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Abstract. We introduce the notion of singly localized states and use it to
characterize the one-particle states as those states which are singly localized
at all times. For theories which satisfy the Haag-Swieca compactness criterion,
we show that a state has a discrete mass spectrum if and only if it is a "geo-
metrical one-particle state".
Using a mathematical description of coincidence arrangements of counters
we show that in asymptotically complete theories the asymptotic particle
number is the asymptotic number of localization centres.

I. Introduction

In relativistic quantum theory a particle is usually defined to be a state that
belongs to an irreducible representation of the Poincare group. In an experiment,
however, one identifies a particle by its localization properties, e.g. its track in a
bubble chamber. A geometrical characterization of a one-particle state should
allow for the experimental situation.

Apart from being very abstract, the usual particle definition has other draw-
backs: In theories with long-range forces, like quantum electrodynamics, it is an
open question whether the electron has a discrete mass or whether it is an "infra-
particle" with continuous mass distribution [6]. In the latter case it would violate
the usual particle definition, although it behaves like a particle in experiments.

In theories with short-range forces, the Haag-Ruelle scattering theory [5]
provides the existence of states which can be interpreted as incoming or outgoing
particle configurations. It relies on the conventional notion of a particle. It is not
yet clear which physically plausible assumptions ensure an asymptotic particle
interpretation of all states (asymptotic completeness).

As a contribution to these problems, we will characterize the particle states
by their local properties, because the physically and mathematically basic objects
in the theory are the local observables. We confine ourselves to theories with
short-range forces.

In what follows, a "particle" will be any physical system which remains
connected for all times when external forces are absent, i.e. a system that does not
decay into subsystems which become separated and independent of each other.
A particle of this kind can be a stable elementary particle, or a stable bounded
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system like the ground state of a hydrogen atom. Although the possibly existing
different components of the particle remain close to each other, the centre of mass
motion of the particle exhibits the quantum phenomenon of "spreading": the
region where the particle can be found increases with time.

Therefore the notion of a state that is "localized in some region at time ί"
cannot be used to distinguish the one-particle states from the others. For our
purposes, the appropriate generalization is the notion of a state which is "singly
localized at time t with correlation-radius r". These states can be constructed by
superposition of state-vectors which are localized at time t in various regions of
radius r. Alternatively, the singly localized states can be characterized by their
inability to trigger a coincidence-arrangement of two counters separated by a
longer distance than r. In non-relativistic quantum mechanics, a system of n
elementary particles is singly localized with correlation radius r at a given time
if its wave function /(£; jc1? ...,*„) vanishes as soon as one of the relative co-
ordinates becomes bigger than 2r.

Accordingly, an N-fold localized state will trigger a coincidence arrangement
of N separated counters, but not one with N +1 counters.

Loosely speaking, a one-particle state is singly localized for all times. The
precise statement of this is the

Geometrical Particle Definition:

Ψ is a one-particle state if for any ε>0 there is a radius r, independent of ί, such
that \\Ψ — exp(ιΉί)ΦJ <ε, where exp(ίHt)Φt are suitable states singly localized
at time t with correlation radius r.

Similarly, we define the

Geometrical Asymptotic Particle Number:

A state is an outgoing (incoming) AΓ-particle state if it is ΛΓ-fold localized for
ί->oo(-oo).

In Section V we will check the equivalence of the geometrical particle definition
with the usual one. The "compactness criterion" postulated by Haag and Swieca
[3] plays an essential role. It says roughly that there are only a finite number of
distinct states which are localized in some region and are bounded in energy.
In a theory which satisfies this criterion, both notions of a particle are equivalent.
The typical behaviour of a one-particle state in space and time entails its discrete
mass and vice versa. The proof of the equivalence theorem depends very little on
the details of the construction of singly localized states. Therefore a generalization
to theories with massless particles might be possible.

The mathematical properties of "coincidence operators", and the equivalence
of the asymptotic particle number with the asymptotic number of localization
centres will be discussed in Sections VI-IX for asymptotically complete quantum
field theories.

The framework for our investigations is the relativistic local quantum theory
according to Haag-Araki [1]. An open region of Minkowski space is denoted
by 0, and $((9) is the von Neumann algebra generated by the observables of this
region. U(x) = exp{iPμXμ} is a unitary, strongly continuous representation of the
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translations on the Hubert space Jf . The spectrum of their generators is contained
in the set

The vacuum Ω is unique.

Πa. Localized States

Haag and Swieca described states which are at some time localized in a fixed
region of space. We will state their definition and some relevant properties;
further details can be found in [3].

We confine our attention to the vacuum sector of the theory. The generaliza-
tion to theories with superselection rules is obvious if one uses the local field-
algebras instead of the observable-algebras.

