Free States and Automorphisms of the Clifford Algebra

J. C. Wolfe^
Universiteit Leuven, Leuven, Belgium**

Abstract

We study automorphisms of the Clifford algebra which map the set of quasi-free states onto itself. We show that they are quasi-free if the oneparticle space is infinite dimensional, and give counter examples in finite dimensions.

In a recent paper [1], Hugenholtz and Kadison have shown an automorphism of the CAR or Clifford algebra which maps the set of gauge invariant quasi-free states onto itself to be quasi-free. The same result is known for automorphisms which preserve the set of all quasi-free states [2]. We give simple, alterative proofs of these two results when the one particle space is infinite dimensional and counterexamples when it is not. Because of its economical description of non-gauge invariant free states and of non-unitary Bogoliubov transformations, we have worked in the real Hilbert space formalism of [3]. The connection between this and the complex Hilbert space formalism used in [1] is found in Section 2 of [3].

Let $(H,()$,$) be a real Hilbert space of even or infinite dimension. The C^{*}-$ Clifford algebra $\mathfrak{A}(H)$ over H is generated by the range of a linear map $f \rightarrow B(f)$ of H into self-adjoint part of $\mathfrak{A l}(H)$, satisfying

$$
\begin{equation*}
B(f) B(g)+B(g) B(f)=2(f, g) . \tag{1}
\end{equation*}
$$

If H^{\prime} is a subspace of even or infinite dimension we denote by $\mathfrak{A}\left(H^{\prime}\right)$ the C^{*} subalgebra of $\mathfrak{A}(H)$ generated by $\left\{B(f) \mid f \in H^{\prime}\right\}$. Every orthogonal transformation \mathcal{O} on H defines a *-automorphism $\alpha_{\mathcal{O}}$ of $\mathfrak{A}(H)$ such that

$$
\alpha_{0} B(f)=B(\mathcal{O} f) .
$$

Such an automorphism is called quasi-free.
Every anti-hermitian operator A in the unit ball of $B(H)$ defines [3] a state ω_{A} such that

$$
\omega_{A}\left(B\left(f_{1}\right) \ldots B\left(f_{N}\right)\right)=\left\{\begin{array}{l}
0 \text { if } N \text { is odd } \tag{2}\\
\sum_{i=2}^{N}(-1)^{i} \omega_{A}\left(B\left(f_{1}\right) B\left(f_{i}\right)\right) \omega_{A}\left(B\left(f_{2}\right) \ldots \widehat{\left.B\left(f_{i}\right) . . B\left(f_{N}\right)\right)}\right.
\end{array}\right.
$$

otherwise

[^0]where means the entry is omitted and $\omega_{A}(B(f) B(g))=(f, g)+i(A f, g)$. Such states are called quasi-free.

The quasi-free state $\omega_{0}(A \equiv 0)$ is the unique tracial state on $\mathfrak{A}(\mathscr{H})$ and so is invariant under any automorphism [4].

The first lemma answers the question, "When is the convex combination of quasi-free states quasi-free?" The proof is in the appendix.

Lemma 1. Let A, B, C be anti-hermitian operators in the unit ball of $\mathscr{B}(\mathscr{H})$; let $\omega_{A}, \omega_{B}, \omega_{C}$ be the corresponding quasi-free states and let $0<\lambda<1$. Then,

$$
\begin{equation*}
\omega_{C}=\lambda \omega_{A}+(1-\lambda) \omega_{B} \tag{3}
\end{equation*}
$$

if and only if $C=\lambda A+(1-\lambda) B$ and there exists an orthonormal pair $\{f, g\}$ and $\mu>0$ such that

$$
A-B=\mu(f \otimes g-g \otimes f)
$$

If $\{f, g\}$ is an $o-n$ pair of vectors in H, we shall define the automorphism $\alpha_{\Theta}(f, g)$ as follows.

$$
\begin{equation*}
\alpha_{\Theta}(f, g) S=\exp ((\Theta / 2) B(g) B(f)) S \exp ((\Theta / 2) B(f) B(g)) \quad \forall S \in \mathfrak{A}(H) \tag{4}
\end{equation*}
$$

