in case (b),

- l if i < ί ^ l ,

l if 0 ^ ί < ^ .

§ 3. Discussion of Results

To make the results of Theorem 2 clearer we have given a graphical representation
(Fig. 1); they are in fact very simple.

ω, ωΓ co Fig. 1
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We must remember that

L- 3 « ^ > + < 4 » = aL(ω(Ll ζ(L)),

L-\nL

1) = aL(ω(Ll ζ(L)) - cL(ω(L% ζ(L)),

and

For ρ ̂  ρc all three quantities tend to zero as L-> oo. Therefore, there is no condensa-
tion. For ρ >ρc if X, ρ are as in case (a) then

and

That is, there is condensation in one state corresponding to the quantum numbers
(/, 1,0). Suppose on the other hand we have case (b) with ^<t<ί for example.
Then both L~"3<n^) and L~3(n2y have a non-vanishing limit; that is, there is
condensation in both states (/, 1,0), (/—1,1, 0) and the ratio of the amount of gas
in each state is given by

<
L->oo

If we look at case (a) again and let

ω^^ limω(L)
L->oo

we see that I, ρ and ω^ are related by

ooa
2ρc. (3.1)

This is very reasonable since the first term on the right hand side represents the
angular momentum density of a system of particles with density (ρ — ρc) each
particle having angular momentum ^(ω^) and the second term can be written as
the limit, as L->oo, of ^ωo0L~2(aL2)ρc which is the angular momentum density
of a classical system in ΛL with density ρc and rotating with velocity ω^ZΓ 2 .
Because rlΛ =l + bllβ+ 0{Γ113) where b>0, [7], ω z Γ 2 -»α~ 2 as J-*oo; this
means that the relation (3.1) for large / becomes approximately

There the moment of inertia of the gas is larger than the classical. These results
agree with Blatt and Butler's [3] who obtained them using approximate methods.

We now consider the generating functional. From Theorem 1 we see that if
ρ > ρ c for some values of λ there is no off-diagonal long range order in the thermo-
dynamic limit although there is Bose-Einstein condensation. We explain this as
follows. For simplicity we take ω^+coj. Let <ϊ/*(x)ϊ/(y)> denote the kernel of
the quadratic form <Ψ*{hx)Ψ{h2)y so that



122 J. T. Lewis and J. V. Pule

Then we can interpret ρ(x) = <(Ψ*(x)Ψ(x)y as the density at x. For (I—jω1a
2ρc)/

( ρ - ρ c ) ^ l we have ρ(x) = {ρ-ρc) + ρc = ρ, while for (λ~^ω1a
2ρc)/(ρ~ρc)> 1,

QiΨ^Qc Thus ρ(x)<ρ in the second case. This is because the condensate moves
to the boundary. We can see this in another way. Let us show the ω dependence
of the ordering of {φfy by writing {φ^ω} and let us look at that part of s$L which
corresponds to the condensate

which gives

= L-3ζ(L)(l-ζ(L)Γ1\φ1ML)(x/L)\2

so that for (X— iω1α
2ρc)/(ρ — ρc)> 1, ρ^(x)->Ό as L-»oo. However for 0 ^ / c ^ l

consider the density of the condensate at xL = (aκL,θ,x3) in cylindrical polar
co-ordinates. Then

ρc

L(xL) = L ' 3 C(L) (1 - ζ(L)Γ 1 K I l ( ω ( L ) U JfιiωiL))(κrh{ω(L)hί)

-^{ρ — QdKhiωoo), 1 ̂ Zi(ωoo), l\Krli(o)oo), l)

which is equal to (ρ ~ρc) for /1(ωo0)
:=0 but for /1(ωo o)>0 it increases monotonically

from zero at κ = 0 to a maximum at κ=ί.
If we define the condensate current density fi(x) by

jL(x) = _ //2< y *(x)grad !P(x) - grad !P*(x) ̂ (x)>c

L

where (gmάψ)(h)^ - ^(grad/ί) and (gradιί/*)(/z)= - ^*(grad/z) then it is easy to
check that

where ήθ is the unit vector to the plane 0 = constant. Therefore

ι£(x) = JcL(̂ )/^cL(̂ ) = r" %{ω{L))ήθ

and

ϋc(x)= limι;ί'(x) = r" 1/ 1(ωo o)n 0
L->oo

which is the velocity distribution of a vortex of strength l^ω^). In c.g.s. units
the strength of the vortex is hl^ω^/m where m is the particle mass and h is Planck's
constant, which agrees with the Onsager-Feynman hypothesis about the quantiza-
tion of the circulation in a superfluid [8].