Let Θ be a fixed bounded region in space-time. We use local operators Q with
the following properties :

βeΛ(0),(Ω,βΩ) = 0, Hβll^exp(κr)||βΩ|| , (2.1)

(K is the lower bound of the mass spectrum) to create from the vacuum the set Jtγ

of states which are at time ί — 0 localized in a region of radius r around the origin :

Jfr={QΩ\Q satisfies (2.1)} . (2.2)

Jίr is not a linear subspace of the Hubert space, but

ΨeJΐr=>λΨeJΐr', Jiγζ_Jlγ, if r<r';

and given two vectors Φ, Ψ e Jίr there is an r' such that

λΦ + μΨeJΐr, for all λ,μ. (2.3)

Ω Θ (Jr^r = ί^(0)Ω} is dense in Jf (2.4)

by the Reeh-Schlieder theorem (e.g. [1], Part I, Satz (10.2)).
The states which are localized at time 0 in n widely separated regions are

X-x

where all βt satisfy (2.1).
The localization of the states shows up in the following properties :
1. There are numbers A and α>0 such that for all Φ, Ψ e Jίγ

α(|x|-r)}. (2.5)

2. Any state in Mγ is almost orthogonal to any state which is localized in
several regions.

3. Let C be a "counter-operator" [cf. (6.10)], i.e. an almost local operator which
annihilates the vacuum; then for any r there is a rapidly decreasing function
φr(x) such that

\(Ψ, C(x)Ψ)\ £ || !P||2φΓ(|x|) V ΨeJtr. (2.6)
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To prove (2.6) one uses the local approximations of C(x) that lie spacelike to the
creator of Ψ.

The only strictly localized states are those which are created from the vacuum
by local isometric operators. All other states differ from the vacuum even at
spacelike distances from 6), but the amplitude of this difference falls off very fast
with increasing distance. So it is impossible to fix a unique region of localization
for the states in Jίr\ r is not an exact radius, but a non-calibrated parameter for
the spacelike extension of the state.

lib. The Compactness Criterion

Haag and Swieca set up a compactness criterion in order to characterize asymp-
totically complete theories by their local properties [3].

A closed bounded subset ϊ of a Hubert space is compact (in the strong topology)
if it is almost finite dimensional, i.e. for any ε>0 there is a finite dimensional
projector F with

\\Ψ-FΨ\\<ε\/Ψel. (2.7)

The states of a physical system which are localized in some finite region and
have bounded energy occupy a finite volume Γ of phase space. Quantum physics
says that there is only a finite number of these states, namely Γ/h3: Amrein and
Georgescu [8] showed in non-relativistic scattering theory that the localized
states with finite energy form a compact set (for all realistic potentials). Taking
this over to relativistic quantum theory yields the compactness criterion:

trE={PEψ\ΨεJΐr,\\ψ\\^l}- is compact V r , E . (2.8)

Jίr contains the localized states with radius r (2.2), PE is the projection on the
states with energy smaller than £, and { }~ denotes the closure of {}. We won't
need the postulates on the size of the compact sets given in [3].

The free massive field satisfies this criterion, which means that for a system
of free particles there is essentially a finite number of states with bounded energy
which are localized in a finite region. The generalized free field, however, which
obeys all the axioms except asymptotic completeness [7], violates the criterion.

In an interacting asymptotically complete theory with short-range forces, the
localized states of finite energy evolve into states of freely moving particles. To
a given accuracy, the interaction between the particles can be neglected after some
finite time interval. Since the states are then localized in some bigger but still
finite region, there should not be more than a finite number of these states. There-
fore one expects that an asymptotically complete theory satisfies the compactness
criterion, although this conjecture has not yet been proved. As we are interested in
theories with particle interpretation, we shall assume in the sequel that (2.8) is
fulfilled.

III. Separation of the Momentum Distribution

We will decompose the state space into a direct integral of eigenspaces of the
momentum operator P (in quantum mechanics this is the same as separation of
the centre of mass coordinate). This representation is useful for describing the
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translation invariant sets of singly localized states, and it facilitates use of the time
evolution to distinguish between states with discrete and continuous mass.

The vectors Φ with JJ3x|(Φ, U(x)Φ)\<oo are dense in the orthogonal com-
plement of the vacuum. For any given peIR3, the pairs (Φ, p) with λ(Φ, p)4-
μ(Φ', p) = (λΦ + μΦ\ p) span a linear space which can be equipped with the positive
semidefinite scalar product

<(Φ, p\ (Φ', />)> - jrf 3x exp(//>jt)(Φ, U(x)Φ') . (3.1)

A standard mathematical procedure (as described e.g. in [9, Chapter 3.4]) yields
a Hubert space Ap for any p. Φ(p) e Ap denotes the equivalence class of pairs

(φ,p)
The momentum operator acts on &p according to

(t/(x)Φ)(p)=exp(-ίpx)ΦO>). (3.2)

The Hubert space is decomposed into *

(3-3)

. (3.4)

For an L2-function there is a unique continuous representative f(p) if its Fourier-
transform f(x) is in ZA So the mapping f-+f(p) makes sense. Similarly the above
construction gives a unique mapping J"f ->^p:Φ->Φ(p) for any p and all Φ with
Jd3x|(Φ, (7(jc)Φ)| < oo, although two functions Φ(p) and *F(p) represent the same
vector in JΊ? if they coincide for almost all p.

