Commun. math. Phys. 45, 59-61 (1975)

A Remark on a Theorem of Powers and Sakai

S. Doplicher

Istituto Matematico "G. Castelnuovo", Università di Roma, I-00185 Roma, Italy

Abstract. Given an abelian locally compact group G and a C*-algebra with unit \mathfrak{A} , the set of those continuous representations of G by automorphisms of \mathfrak{A} which fulfill a spectrum condition is closed.

In a recent paper [1] Powers and Sakai proved, among other things, that if a sequence of continuous one-parameter groups of automorphisms of a C^* -algebra with identy, each with a generator in the algebra, converges strongly, uniformly on compact sets of the line, the limit one parameter group has a ground state.

As any one parameter group with a generator in the algebra has a ground state [1, proof of Theorem 2.3, first paragraph] this theorem is implied by a closedness property of the set of one parameter groups having a ground state.

The purpose of this note is to remark that from the algebraic spectrum condition [2] this closedness property follows naturally for any locally compact abelian group replacing the line.

Let G be a locally compact abelian group and \mathfrak{A} a C*-algebra with identity I; let \mathscr{A} be the set of all continuous homomorphisms of G into the group of *automorphisms of \mathfrak{A} , equipped with the strong topology.

For $\alpha \in \mathcal{A}$, by a representation of $\{\mathfrak{A}, \alpha\}$ we mean a covariant representation (π, U) : π is a representation of \mathfrak{A} on a Hilbert space \mathscr{H} and U a strongly continuous unitary representation of G on \mathscr{H} s.t. $U(g)\pi(\cdot)U(g)^{-1} = \pi \circ \alpha_g, g \in G$.

If ω is an α -invariant state on \mathfrak{A} , $(\pi_{\omega}, U_{\omega})$ and ξ_{ω} denote respectively the G.N.S. covariant representation and the associated cyclic vector s.t. $\omega = (\xi_{\omega}, \pi_{\omega}(\cdot)\xi_{\omega})$ and $U_{\omega}(g)\pi_{\omega}(A)\xi_{\omega} = \pi_{\omega}(\alpha_{q}(A))\xi_{\omega}; g \in G, A \in \mathfrak{A}$.

Let \hat{G} denote the dual group of G and $K \in \hat{G}$ a closed set including the identity of \hat{G} .

Let $\mathfrak{J}(\alpha, K)$ denote the smallest left ideal in \mathfrak{A} including the set:

$$\mathfrak{V}(\alpha, K) = \{ \alpha_f(A) / A \in \mathfrak{A} ; \quad f \in L^1(G), \quad \widehat{f} | K = 0 \},\$$

where $\alpha_f(A) = \int f(g) \alpha_g(A) d\mu(g)$ and μ is a Haar measure on G.

The following conditions on $\alpha \in \mathcal{A}$ are equivalent:

(i) there exists an α -invariant state ω on \mathfrak{A} with spectrum $U_{\omega} \subset K$;

(ii) $\mathfrak{J}(\alpha, K) \neq \mathfrak{A}$.

(3)

In Ref. [2] this is proved for $G = \mathbb{R}^4$ and K = the future light cone, but that argument has a straightforward generalization to our present case.

Let $\mathscr{A}(K)$ be the set of $\alpha \in \mathscr{A}$ fulfilling (i)/(ii).

1. Proposition. The set $\mathcal{A}(K)$ is closed in \mathcal{A} for the topology of strong convergence uniformly on compact sets of G. The set $\mathcal{A}(K)$ is sequentially closed in \mathcal{A} for the topology of simple strong convergence.

Proof. If $\alpha \in \mathcal{A} \setminus \mathcal{A}(K)$ we have $\mathfrak{J}(\alpha, K) = \mathfrak{A}$ i.e.

$$I = \sum_{i=1}^{N} A_i \alpha_{f_i}(B_i) \tag{1}$$

with $f_i \in L^1(G)$, $\hat{f}_i = 0$ on K and $A_i, B_i \in \mathfrak{A}$, i = 1, ..., N. Given $\varepsilon > 0$ let C be a compact set in G and $\varphi_1, ..., \varphi_N$ continuous functions with support in C s.t.