Let P be a 2-dimensional projector on H and let J be a complex structure on H commuting with P (i.e. $J^{2}=-1, J^{+}=-J$). Let \tilde{P}_{j} denote the group of automorphisms generated by $\left\{\alpha_{\Theta}(f, J f) \mid P f=0\right\}$; and let $\mathfrak{A}\left(H, \tilde{P}_{j}\right)$ denote the algebra of \tilde{P}_{j}-fixed points of $\mathfrak{G}(H)$.

Lemma 2. Let P and J be as above. If H is infinite dimensional, then $\mathfrak{A}(P H)=$ $\mathfrak{Y}\left(H, \tilde{P}_{j}\right)$.

The proof is in the appendix.
Theorem 3a. Let \mathscr{H} be infinite dimensional; and, let α be $a *$-automorphism of $\mathfrak{U}(\mathscr{H})$ which maps the set of all quasi-free states onto itself. Then α is quasi-free.

Proof. Let $\left\{f_{1}, f_{2}\right\}$ be an $o-n$ pair of vectors in \mathscr{H}. By α-invariance of ω_{0}, Lemma 1 and linearity of the transpose $\hat{\alpha}$ of α^{-1}, we have

$$
(1-\lambda) \omega_{0}+\lambda \hat{\alpha} \omega_{f_{1} \otimes f_{2}-f_{2} \otimes f_{1}}=\hat{\alpha} \omega_{\lambda\left(f_{1} \otimes f_{2}-f_{2} \otimes f_{1}\right)} \quad 0<\lambda<1
$$

By hypothesis and Lemma 1, $\hat{\alpha} \omega_{f_{1} \otimes f_{2}-f_{2} \otimes f_{1}}=\omega_{\mu\left(g_{1} \otimes g_{2}-g_{2} \otimes g_{1}\right)}$ for some positive μ and $o-n$ pair $\left\{g_{1}, g_{2}\right\}$. Now, if $\{h, k\}$ is an arbitrary $o-n$ pair and η a real number $(|\eta|<1)$, it follows easily that

$$
\omega_{\eta(h \otimes k-k \otimes h)}=(1+i \eta B(h) B(k)) \circ \omega_{0}
$$

Since ω_{0} is faithful and invariant, it follows that $\alpha\left(B\left(f_{1}\right) B\left(f_{2}\right)\right)=\mu B\left(g_{1}\right) B\left(g_{2}\right)$. Squaring both sides gives $\mu=1$. Now let $\left\{f_{3}, f_{4}\right\}$ be an $o-n$ pair, pairwise orthogonal to $\left\{f_{1}, f_{2}\right\}$, and let $\left\{g_{3} g_{4}\right\}$ be so that $\alpha\left(B\left(f_{3}\right) B\left(f_{4}\right)\right)=B\left(g_{3}\right) B\left(g_{4}\right)$.

Now

$$
\begin{aligned}
0 & =\omega_{0}\left(B\left(f_{1}\right) B\left(f_{2}\right) B\left(f_{3}\right) B\left(f_{4}\right)\right) \\
& =\omega_{0}\left(B\left(g_{1}\right) B\left(g_{2}\right) B\left(g_{3}\right) B\left(g_{4}\right)\right)=\left(g_{1}, g_{4}\right)\left(g_{2}, g_{3}\right)-\left(g_{1}, g_{3}\right)\left(g_{2}, g_{4}\right) .
\end{aligned}
$$

And,

$$
\alpha\left[B\left(f_{1}\right) B\left(f_{2}\right), B\left(f_{3}\right) B\left(f_{4}\right)\right]=0=\left[B\left(g_{1}\right) B\left(g_{2}\right), B\left(g_{3}\right) B\left(g_{4}\right)\right]
$$