Using this unique mapping it is easy to show that the strongly continuous
unitary group of time translations induces on each Av a strongly continuous
unitary group. It defines the positive self-adjoint "reduced" Hamiltonian and
mass operator with

. (3.5)

To characterize the singly localized states, we will need the following lemma.

Lemma 3.1. In a theory which satisfies the compactness criterion (2.8), the sets

are compact in άq for all M, q, r, and c.
PM is the projection onto states with mass bounded by M.

Proof. For any ΨεJίr, \\Ψ\\^c, there is a QεM(G\ \\Q\\^cΓ with Ψ = QΩ.
There is a double cone G± such that [Q*, β(x)]=0 for all xεΘ\ (the spacelike
complement of G^). Using the Jost-Lehmann-Dyson representation of
(Ω,Q*6(x)ί2)-(β,β(x)6*Ω) and the properties of the solutions of the five-
dimensional wave equation [11] one can show that

(β, e*PMQWO)-(ft β(*)PMQ*β)

We shall omit the indices of the norms when no confusion is possible.
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Now one can apply the method of [3, Eqs. (3)-(15)] to estimate

\(PMΨ, U(X)PMΨ)\^c2e2κ*φ(\x\)VM,

where φ(\x\) decreases faster than any inverse power of |x|. So we get

For a given ε>0, define δ = s2/f(c,r) and Pδ as the projection onto those
states whose support in momentum space is contained in a ^-neighbourhood of q.
The linear mapping ιq:^^PδPMJ^r^q:ιq(PδPMΨ) = (PδPMΨ)(q) = (PMΨ)(q) is
uniformly bounded on those vectors with 11(^^X^)11 ̂ ε: the estimate (3.6) gives
\\(PMΨ)(p)\\2^\\(PMΨ)(q)\\2-f(c,r)\p-ql

\\PδPMΨ\\2^\\(PMΨ)(q)\\2(4πβ)δ^-f(cί r)πδ4

which shows that ιq is bounded.
The set {PδPMΨ\Ψ eJίr,\\Ψ\\^c,\\(PMΨ)(q)\\^ε}- is compact as a closed

subset of the compact set (by 2.8) {PδPMΨ} - Since ιq is continuous on this set,
its image {(PMΨ}(q)\ΨeJίr9\\Ψ\\^c9\\(PMΨ)(q)\\^εΓ is compact for any ε;

therefore {(PMΨ)(q)\Ψ εJΐr, \\Ψ\\^c}~ is compact for any q, r, c, M. Π

IV. Singly Localized States

We pointed out already in part Πa that in relativistic quantum theory even most
of the well-localized states have no fixed localization region. Accordingly, the
sets Sr of states which are "singly localized at time 0 with correlation radius r"
are not uniquely fixed. For the proof of the equivalence theorem, however, it is
not necessary to know the sets $r in detail. Therefore we will state only some of
their important properties.

Let {Kd} be any sequence of translation invariant operators measuring those
spacelike correlations in the states which extend over a longer distance than d.
An example is provided by the coincidence operators introduced in Chapter VI.

Since by (2.5) the correlations for well-localized states decay very fast, one
expects that for d>r:

\\KdΨ\\^χ(d-r)\\Ψ\\VΨeJ(r9 (4.1)

χ(d) = AQxp( - ad), a > 0 . (4.2)

If a state obeys the same inequalities (4.1) as the states in Jίr do, it is surely
singly localized with correlation radius r. This leads us to the following two
properties that determine which states will at least belong to the sets $r. Let V(P)
be unitary functions of the momentum operator. They commute with all Kd.

El: V(P)JlrC£rVV(P).
E2: For any ε>0 there is a radius r' such that for all Ψt e Jiγ, || Ψt\\ ̂  1, and

for all K,(P)

. is the ball of radius ε in state space.
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Property E2 describes "restrained linearity" of the sets Sr, which is analogous
to property (2.3) for Jίr E2 is surely true if \\V^(P)Ψ^ + V2(P)1Ψ2\\^. In the
opposite case,

V2(P)Ψ2)\\ <, \\KdΨ,\\ + \\KdΨ2\\

ί\\ + \\Ψ2\\)^2/εχ(d-r)\\V1(P)Ψ1 +

For our purpose, the weak property E2 is sufficient. It is valid for a much wider
class of functions χ than those of the form (4.2).