§ 4. Proof of the Theorems

Let Ct(L, ω) and ζ2{L, ω) be the solutions of

ρ = L-3Σΐ=1ζί(L,ω)(exp{βL-2ηk(ω)}-ζί(L,ω)Γ1 (4.1)

and

-3Σ Wω)C(L, ω) (exp{/?L~2^(ω)} - ς2(L, ω))" ι (4.2)
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respectively, each equation being taken separately. Then ω(L) is given by the
solution of the equation

and ζ(L) by

To obtain the asymptotic properties of (^L, ω) and ζ2(L,ω) we use a modified
form of Kac's method used in [2].

The Green's function for the equation

dψ/dt + %Δψ — ίωdψ/dθ = 0

in A1 subject to the boundary condition dψ/dn = 0 is given in cylindrical polar
co-ordinates by

Gω(r,0,x 3;r',θ',x' 3;t)

For small ί, the effect of the boundary is not felt and we expect

Gω(r, β, x 3 r\ θ\ x 3 ί) - G°ω(r, θ, x3 r', ff, x'3 t)

= (2πO~ 3 / 2exp{-(2ί)- 1[(x 3-x /

3) 2 + r2 + r / 2 -2rr 'cos(θ-θ ' + iωί)]} . (4.3)

Putting (r, θ, x3) = (r/, θ', x3) and integrating over Λ.1 we get

Σ?L! β - ̂ ( ω ) - (2πί)" 3 / 2 2α" 2 J§

Now by interchanging the order of summation we obtain

L-3Σ?
where

^

for large L so that

and therefore d(L, ω)^θ(ρ). For ρ ^ ρ c we have to go back to the series (4.1). The
first two terms dominate as ζ gets close to 1 and so we remove them and define

sL-2ηk(ω)

to prove

Lemma 1. Let fLJζ) = Σn=iζnS'LJnβ) Then for each N, / L , ω (0
(2πβ) 3l2g3/2{ζ) uniformly for ζ e [0,1], ω e [0, ωN] as L-^oo.

Using this we are able to prove the following theorem.
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Theorem 3. For ρ<ρc, aL{ω, ζx(L, ω))->0 and ζx(L, ω)-+θ{ρ) uniformly in
[0, <%] and for ρ^ρc, aL(ω, ζχ(L, ω))->ρ —ρc and ζ^L, ω)->l uniformly in [0, ωN].

Furthermore if ωι < ω' < ω" <ωι + 1 then cL(ω, ζ\{L, ω))-*0 uniformly on
[ω\ ω"].

Lemma 1 and Theorem 3 are very similar to Lemma 1 and Theorem 1 in [2] and
therefore we shall not prove them. The following estimate is used in the proof of
Lemma 1. Let gω(x,x';t) = Gω(x,x';ή—G^(x,x/;t); then for each T<oo and
Ώ<co there is a constant C(T,Ω) such that for £<T, ωgΩ,

\gω(x,x';t)\^Γ5/*C(T,Ω)la-(x2+x2)1/2γ3/4l(x3y
314 (4.4)

where /(x3) = [(2πα 2)" 1 - x 3 ] Λ [ β π α 2 ) ' 1 + x 3 ] [6].
The last statement of Theorem 3 is proved as follows. One can show (Lemma 4)

that there is a δ>0 such that if ω e [ω', ω"], η2(co)>δ. Thus

uniformly in [α/,ω"~\ as L->oo.
To obtain the asymptotic form of the sum

L-3 Σf= i «ω)C(exP{i8L- 2^(ω)} - ζ)'' (4.5)

we note that

idGω/dθ(r,θ,x3;r\θ\x'3;t)

tε^φkJr, θ, x3)φk,ω(r\ θ\ x'3).

Then using the same method as before we see that

for small t so that for large L

L-3Σΐ= i /fc(ω)C(exp{j8L-2

The estimate (4.4) for /ω(χ, x'; ί) is found to hold for dfjdθ(x, x' ή and this can
be used to prove a lemma analogous to Lemma 1 for the sum (4.5). As we would
like to work with positive quantities we let iλ be the index corresponding to —lx,
that is Eiι = E1 and ltι= —lx and similarly for i2. Then letting

P' /C\_V / (f,<\£>~SL~'2W<(ω)
KL,ω\S) — 2-jk*l,2,ii,i2Lk\ω)e

we have

Lemma 2. // ΛL,ω(ζ) = Σ?=iί Λ Λ L f «>("£) ί f e n / o r ^ α c / 2 N ' ΛL,ω(ζ)->
\ωa\2πβ)~ 3/2g3/2(ζ) uniformly for ζ e [0,1], ω e [0, iV] α5 L-^oo.