Combining these two results, we have

$$
\begin{aligned}
& 0=\omega_{0}\left(B\left(\left(g_{2}, g_{3}\right) g_{4}-\left(g_{2}, g_{4}\right) g_{3}\right) B\left(g_{1}\right) .\right. \\
& \left.\left[B\left(g_{1}\right) B\left(g_{2}\right), B\left(g_{3}\right) B\left(g_{4}\right)\right]\right)=2\left\{\left(g_{2}, g_{3}\right)^{2}+\left(g_{2}, g_{4}\right)^{2}\right\} .
\end{aligned}
$$

Similary $\left(g_{1}, g_{3}\right)=\left(g_{1}, g_{4}\right)=0$. Thus, $\left\{g_{1}, g_{2}\right\}$ is pairwise orthogonal to $\left\{g_{3}, g_{4}\right\}$. Since α^{-1} has this property as well,

$$
\left[\alpha\left(B\left(f_{1}\right)\right), B(h) B\left(h^{\prime}\right)\right]=0=\left[\alpha\left(B\left(f_{2}\right)\right), B(h) B\left(h^{\prime}\right)\right]
$$

for all $o-n$ pairs $\left\{h, h^{\prime}\right\}$ which are pairwise orthogonal to $\left\{g_{1}, g_{2}\right\}$. Let P be the projector upon the subspace spanned by $\left\{g_{1}, g_{2}\right\}$ and let J be a complex structure commuting with P. Clearly $\alpha B\left(f_{1}\right)$ and $\alpha B\left(f_{2}\right)$ are \tilde{P}_{j}-fixed points of $\mathfrak{A}(H)$. By Lemma 2, there exist numbers $\left\{X_{\gamma}^{j}\right\}_{\gamma=1,2}^{j=1, \ldots, 4}$ such that

$$
\alpha\left(B\left(f_{\gamma}\right)\right)=X_{\gamma}^{1} B\left(g_{1}\right)+X_{\gamma}^{2} B\left(g_{2}\right)+X_{\gamma}^{3} B\left(g_{1}\right) B\left(g_{2}\right)+X_{\gamma}^{4} .
$$

Clearly $\omega_{0}\left(\alpha B\left(f_{\gamma}\right)\right)=\omega_{0}\left(\alpha B\left(f_{\gamma}\right) B\left(g_{1}\right) B\left(g_{2}\right)\right)=0$.
Hence $X_{\gamma}^{3}=X_{\gamma}^{4}=0$. It follows from self-adjointness that X_{γ}^{1} and X_{γ}^{2} are real and from (1) that

$$
\begin{aligned}
& \alpha B\left(f_{1}\right)=B\left(X_{1} g_{1}+X_{2} g_{2}\right) \\
& \alpha B\left(f_{2}\right)=B\left(-X_{2} g_{1}+X_{1} g_{2}\right)
\end{aligned}
$$

with $X_{1}^{2}+X_{2}^{2}=1$.
Now let $\left\{f_{j}\right\}_{j \in \mathbb{Z}}$ be an $o-n$ basis of H, and let $\left\{\mathcal{O} f_{j}\right\}$ be the orthonormal basis such that

$$
\alpha B\left(f_{j}\right)=B\left(\mathcal{O} f_{j}\right)
$$

Let \mathcal{O} be the unique linear, continuous extension of the basis transformation. \mathcal{O} is orthogonal and, by linearity and by continuity,

$$
\alpha B(f)=B(\mathcal{O} f) \quad \forall f \in H .
$$

Theorem 3b. Let H be finite dimensional $(\operatorname{dim} H>2)$. There exists $a *$-automorphism of $\mathfrak{A l}(H)$ which transforms the set of quasi-free states onto itself and which is not quasi-free.