In non-relativistic quantum mechanics, the support of the states /(jc lv. .,xn)£$r

in the relative coordinates xt — Xj is contained in a ball of radius 2r. Separating off
the total momentum p gives the wave function f(p\xΐ — x2,...,xn_ί — xn)eάp.
For all p there exists a wave function gpeJ?2r, namely gp(xί9 ...,*;„) =
gP(Σ"i= i xi)f(P\xι -x2> >χ

n-ι- χn\ where the support of gp(y) is contained in a
ball of radius 2r. For sufficiently large r, one can choose gp(p)=l
a n d d O O f g l . Then

and | |gf p(xι J . . .,x n) |^^| |/(p|xι-Jc 2»»-^n-ι-*n)lk- Therefore it is plausible
that in relativistic quantum theory one can assume the following much weaker
property: Let Ψ e Sr. There exist a bound c(r, p) and, for any p, a vector Φp e J?2r

such that \\Φp\\*ύc(r,p)\\Ψ(p)LP and Φp(p)=<P(p).
In theories which satisfy the compactness criterion, one can apply Lemma 3.1

to get property
E3 : For all M, r, c, p the sets

Ap\Ψeδr, \\Ψ(p)Lp <c}~ (4.3)

are compact.
This property says what the maximum number of states contained in the sets Sr is.

The natural choice of the states, which are singly loaclized at time ί is U(t)δr.

V. Equivalence of the Particle Definitions

In this chapter we will prove our first main theorem:

Theorem 5.1. In a massive relativistic quantum theory which satisfies the
compactness criterion (2.8) a state obeys the geometrical particle definition
(Chapter I) if and only if its mass spectrum is discrete.

In non-relativistic quantum mechanics, Ruelle [10], and Amrein and Georgescu
[8] proved an analogous theorem on the geometrical characterization of bounded
systems. Parts of our proof parallel the one given in [8].

Proof, "if '-part: A state Ψ with discrete mass spectrum can be approximated
uniformely in time by a finite linear combination of eigenstates of the mass
operator :

\\Qχp(iHt)Ψ - Σ?L ! F,(P, t)Ψl || < ε/3 V t ,

) = exp{i(F2
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For all Ψt there are, by (2.4), a radius r and vectors Φj e Jίr such that || Ψl — Φj || <
ε/3ΛΓV/. Property E2 (Chapter IV) ensures that \γe can find a radius r' and vectors
Φ't e <yr, such that

So ||exp(ιΉί)!F — Φί| |<εVί, i.e. IF satisfies the geometrical particle definition.
"only if '-part : We will show that a state with purely continuous mass spectrum

is orthogonal to any geometrical one-particle state. We need no special assump-
tions about the mass spectrum - it can contain a continuous singular part.

For fixed momentum />, we define the set ^PC^P by ^p={deάp\ for any
ε>03r, such that for all t there is aΨte£r with \\Ψt(p)\\ = ||d||, ||exp(iH|>]Od-

Ψt(p)\\<£}
Ψ(p)e^p for almost all p if Ψ satisfies the geometrical particle definition.
As a consequence of the compactness criterion, for any d ε^p there is a finite-

dimensional projector F E 3$(άp) such that

||(l-ί>xp(iH[p]ί)d|| <ε||d|| Vί . (5.1)

To prove this we choose M such that ||(i — PM)d\\ <||<2||ε/4 and r so big that
\\exp(ίH[p-]t)d-Ψt(p)\\<\\d\\s/4 for suitable Ψteδr9 \\Ψt(p)\\ = \\d\\. Then
\\^p(iH]ip^t)d-(PMΨt)(p)\\<\\d\\ε/2^t. According to property E3, the vectors
(PMΨt)(p) are all contained in the compact set if (4.3), and by (2.7) there is a finite-
dimensional projector Fε@(άp) such that \\(t-F)(PMΨt)(p)\\<\\d\\ε/2Vt. This
gives (5.1).

We denote by άp the subspace of Ap corresponding to the continuous spectrum
of the reduced mass operator M[p] or the reduced Hamiltonian //[/?].

For a vector Φ with purely continuous mass spectrum, Φ(p) lies in &c

p for
almost all p. Therefore it is sufficient to show that &c

p is orthogonal to gp.

Lemma 5.2. Let etAc

p and feώp be given; then

lim (2T)-1 lτ-τdt\(f, exp{ίΉ[p]ί}^)|2 =0 .
-̂Γ-^ oo

Proof. H\ji] = $μdE(μ) is the spectral decomposition of the reduced Hamil-
tonian on p.