Unlike ζx{L, ω), ζ2{L,ω) does not exist for every ω; for example, suppose
ω<min(ω 1 ,ω c ) where ωc = 2λ/ρca

2. Then since /1(ω) = 0 we have
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For large enough L the sum on the left hand side approaches \ωa2ρc and therefore
can be made less than \coca

2ρ2 = λ. However we can always give an estimate of
where ζ2(L, ω) must lie for large L if it exists. Define the functions α and β on IR+ by

ίθ(2λ/a2ω),
oc(ω) = \

l-\ωa2ρc, ω^ωc.

Then

Theorem 4. For each ε > 0 and N positive integer there is an Lo such that for
all L>L0 and ω e [0, c%] for which ζ2{L, ω) exists and lies in [0,1],

and

\bL(ω,ζ2(L9ω))-β(ω)\<ε.

Again the proofs of Lemma 2 and Theorem 4 are very similar to the proofs
of Lemma 1 and Theorem 1 in [2] and we shall not give them.

Before proceeding any further let us see what to expect for the behaviour of
ζ(L) and ω(L) for large L and at the same time give a motivation for the proof of
Theorem 1. Assume that limω(L) = ω0 0 exists and is the value of ω satisfying

L—• GO

lim ζi{L, ω)= lim ζ2{L, ω),
L-xχ> L-> oo

Then we see from Theorems 3 and 4 that this is equivalent to

If Q<QC, θ(ρ)<ί and so ωo0>ωc so that

and therefore ωo0 = 2λ/a2ρ. If ρ^ρc we obtain no information from (4.6) except
that ωQ0^ωc so we consider the identity

h(ω) = bL(ω, ζ)/aL(ω, Q- [/2(ω) - /t(ω)]C/.(ω, ζ)/αt(ω, ζ). (4.7)

Put

ω = ω(L), ζ = ζ(L) = d(L, ω(L)) = ζ2(L, ω(L))

then

h{ω{L)) = bL(ω(L), ζ2(L, ω(L)))/aL(ω(L), ζx{L, ω(L)))

- \J2(ω(L)) - I M m cL{ω{L), ζ,(L, ω(L)))/aL(ω(L), ζ^
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Fig. 2

and therefore we assume that ω^ is the value of ω satisfying

/i(ωoo) = bL(ωoo, C2(L,ω00))/αL(ω00, C i ( A ω J )

If we make the additional assumption that ω ^ Φ ω , for Z = 0,1,2,..., then since
ω^rgω,,. Theorems 3 and 4 imply that ω^ is given by

ii(ωoo) = (I-iω o o f l 2 ρ c )/(ρ-ρ c ),

or by the intersection of the line

y = {λ-\ωa2ρc)/{ρ-ρc)

with the step function y = lί(ω). So Theorems 3 and 4 should give us the asymptotic
behaviour of ζ(L) and ω{L) assuming that the latter are well-behaved. This is
ensured by the next theorem whose proof is tedious and is given in [6].

Theorem 5. There is an N and an Lo such that for all L> Lo, ω(L) and ζ(L)
exist and ω(L) < ωN.

Of course this theorem does not ensure the uniqueness of ω(L) and ζ(L). But
this does not matter since any choice of ω{L) and ζ(L) gives the same asymptotic
properties. We can now prove Theorem 2.

Proof of Theorem 2. ρ^ρc. Since ω(L)<ωN for L>LQ, from Theorem 3 we
know that for L sufficiently large,

and

|αL(ω(L), ζ(L))\ = \aL{ω{L\ UU ω(L))\ < ε ,

that is ζ(L)-+θ(ρ), aL(ω(L), ((L))->0. Now suppose that ρ<ρc and choose ε < l —
θ(ρ), then as above for large L we have

|0(ρ)-α(ω(L))|<ε,

that is α(ω(L)) < θ(ρ) + ε < 1 or ω(L) > ωc.
Since the function g3/2 is uniformly continuous on [0,1], for each ε > 0 there

is a δ such that (2πj8)~3 / 2 |^3 / 2(z1)-^3/ 2(z2)|<ερ/ω i V provided \z1-z2\<δ. By
Theorems 3 and 4, for L sufficiently large

\ζ(L)- θ(ρ)\ = |C±(A ω(L)) - θ(ρ)\ <δ/2
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and

\ζ(L)- θ(2λ/a2ω(L))\ = IC2(A ω(L)) - θ(2l/α2ω(L))| < (5/2 ,

that is

\θ(ρ)-θ(2λ/a2ω(L))\<δ.