Proof. It suffices to exhibit a *-automorphism α which is non-free, which is trivial on even monomials and commutes with α_{-1}. Let $\left\{f_{j}\right\}_{j=1}^{2 N}$ be an orthonormal basis of H, let

$$
g_{N}=\left\{\begin{array}{ll}
1 & N \text { odd } \\
i & N \text { even }
\end{array}\right\} \quad \text { and let }
$$

$U=2^{-\frac{1}{2}}\left(1-g_{N} B\left(f_{1}\right) \ldots B\left(f_{2 N}\right)\right) . U$ is unitary and defines an automorphism with the above properties.

$$
U B\left(f_{k}\right) U^{*}=g_{N} B\left(f_{k}\right)\left\{B\left(f_{1}\right) \ldots B\left(f_{2 N}\right)\right\} \quad \forall k
$$

We now indicate a simpler, alternative proof of Theorem 3.1 of [1]. Let J be a complex-structure on H, let H^{J} denote the J-complexification of H and let C denote a complex-conjugation on $H^{J}\left(C^{2}=1, C J=-J C, C^{+}=C\right)$.

A quasi-free state ω_{A} is said to be gauge invariant if $[J, A]=0$. It is easily checked that $\mu(f \otimes g-g \otimes f)$ defines a gauge invariant quasi-free state if and only if $\mu(f \otimes g-g \otimes f)= \pm \mu(f \otimes J f-J f \otimes f)$. Thus, if α maps the set of gauge invariant quasi-free states onto itself, there exists, for every $f \in H$ a $g \in H$ such that $\alpha(B(f) B(J f))= \pm B(g) B(J g)$. Now

$$
\|B(g) B(J g)+B(h) B(J h)\|
$$

$\geqq\left|\omega_{J}(B(g) B(J g)+B(h) B(J h))\right|=\|g\|^{2}+\|h\|^{2}$. Further, since the map $f \rightarrow \alpha(B(f) B(J f))$ is continuous, it follows that the two complementary subsets of $\{f \mid\|f\| \geqq \xi\}=H^{\xi}$

$$
H_{ \pm}^{\xi}=\{f \mid\|f\| \geqq \xi, \alpha(B(f) B(J f))= \pm B(g) B(J g) \quad \text { for some } \quad g \in H\}
$$

are both closed and open. Since H^{ξ} is connected $H_{+}^{\xi}=\emptyset$ or H^{ξ}. Since ξ is arbitrary, either one of two cases is possible: For every $f \in H$ there exists $g \in H$ such that $\alpha B(f) B(J f)=B(g) B(J g)$; or, for every $f \in H$ there exists $g \in H$ such that $\alpha_{C} \alpha B(f) B(J f)=B(g) B(J g)$. Consider the first possibility. As above $\alpha B(f)$ is a fixedpoint under the action of the group generated by $\left\{\alpha_{\Theta}(k, J k) \mid\{g, J g\} \perp\{k, J k\}\right\}$. By Lemma $2, \alpha B(f)$ and $\alpha B(J f)$ are elements of the algebra generated by $\{B(g)$, $B(J g)\}$. It follows as above that there exists an orthogonal transformation \mathcal{O} such that $\alpha(B(f))=B(\mathcal{O} f)$ for all $f \in H$. Further $[\mathcal{O}, J]=0$ implying that \mathcal{O} is unitary on H^{J}. In the second case, $B(f)=B(\mathcal{O} f)$ with $\mathcal{O}=C \mathcal{O}^{\prime}$ and \mathcal{O}^{\prime} unitary.

It is a pleasure to acknowledge many useful discussions with P.N.M. Sisson and A. Verbeure. The author is indebted to H . Araki for pointing out a fault in an earlier version of this work.

Appendix

Proof of Lemma 1. Suppose (3) holds. Clearly $C=\lambda A+(1-\lambda) B$. Let $D=A-B$. Then, for arbitrary $\left\{f_{j}\right\}_{j=1}^{4} \subset H$, we have

$$
\begin{aligned}
0 & =\left(\omega_{\lambda A+(1-\lambda) B}-\left(\lambda \omega_{A}+(1-\lambda) \omega_{B}\right)\right)\left(B\left(f_{1}\right) \ldots B\left(f_{4}\right)\right) \\
& =-\lambda(\lambda-1)\left(f_{1},\left\{\left(D f_{3}, f_{4}\right) D-D f_{4} \otimes D f_{3}+D f_{3} \otimes D f_{4}\right\} f_{2}\right)
\end{aligned}
$$

Since f_{1}, f_{2} are arbitrary, we have

$$
\left(D f_{3}, f_{4}\right) D=D f_{4} \otimes D f_{3}-D f_{3} \otimes D f_{4}
$$

Necessity follows by antisymmetry.