= Π exp(ί(A - μ)t)d(e, E(λ) f)d(f, E(μ)e) (5.2)

The polar decomposition of the measure

d(f, E(μ)e) = dρ^μ) - dρ2(μ) - ίdρ2(μ) + ίdρ^μ)

gives four positive bounded measures ρ/μ), Jdρ/μ)^ 1. We estimate the first term
in (5.2):

^̂
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For e<Ξ&c

p, E(λ)e is uniformly strongly continuous in λ. For any ε>0, we can
find a δ > 0 such that

The time-avarage of the second term in (5.2) is

^16/(<5 Γ)<ε/2 for T>32/(δε). D

Corollary 5.3. Let F e ^( p̂) foe α finite-dimensional projector. For all

lim (27T1 Γ

Remark. If e has a Lebesgue-absolutely continuous mass spectrum,

lim

Lemma 5.4. // d e g.f and e e ̂ ,, they are orthogonal.

Proof.

\(d,e)\2

1 JIτdί|(d, exp{ίΉ[p]ί}(l-F)exp{- f

, exp{i/ί[p]ί}Fexp{- i

For a given ε>0, we choose a finite-dimensional projector F such that by (5.1)

||(i — F)exp{zΉ[/>]ί}d||2<ε/4Vί.

For sufficiently large T, by Corollary 5.3,

so that \(d,e)\2<s. Π

VI. Coincidence Arrangements of Counters

In the following sections we will describe mathematically a coincidence measure-
ment with counters by "coincidence operators". If the theory has a complete
particle interpretation, we can show that the asymptotic number of localization
centres is the particle number.

To simplify the notation, we deal with theories describing only one kind of
particle with mass m > 0. The energy-momentum spectrum is:

(6.1)
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We use the formulation of Haag-Ruelle (H-R) scattering theory [5] in terms of
bounded, almost local operators [4].

A bounded operator A is almost local if it can be approximated by local
operators Arε&(Θr) (Θr is the double cone around the origin, with a basis of
radius r) such that

= \\Arl\\A-Ar\\^\\A\\φ(r),

r-»oo

There exist bounded one-particle creation operators A* :
A is almost local,

AΩ = 0, (6.3)

(2π)3/2(2ωp)"1/2<p|4*β> = l V p with ωp^E, <p|A*Ω> e^(lR3) , (6.4)

where ωp = (p2 + m2)112 and |p> is the improper one-particle vector with
momentum p. We use the normalization

<plί> = 2ωpS
3(p-ί). (6.5)

The /-particle scattering states Ψ\n, Ψ°ut are limits of the H-R approximations

ι***ifι(t>x^^ (6 6)

yin(out)= = s.lim

ί-> -oo(+oo)

with wave functions

...,Λ) (6-8)

If the f ι ( p ί 9 ...,PI) e^(lR3/) have non-overlapping support in velocity space
(i.e. the planes p /ωpι = pj/ωp. don't lie in the support of //) the sequence Ψ^t)
converges very fast :

\t\N\\Ψl(t)-Ψ\n(out)\\<MN\/N,Vt<Q(t>0}. (6.9)

These non-overlapping scattering states form a dense set in ffl if the theory is
asymptotically complete.

For the /-particle states with bounded energy in the free field theory, we will
also use the representation (6.6). In that case A* is the free field, smeared with a
suitable test function from ^(IR4), so that (6.3) and (6.4) are valid. [A Wightman
field, smeared with a test function from ^(IR4), is an unbounded almost local
operator.]

The decay properties of truncated vacuum expectation values (TVEVs) of
almost local operators have been studied in the literature for the cases where all
operators are bounded (e.g. [1]) or unbounded (e.g. [2]). We will need the following
case :

Lemma 6.1. In a theory with mass gap κ>0, let Al be unbounded and Qt be
bounded operators which are almost local. For all N, there are MN such that

\(Ω, Π^ i ΛWΠr=2 1 QM ΠH i AfaMrl ^ M^ί + d(a)ΓN

where dfα^maxίlα;— θy|} is the diameter of the set of points {αf}.
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To prove the statement, one approximates the unbounded almost local
operators by unbounded local ones [i.e. Wightman fields tested with functions in
(̂1R4)]. The polar decomposition of the latter, and the subsequent spectral

resolution of its positive part yields a bounded local approximation if one cuts
off the spectral integral. The cut-off parameter depends, for each Ab on d(a) and
on the position of Al in the TVEV. Approximating the Qt by bounded local
operators, one gets rapidly decreasing TVEVs of local operators [1], thus sup-
pressing the polynomially growing norms of the bounded local approximations
of the Av

Now we describe the counters. They are localized observables with positive
bounded expectation values which don't count the vacuum. Therefore we call any
operator a "counter" which has the following properties :

C almost local, C ̂  0, CΩ = 0, || C \\ = 1 . (6.10)

The product of two spacelike widely separated counter operators represents a
coincidence circuit of the detectors. So we describe a coincidence arrangement
of n counters Ct at time t with minimal separation d by "coincidence operators'

K<?\t) = $\tt^Λd*z1...d
ίzaC1(z1,t)...CJίza,t). (6.11)

The space integration is chosen so that the expectation of K(^(t) measures the
probability that there are at least n particles with minimal pairwise separation d
in the state.