Therefore

which is the same as

|ρ — 2λ/a2ω(L)\

Therefore

\ω(L) — 2l/α2ρ| < ω(L)ρ ~ι ερω^ί <ε,

for sufficiently large L. That is ω(L)-+2λ/a2ρ.
Next consider the case ρ^ρ c . For those values of L which are sufficiently

large and for which ω(L)>ω c we have as above

\ω(L)-2λ/a2ρc\<8.

Suppose now that ω(L):gωc, then

\ω(L) - 2λ/a2ρc\ = (2/a2ρc)\λ-ω(L)a2ρJ2\

^(2/a2ρc)\λ-^(L)a2ρc-bL(ω(Ll ζ2(L, ω(L)))\

\bL(ω(L), ζ(L))\^2(N+ i)\aL{ω{L\ ζ(L))\ <\a2ρcz

for L large, as above, and also for L large by Theorem 4

\λ-±ω(L)a2ρc-bL(ω(L\ ζ2{L, ω(L))\ <±a2

Qcs .

Therefore

\ω{L)-2λ/a2ρc\<ε

which completes the proof for ρ^ρc.
ρ>ρc. Clearly the proof for limζ(L) and limαL(ω(L), ζ(L)) holds here as well

and we have £(L)->1 and aL(ω(L),ζ(L))->ρ — ρc. To obtain limω(L) we use the
identity (4.7). From this identity we see that ω(L) is a solution of the equation

(L, ω(L)))/αL(ω, d (

) - ίi(ω)]cL(ω, ζx(L, ω))/aL{ω, d(L, ω)).

Put

XL(ω) = bL{ω, ζ2{L, ω))/aL{ω, d(L, ω)),

W = Φ , Ci(A co))/aL{ω9 d(L, ω)),
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and
ZL(ω) = XL(ω) + [/2(ω) - Z^co)] YL(ω).

Then 0< YL(ω)^j and since |/2(ω) —ί x (ω) |^ 1 (Lemma 4),

\ZL(ω) - XL(ω)| = |/2(ω) - 1 ^ ) \ YL(ω)Si. (4.8)

Now in [ωc, ω N ] , αL(ω, d ( A ω))—»ρ — ρc uniformly by Theorem 3 and for large L
independent of ω, |£>L(ω, ( 2 ( ^ ω ) ) | < ε by Theorem 4. Therefore |XL(ω)|<ε for
large L independent of ω and consequently ZL(ω)<\ + ε<i. On the other hand
h(ω)=l f° r ω ^ ω l 5 so that the equation

has no solutions in [max(ωc, ωx), ωN] for large L, that is, ω(L)<max(ωC Jω1).
Also from theorems 3 and 4 we see that if L is sufficiently large, ω e [0, ωc] and
XL(ω) exists then

| X L ( ω ) - ( I - i ω α 2 ρ c ) / ( ρ - ρ c ) | < ε . (4.9)

Figure 3 shows what ZL(ω) looks like for large L.
Let us consider first case (a) of the theorem when the line

y = (λ~ioja2ρc)/(ρ-ρc)

intersects the step function y = lί(co) at aj s(ωb ωι + 1) for some Z^O. We shall
assume at first that ωc^ωx so that Z^l, ωt<ωf <ωc and for large L, ω(L)<ω c.
For ω e [0, ωc) and large L by (4.8) and (4.9) we have

But for ω e [0, ωz), /^ω)^/— 1 which means that for large L, ω(L)^ωι. Similarly
for sufficiently large L, ω{L)<ωι+1. Now choose δ>0 such that the equations

have solutions ω ± satisfying

and put α = ω_ A ^ and b = ω+ vbt where α; and bx are as in Lemma (4). For
ωe[ωba), I2(co) — li((o)=l and therefore for large L