 $\|\varphi_i - f_i\|_1 < \varepsilon, \quad i = 1, ..., N.$

Let $\mathcal{N}(\alpha)$ be the compact-strong neighbourhood of α in \mathscr{A} defined by

$$\begin{aligned} \alpha' \in \mathcal{N}(\alpha) \quad \text{if} \quad \sup \left\{ \|\alpha'_g(B_i) - \alpha_g(B_i)\| / g \in C, \, i = 1, \dots, N \right\} < \varepsilon \,. \\ \text{If} \; \alpha' \in \mathcal{N}(\alpha), \sum_{i=1}^{N} A_i \alpha'_{f_i}(B_i) \equiv B' \in \mathfrak{J}(\alpha', K) \text{ and} \\ \|I - B'\| \leq \sum_{i=1}^{N} \|A_i\| \cdot \|(\alpha_{f_i} - \alpha'_{f_i})(B_i)\| \\ &\leq \varepsilon \cdot \sum_{i=1}^{N} \|A_i\| (2\|B_i\| + \|\varphi_i\|_1) \;; \end{aligned}$$

for small ε , B' is regular in \mathfrak{A} and $\mathfrak{J}(\alpha', K) = \mathfrak{A}$; so the last equation holds for all α' in a compact-strong neighbourhood of α in \mathscr{A} .

Let $\{\alpha^{(n)}\} \in \mathscr{A}$ be a sequence and $\alpha \in \mathscr{A}$ s.t. for any fixed $g \in G$ and $A \in \mathfrak{A}$

 $\|\alpha_q^{(n)}(A) - \alpha_q(A)\| \to 0 \text{ as } n \to \infty$.

For each $A \in \mathfrak{A}$ and $f \in L^1(G)$, we have that

$$\|(\alpha_{f}^{(n)} - \alpha_{f})(A)\| \leq \int |f(g)| \cdot \|\alpha_{g}^{(n)}(A) - \alpha_{g}(A)\| d\mu(g)$$

and $|f(g)| \cdot ||\alpha_g^{(n)}(A) - \alpha_g(A)|| \leq 2||A|| \cdot |f(g)|$; by Lebesgue theorem

$$(\alpha_f^{(n)} - \alpha_f)(A) \to 0 \quad \text{as} \quad n \to \infty .$$
 (2)

Assume $\alpha^{(n)} \in \mathscr{A}(K)$ but (1) holds. Setting $B^{(n)} = \sum_{i=1}^{N} A_i \alpha_{f_i}^{(n)}(B_i)$, by (1) and (2)

$$B^{(n)} \rightarrow I$$
 as $n \rightarrow \infty$;

since $B^{(n)} \in \mathfrak{J}(\alpha^{(n)}, K) \neq \mathfrak{A}$ for all n, (3) cannot hold, and also $\mathfrak{J}(\alpha, K) \neq \mathfrak{A} \parallel$.

2. Theorem. Let $\{\alpha^{(n)}\} \subset \mathscr{A}$ be a sequence s.t. for each $g \in G$; $A \in \mathfrak{A}$; $\alpha_g^{(n)}(A)$ is convergent in \mathfrak{A} ; then the limit $\alpha_g(A)$ defines on element $\alpha \in \mathscr{A}$. If $\alpha^{(n)} \in \mathscr{A}(K)$, also $\alpha \in \mathscr{A}(K)$.

Proof. The limit α_g of $\alpha_g^{(n)}$ defines clearly a homomorphism of *G* into the group of *-automorphisms of \mathfrak{A} ; by Proposition 1 we need only to prove that if $A \in \mathfrak{A}$, $g \in G \to \alpha_g(A)$ is continuous. Since $g \in G \to \alpha_g^{(n)}(A)$ is continuous it is also locally strongly measurable and so is $g \in G \to \alpha_0(A)$ by [3, Theorem 3.5.4]. Then continuity follows from local strong measurability by a known generalization of [3, Theorem 10.2.3].

Acknowledgements. I wish to thank Professor Sakai for sending his work before publication.

60

Theorem of Powers and Sakai

References

- 1. Powers, R. T., Sakai, S.: Existence of ground states and KMS states for approximately inner dynamics. Commun. math. Phys. (to appear)
- 2. Doplicher, S.: An algebraic spectrum condition. Commun. math. Phys. 1, 1 (1965)
- 3. Hille, E., Phillips, R.S.: Functional analysis and semigroups. Providence, R.I.: Amer. Math. Soc. colloquim. publ. 1957

Communicated by H. Araki

(Received January 21, 1975; in revised form May 20, 1975)