The unbounded operators K$\f) are idealizations of measurements in bounded
regions, so we determine the domain of K$\t = G) using the approximating
sequence of bounded operators

Let 3> be 2 = {ψ e 3f\w- lim Kf{R}Ψ exists and
K-»oo

w- lim K^{R}* Sexists}.
jR->oo

Q) is dense in Jf , because it contains all vectors created from the vacuum by
almost local operators. On Q)

K^ = w-\imK$}{R}
R-+CG

is a closable operator whose closure defines K(^\t = 0):

K$\t = Q) = Kp**.

The natural domain of K$\t) is

One could define hermitian coincidence operators if one used the symmetrized
product of counters in (6.11). They would differ by a bounded operator whose
norm decreases faster than any inverse power of d.

Next we show that the states of bounded energy for the free massive field
theory, and the non-overlapping scattering states with bounded energy in an H-R
scattering theory are contained in the domains of all coincidence operators. As
the K(4\t) are closed operators, we will construct a sequence ΨR
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so that s- lim ΨR=Ψ and s- lim K$\t)ΨΛ exists. Then fe^^V)) and K$\t)Ψ =

R->oo

Lemma 6.2. Let A f , . . . 9 A f be almost local creation operators (i.e. AiΩ = 0),
f(xί,...,xl)eL2QR?l,d?lx) and let Ψ = $d*xί...d?xlf(x1,...9xl)AΪ(x1)...Af(xl)Ω.
Then Ψe®(K$\t)) and ||Xf (t)Ψ\\ ^M||/||2.

The lemma says that all states of bounded energy for the free field, and the
H-R approximations of scattering states at finite times with bounded energy are
contained in the domain of any K$\t) [cf. (6.3)-(6.9)].

Proof. ΨR = $\Xi\£RΠd3Xjf(xί9 . . . , x l ) A % ( x 1 ) . . . A f ( x l ) Ω is a state which is
created from the vacuum by an almost local operator. Therefore ΨR e
for all R, t. To establish the strong convergence of lim K(^\t)ΨR9 it is sufficient
to show that

• KO, Π ̂ ^ίίfxrwΠί ^f (*ί)β)l < °°
Because |/(...JC;... )/(... *}...)|^ l/2|/(... Xi...)\2 + l/2\f(...x'j...)\2 the expression
is bounded by

In the decomposition of the vacuum expectation values (VEVs) into truncated
VEVs (TVEVs) only those terms appear which contain at least one A* and
one A9 because A and C annihilate the vacuum. So one will never integrate over
all variables which occur in one TVEV. The TVEVs are continuous and rapidly
decreasing functions of the relative variables, so the integrals and suprema
exist. Π

The proof of Lemma 6.2 shows that the existence of the limit is independent
of the number of counters. So Ψ is in the domain of all (K$\t)*K$\t))k. We need
a better estimate :

Lemma 6.3. Let Ψ be defined as in Lemma 6.2, but with bounded almost local
creation operators A f . Then

M is independent of f, d, t, and τ.

Proof. As in the last proof, one has

, t-τ)ΠAf(Xί)Ω)\ .

The integrand can be decomposed into TVEVs, which one estimates as usual
[1], approximating the almost local operators by local ones which lie spacelike
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to each other. All TVEVs are majorized by a bounded function which decreases
rapidly as soon as the relative coordinates are bigger than \t — τ\. So any integration
gives at most a factor c(i + |ί — τ|)3. Π

Lemma 6.4. Let Φout be a non-overlapping scattering state of bounded energy.
Then Φout e 2(K^\t)) for all d, n, t; and \\K(f(t)(Φoui - Φ(t))\\tN< MNfor all N, t >0
( and analogously for Φln) .

Proof. Φ(τ) is of the form eiHτΨ as in Lemma 6.3. So K$\t)Φ(τ) and
K(d\t)*K(d\i)Φ(τ) are strongly continuous in τ, and for τ2^τ1 one gets:

\\K$\t}(Φ(τ2)-Φ(τ,))\\ = \\fcdτK$\t}Φ(τ}\\

The first factor in the integrand decreases faster than any inverse power of τ, the
second is polynomially bounded in τ for fixed ί, according to Lemma 6.3. The
integral vanishes in the limit τ1->ao, and s-lim Kf\t)Φ(τ) exists

-

ut _ φ(ί)) || s J« dτ || φ(τ) 1 12 * ' /2

\t — τ\ ̂ τ if τ^ί^O, so the integrand is, for all ί, bounded by a function h(τ) which
decreases faster than any inverse power of τ. Thus J* h(τ)dτ decreases faster than
any inverse power of t. Π

VII. Sensitivity of Counters

In the sequel, we will meet functions Γ(p) which can be interpreted as the sensitivity
of counters. First we will state some of their mathematical properties.