Conversely, suppose that $A-B=\mu(h \otimes g-g \otimes h)$ and $C=\lambda A+(1-\lambda) B$. It is clear that, for $N=2$ or $2 S+1$ (S a positive integer),

$$
\begin{equation*}
\left(\omega_{\lambda A+(1-\lambda) B}-\left(\lambda \omega_{A}+(1-\lambda) \omega_{B}\right)\right)\left(B\left(f_{1}\right) \ldots B\left(f_{N}\right)\right)=0 \tag{}
\end{equation*}
$$

To prove $\left({ }^{*}\right)$ in general it suffices, by the anticommutation relations (1) to choose $\left\{f_{j}\right\}$ from the elements of an orthonormal basis $\left\{k_{i}\right\}$ with $k_{1}=g, k_{2}=h$ and no entries repeated. We now proceed by induction: Suppose $\left(^{*}\right)$ holds for $N=2 S$. By (2) and the induction hypothesis, we have

$$
\begin{aligned}
\left(\omega_{\lambda A+(1-\lambda) B}-\right. & \left(\lambda \omega_{A}+(1-\lambda) \omega_{B}\right)\left(B\left(f_{1}\right) \ldots B\left(f_{2(S+1)}\right)\right) \\
= & i \mu \lambda(1-\lambda) \sum_{j=2}^{2(S+1)}(-1)^{j}\left[\left(g, f_{j}\right)\left(h, f_{1}\right)-\left(f_{1}, g\right)\left(f_{j}, h\right)\right] . \\
& \left(\omega_{A}-\omega_{B}\right)\left(B\left(f_{2}\right) \ldots B\left(f_{j}\right) \ldots B\left(f_{2(S+1)}\right)\right) .
\end{aligned}
$$

We can assume $S \geqq 1$ and anti-commute on the left until $f_{1} \neq g$ and $f_{1} \neq h$, concluding that $\left({ }^{*}\right)$ holds for $N=2(S+1)$.
Q.E.D.

Proof of Lemma 2. Let C denote a complex-conjugation on H^{J} commuting with $P\left(C^{2}=1, C^{+}=C\right.$ and $\left.C J=-J C\right)$. Let $\left\{f_{x}\right\}_{x \in \mathbb{Z}}$ be an orthonormal basis of $(1-P)\left(\frac{1+C}{2}\right) H$ and let f be a normalized vector in $P\left(\frac{1+C}{2}\right) H \cdot \mathfrak{A}((1-P) H)$ is the closed linear span of $\mathfrak{A}_{0} \cup\{I\}$ where

$$
\mathfrak{A}_{0} \equiv\left\{B\left(g_{1}\right) \ldots B\left(g_{N}\right) \mid\left\{g_{n}\right\}_{n=1}^{N} \subset\left\{f_{x}, J f_{x}\right\}_{x \in \mathbb{Z}}\right\}
$$

and $\mathfrak{U}(H)$ is the closed linear span of the set \mathfrak{U}_{1} of elements of the type

$$
S=B(f) S_{1}+B(J f) S_{2}+B(f) B(J f) S_{3}+S_{4}
$$

where $\left\{S_{i}\right\}_{i=1}^{4} \subset \mathfrak{A}_{0}$.
Let

$$
M=\frac{\alpha_{1+P(C-1)}+\alpha_{1}}{2} \cdot \frac{\alpha_{1-2 P}+\alpha_{1}}{2} .
$$

For $S \in \mathfrak{H}_{1}$, we clearly have

$$
S=M(S)+B(f) M(B(f) S)+B(J f) M(B(J f) S)+B(f) B(J f) M(B(J f) B(f) S)
$$

Since M is linear and continuous this identity holds for all $S \in \mathfrak{A}(H)$. Moreover $M \mathfrak{A}(H)=\mathfrak{A l}((1-P) H)$.