ZL(ω) ^ XL(ω) ^ (λ-±ωa2ρc)/(ρ -ρc)-δ

which means that ω(L)^a for large L since lx{d) = l for ωe[_ωba). Similarly
ω(L)^b and therefore ω(L)e[ά, fe]. Now by Theorem 3, cL(ω, d(L, ω))->0
uniformly on [α, 5], that is

|ZL(ω(L))- (λ-^ω(L)a2ρc)/(ρ- ρc)\ < ε

for large L. But Z^ω)^/ if ω e [a, b~\ so that

ZL(ω(L)) = lx{ω{L)) = I = (I-\ω'a2ρc)l{ρ - ρc).
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Fig. 3

Therefore \ω(L) — ω'\<2c(ρ — ρc)/a2ρc for all L sufficiently large, which means
that ω(L)-W. Clearly /^(Z,))-*/ and cL(ω(L\ ζ(L))-+0.

If ω c < ω x we have ω' = ωc. Then exactly as above, we can prove that ω(L)>
ωc — ε for large L and as in the case for ρ^Qc > |1 — α ( ω C^)) l < ε ' f° r large L, that is,
ω(L)<ω c + ε. Thus we have ω(L)-»ω' = ωc, /1(ω(L))^0 and cL(ω(L), ζ(L))-^0.

We now consider case (b) when the line

y = (λ-^ωa2ρc)/(ρ-ρc)

passes through the gap at ω = ωz a distance t from the bottom of the gap. Here
we necessarily have ω c ^ ω 1 and ω z < ω c . We shall take ^ < ί r g l . The case when

is similar. For L large and

ZL(ω) > (X- έ - ρc) - i - (ί - \) = I -

But ^(ω)^/—1 for ω<ωι which means that ω(L)^ω t . Similarly ω ( L ) < ω ί + 1

for large L and we can prove as in case (a) that for large L, ω(L)gftz. Now suppose
ε > 0 and put

then if ω s \_ωι + ε,

But in [ωf + ε, έ>J, cL(ω,
for L sufficiently large

ZL(ω) < (λ-^ωa2ρc)/{

, ω))->0 uniformly by Theorem 3 which means that

-ρc) +

for all ω e [_ωι + ε, foj, which leaves us with ωt ^ ω(L) < ωι + ε for large L. Therefore
ω(L)-+ωh /1(ω(L))->/J l2(ω(L))->l— 1 and since for large L, /1(ω(L)) = /, l2(ω(L)) =
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/ — 1 we have

cL(ω(L\ ζ(L)) = laL(ω(L), ζ(L)) - bL{ω{L\ ζ(L))

Finally we turn to the case t=%. As above we can prove that for large L,
ω2 — ε<ω(L)<ω z + ε so that ω(L)—•coί. Now suppose that ωi^ω(L)<ωι-\-ε then
lx(ω(L)) = I, l2{ω(L)) = I -1 and

cL(ω{L\ ζ(L)) = laL(ω(L\ ζ(L)) - bL(ω(L% ζ(L)).

Therefore since λ = (l — \){ρ — ρ() + \ωιa
1ρc

\cL{ω{L\ζ{L))-^{ρ-ρc)\<E'

for large L. Similarly if ω ί ~ ε < ω ( L ) < ω / so that cL(ω(L),ζ(L))-±j(ρ — ρc) as
L-*oo, which completes the proof.

To prove Theorem 1 we define

τLjs)=Σΐ^e~sL-2^\{φL

k^hy\2

and

IL,ω\S) — Lk=le \\Ψk.ω> n/\

for h in the Schwartz space Θ and L>L0 where Lo is chosen so that the support
of h is contained in ΛLo. Putting

we can use the estimate (4.4) to prove the following Lemma. The proof is very
similar to that of Lemma 2 in [2].

Lemma 3. Suppose that lim ζ(L) = ζ0 <= [0, 1] and lim ω(L) exists. Then
L~> oo L^> oo

lim £ « = j ζ(LγTiML)(nβ) = ]>= x ζ"0^(«i?)
L—>• o o

The details of the proof of Theorem 1 are similar to those of Theorem 1 of 2 and
so we omit them. The proof of Theorem 5 is based on the following lemma whose
proof is straightforward.

Lemma4. For each / ^ l there are numbers ax and bι satisfying:
(1) ωiKa^b^ωi+x,
(2) I2{ω) — l— 1 for

= / for b^
(3) at = bι implies that a^b^^ωi + ω^^ while ax<bx implies that aι<?(ωι +

(4) If aι^ω<bιthenl2(ω) = L
There is also an a0 satisfying 0 ^ α o < ω 1 and

I2(ω) = θ for 0^

= 1 for flo^
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