Let C be a counter operator (6.10) and |p> an improper one-particle vector
of momentum p (6.5). Then

Γ(Jp) = (2π)3(2ωp)-1<p|C|p> (7.1)

is a well-defined differentiable function of p: The functional (2ωp)~1/2C1/2|p> is
defined by

If the states |/> have bounded energy £, one can represent this functional by a
vector-valued function of p. To show this, let A* be an almost local one-particle
creation operator (6.3) and (6.4); then

= $d3pf(p)$d3x(2πΓ3/2eipxC1/2A*(x)Ω.

The order of the x- and p-integration may be interchanged because
Jω ^E<Pp\f(P)\<a3 and the jc-integrand is norm-integrable. The vector-valued
function

(7.2)
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is infinitely often strongly differentiable because Jd3x|jt|N||[C1/2,^*(x)]|| <ooVN.
So Γ(p) e C°°(1R3), and

Γ(p)^ME on {p\ωp^E}. (7.3)

In the free theory, Γ(p) is uniformly bounded because one can construct a
sequence of operators

A*p with (2π)3/2(2ωpΓ
ί/2(p\A*Ωy = l and $d3x\\C1/2A*(x)Ω\\<M

uniformly in p.
One expects that for large times, </|C(x, ί)|/> describes the probability of

the particle to be at jc multiplied by the sensitivity of the counter. Araki and
Haag showed in [4, Theorem 4] that

lim</|ί3C(t)ί,ί)|/> = |/(p)|2Γ(p) where v = p/ωp. (7.4)
ί->oo

(The differentiability assumptions are always fulfilled.) Furthermore, it is easy
to see that for all ί

ίrf3x</|C(*, ί)|/> = \<Pp\~f(p)\2Γ(p) . (7.5)

According to (7.4) and (7.5), Γ(ρ) is the probability that the detector C counts
a particle whose momentum is concentrated around p.

VIII. Coincidence Measurements at Large Times

In this section we investigate the expectation values of coincidence operators at
large times. The results are collected in the following theorem, and their physical
interpretation will be given in the next section.

Theorem 8.1. Let Ψ be an outgoing non-overlapping scattering state of bounded
energy. For all K$\t\ there are operators K^ + and K(n} + with \\K$) + PE\\ < oo and
\\K(n} + PE\\<oo such that

lim (Ψ, K$\t)Ψ) = (Ψ, K$) + Ψ) , (8.1)
ί-*oo

lim d"\\(K$>+ -K<nί+)PE\\ =OVN . (8.2)
d-»oo

// all counters leave the one-particle space invariant,

[C^PJ-0, (8.3)

one has

Kp+Ψ. (8.4)

K(")+ commutes with the outgoing particle number. If ψι(pι, ••>/>/) is the outgoing
wave function of the l-particle component of the scattering state Ψ,

far n>l symmetrized for n ̂  I,
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is the sensitivity of the counter C{ [cf. (7.1)]. The same results are valid for
incoming scattering states with t-> — oo and for all states of bounded energy of the
free massive field for |ί|-»oo.

Proof. The states Ψ can be represented by almost local operators at time ί,
according to (6.6). For the free field, this is exactly true, and for a non-overlapping
scattering state we know from Lemma 6.4 that the error is rapidly decreasing. Thus
the wave functions /^ί; jc l 9 ..., xt) [cf. (6.8)] are the only time dependent quantities
in the expectation values.

(y.i^w^
-/z(f xl9 ..., x^/Kf xi, ..., xJXΩ, ΠJ'

The VEV are decomposed into TVEVs which decrease rapidly in the relative
coordinates. Using Ruelle's estimates of the smooth solutions of the Klein-Gordon
equation (e.g. [2, Chapter VI.4]) one immediately sees that asymptotically all
terms in which more than one A and one A* are contained within one TVEV
vanish.

..^...)ίizΛ-Z(.ιaίίΠ^ι^ (8.η
• ΣΣmj=n(Ω, A(X'ί)l[^Cκ(zκ}A*(Xί)Ω)...(Ω, Λ(xί)Π^ι Cv(zv)A*(Xl)Ω) .

The last sum extends over all possibilities of placing the n counters at / locations.
The limit of (8.7) is obtained by changing the region of zrintegration. In a given
term, if the operators Cλ(zλ) and Cμ(zμ) are both in one VEV, the integration
region of zλ— zμ remains unchanged: \zλ— zμ\^d\ but if they are in different
VEVs, there are no restrictions on the range of zλ — zμ. We will show in a typical
example that the error caused by this change vanishes asymptotically:

- (Ω, ^(x'1)c1(zI)c2(z2μ*(χι)β) (a Λ(*2)c3(z3μ*(*2)β) .