It is clear that $S \in \mathfrak{A l}\left(H, \tilde{P}_{J}\right)$ iff its coefficients in $\mathfrak{A l}((1-P) H)$ are \tilde{P}_{J}-fixed points. Thus, it is sufficient to prove that

$$
\mathfrak{A}((1-P) H) \cap \mathfrak{A}\left(H, \tilde{P}_{J}\right)=\{\mathbb{C} I\} .
$$

To this end define the orthogonal shift T on H by $T f_{x}=f_{x+1}$ and $T J f_{x}=J f_{x+1}$, $T P=P$. It is clear that for all $A \in \mathfrak{G}_{1}, \alpha_{T} A=\lim _{L \rightarrow \infty} \alpha_{T_{L}} A$ where $\left[T_{L}, J\right]=0, P T_{L}=P$ and

$$
T_{L} f_{x}= \begin{cases}f_{x+1} & x \in[-L, L-1] \\ f_{-L} & x=L \\ f_{x} & x \notin[-L, L]\end{cases}
$$

By linearity and continuity $\alpha_{T}=\lim _{L \rightarrow \infty} \alpha_{T_{L}}$, pointwise. By standard Fourier methods one sees that

$$
\begin{aligned}
\alpha_{T_{L}} & =\prod_{n=1}^{2 L+1} \alpha_{\frac{2 \pi n}{2 L+1}}\left(k_{n}, J k_{n}\right) \quad \text { where } \\
k_{n} & =\frac{1}{\sqrt{2 L+1}} \sum_{x=-L}^{L} e^{-2 \pi J(x+L+1) n / 2 L+1} f_{x} .
\end{aligned}
$$

Thus, if $S \in \mathfrak{A}((1-P) H) \cap \mathfrak{A l}\left(H, \tilde{P}_{J}\right)$, then $\alpha_{T} S=S$.
Similarly $\alpha_{2 P-1}=\lim _{L \rightarrow \infty} \prod_{x=-L}^{L} \alpha_{\pi}\left(f_{x}, J f_{x}\right)$, so $\alpha_{2 P-1} S=S$. Now the algebra of $\alpha_{2 P-1}$-fixed points of $\mathfrak{G l}((1-P) H)$ is the range of the projector $M \cdot \frac{\alpha_{1}+\alpha_{2 P-1}}{2}$ and so it is the closed span \mathfrak{A}_{2} of the even monomials in \mathfrak{A}_{0}.

Let S be an $\mathfrak{A}\left(H, \tilde{P}_{J}\right)$-fixed point of $\mathfrak{A}((1-P) H)$ and let S_{n} be a Cauchy sequence in \mathfrak{A}_{2} converging to S. Now, for each n and $B \in \mathfrak{A}_{1}, \lim _{m \rightarrow \infty}\left\|\left[\alpha_{T^{m}} S_{n}, B\right]\right\|=0$. By linearity, and a $3-\varepsilon$ argument,

$$
\lim _{m \rightarrow \infty}\left[\alpha_{T^{m}} S, B\right]=[S, B]=0 \quad B \in \mathfrak{A}(H) .
$$

Thus $S=\lambda I$ for $\lambda \in \mathbb{C}$.
Q.E.D.

References

1. Hugenholts, N., Kadison, R.: Commun. math. Phys. 43, 181-187 (1975)
2. Hugenholtz, N.: Private Communication
3. Balslev, E., Manuceau, J., Verbeure, A.: Commun. math. Phys. 8, 315-326 (1968)
4. Shale, D., Stinespring, W.F.: Ann. Math. 80, 365-381 (1964)

Communicated by H. Araki
Received May 7, 1975; in revised form June 14, 1975

[^0]: * Derde Cyclus Fellow, K.U.L. Belgium.
 ** Postal address: Physics Department, University of British Columbia, Vancouver, B.C., Canada.