The region of z-integration is contained in the following set:

G= {(z1; z2, z3)| |2l - z3| ̂ }u{(z1; z2, z3)| |z2 - z3| ̂ } CR9 .

Substituting, in its first part, zί = z3 + z'1; we can estimate (8.8) by

C^ + zD
μ*(*2)fl)|J |,1|g(ld

3zi

(and analogously for the other part of G). Therefore (8.8) is bounded by M(l + |t|)~3.
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The resulting expression is time-translation invariant, as is seen most easily
in its momentum space representation:

lim (Ψ, K$\t)Ψ) = (Ψ, K$)+ Ψ)
f-»oo

= ΣJΠU^I//(/>ι, .. ,Λ)I W (8.9)

• ΣΓLf|.,l** #*h - d^jrn(2ωpjΓ\Pj\ChCJ2(zJ2)... Cjjzjjpjy .
l*J<-*/J^

To prove the norm convergence (8.2), we show first that the terms which are
independent of d are bounded. In these terms there is only one counter in a cluster
(if / ̂  n\ The norm of each of these terms is bounded by

Π?=1 sup ((2π)3/(2ωp))<p|Ci|p> = Π?=1 sup Γ^p).
p,ωp^E ρ,ωp^E

By (7.3) this is finite.
If the matrix elements in the expansion (8.9) contain more than one counter,

their contribution to K(^+ decreases in norm faster than any inverse power of d:
The norm is bounded by sums and products of expressions of the form

sup (2ω.)-1 (8.10)

Using the representation (7.2) for C|p>, the rapid decrease of (8.10) in d follows
from the decrease of TVEVs of almost local operators. This completes the proof
of (8.2) and (8.5).

We will only sketch the proof of (8.4). The methods used above yield, for non-
overlapping scattering states of bounded energy Φ, Ψ (Φ, Ψ e PE2ff in the free-
field case)

)+Ψ) and ^K^ήΨ^M for ί>0

which gives w- lim K$\t) Ψ = K(^ + Ψ.
ί-»00

Using condition (8.3), one shows lim \\K$} (t)Ψ\\ = \\K(^ + Ψ\\ and therefore
ί->oo

D

IX. Particle Number as a Limit of Local Observables

Now we will examine the physical content of Theorem 8.1. The operators
K?)+ and K(n)+ differ even for large d because the counter operators are not
exactly local, but overlap even if their separation is large. But this difference is
physically irrelevant. Because of the norm convergence (8.2), for a given measure-
ment accuracy ε, one can find a separation d0 such that

\\(K^+-K^+)PE\\<εVd^d0. (9.1)

The relation (8.1) shows that the results of coincidence measurements become
asymptotically time-independent and independent of d>d0 within a given pre-
cision ε. This means that the particles become arbitrarily widely separated from
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each other for sufficiently large times because the coincidence operators annihilate
those parts of the states in which the particles have a separation less than d.

The increasing separation of the particles is due to their spreading and does
not require non-overlapping support of their wave functions: even for two free
particles with identical wave functions, f(pι,p2)

 = g(Pι)g(p2)> the expectation of
K(£\t) indicates an arbitrarily large separation for sufficiently large times.

If the particle number / is smaller than the number n of counters, the
coincidence measurements will give zero because a particle can hit at most one
counter. If l^n, the factor /!/(/ — «)! in (8.5) stems from the number of possibilities
that n counters are triggered by / particles, whereas Π A(jPi) takes account of
the sensitivity of the counters. A coincidence arrangement measures asymptotically
individual, widely separated particles.

One can use special counters C with the property Γ(p) = y = const for ωp^E
[an example is C= \\A* A\\~ ^ A* A, A as in (6.3), (6.4)]. With these counters K(n}+

becomes very simple (Pt is the projection on the /-particle space):

n)l)γn PtPE . (9.2)

This gives for Pz:

For n=l (one counter only)

is the particle number operator. The spectral resolution of K(1)+ alone would
also give Pb but the representation (9.3) has the advantage that the physical
interpretation is simpler. The coincidence operators annihilate those components
in the state with less than / particles, the coefficient in front of the sum gives the
normalization 1 of the Ith coincidence operator (k = 0) on the /-particle states,
and the alternating coefficients in the sum ensure that the contributions of the
coincidence operators cancel on states with particle number larger than /.

As a result of Theorem 8.1, one can obtain the asymptotic particle number of
incoming or outgoing scattering states as a limit of local measurements at large
times in large space regions. The particle number coincides with the asymptotic
number of widely separated localization centres. As a special case, we recover our
"geometrical particle definition": a one-particle state is always singly localized.
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