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and a Characterization of Models with Trivial S-Matrix
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Abstract. Within the framework of local relativistic quantum theory in two
space-time dimensions, we develop a collision theory for waves (the set of
vectors corresponding to the eigenvalue zero of the mass operator). Since
among these vectors there need not be one-particle states, the asymptotic
Hubert spaces do not in general have Fock structure. However, the definition
and "physical interpretation" of an S-matrix is still possible. We show that this
^-matrix is trivial if the correlations between localized operators vanish at
large timelike distances.

1. Introduction

The aim of the present paper is to develop, within the framework of local rela-
tivistic quantum theory in two dimensions, a collision theory for the states cor-
responding to the eigenvalue zero of the mass operator. It is a peculiarity of the
two-dimensional world that the set of these states corresponds in general to a
highly reducible representation of the Poincare group. Moreover, among these
states there need not be one-particle states. As a trivial example take the even
part of a free, massless theoryXthe set of even polynomials in the fields acting on
the vectors with even particle number). Since the direct product of an arbitrary
number of massless one-particle states with positive (or negative) momentum is
again a state with mass zero, there are many massless states in such a theory.
However, there are no one-particle states.

Therefore, instead of assuming the existence of one-particle states, we take
as the basis of our construction the representation spaces 3tf + and Jf _ of the
Poincare group corresponding to the right and left branch of the light-cone in
momentum space1. Since the vectors in these spaces are invariant under light-
like translations in the ί+ =(f, t) and ί_ =(ί, — t) direction, respectively, they can
be interpreted as excitations (waves) moving freely with the speed of light from
the left to the right or in the opposite direction. Hence these states are suitable

* On leave of absence from II. Institut fur Theoretische Physik, Universitat Hamburg, D-2000
Hamburg, Luruper Chaussee 149, Federal Republic of Germany.
1 Note that the branches of the light-cone in two dimensions are separately invariant under Lorentz
transformations. Thus, there exist representations attached to either one of them.
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quantities for the formulation of a collision theory in the sense of Brenig and Haag
[1] although they need not be particles in the usual sense of the word.

Applying methods already used [2] we shall construct for each pair of vectors

Ψ+ E ffl + and Ψ_ e 34f _ a collision state Ψ+°x Ψ_ which behaves at large positive
times like the waves Ψ+ and Ψ _ going out to the right and left, respectively.

The existence of an incoming configuration Ψ + x Ψ _ can be established by a
similar procedure. As the multiplication symbol indicates, it turns out that the
asymptotic spaces spanned by the collision states are a direct product of the
representation spaces Jjf+ and Jf _ of the Poincare group. The S-matrix for the

waves can therefore be defined as an isometry mapping the vectors Ψ+°xΨ_ onto

Ψ+ x Ψ _ and it has the usual physical interpretation. It is a remarkable, yet
not entirely surprising fact that this S-matrix is trivial if the correlations between
localized operators vanish at large time-like distances.

Let us now give a brief list of our assumptions. Instead of working with the
fundamental, but unbounded field operators, we prefer to express the basic struc-
tures in terms of a field algebra ̂  of bounded operators [3]. The field algebra 3F
is assumed to be a C*-algebra which is generated by a net &-+^(&) of local
algebras attached to the open, bounded regions $C1R2 and to act irreducibly on
a Hubert space Jjf. We suppose that the local operators commute at space-like
distances,

#r(0i)c&r(02y for Θlcθ'2 (1)

However, our results could easily be extended to a situation where also Fermi
operators are present. Furthermore, we assume that there is a continuous, unitary
representation L-+U(L) of the Poincare group & in 3? which induces auto-
morphisms of the local net,

αL(^((9)) = U(L)^((9) U(L)"ί = 2F(LΘ\ L e 9 . (2)

The spectrum of the generators of the translations x = (x0, Xι)-> U(x) is contained
in the closed forward light-cone, and there exists (up to a phase) just one unit
vector Ω, the vacuum, in Jf which is invariant under all U(L\ Le&. Finally we
assume, as argued above, that there are two representation spaces 2/f + and Jf _
of the Poincare group corresponding to the right and left branch of the light-cone
in momentum space. It will be convenient to include Ω in the definition of both
spaces. Then $f + nJf _ = [c Ω], and the quotient spaces $f+/[c Ω] and
2tf _/[c Ω] are orthogonal to each other.

2. Asymptotic Fields

We now turn to our objective, the formulation of a collision theory for the waves.
In analogy to the case of massless Fermions in four dimensions considered in
Ref. [2], we start our investigations with the construction of asymptotic fields
corresponding to the states in 2? + and Jf _. Owing to the special geometry of the
two-dimensional Minkowski space, these fields have some unusual properties
which we shall briefly discuss. Having obtained these results it will then be possible
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to build up the collision states and to verify that they have all the properties
needed to define a physically sensible S-matrix.

As in Ref. [2] we construct the asymptotic fields as "adiabatic limits" of local
operators. For this procedure we use smooth, non-negative functions h with
compact support which are normalized according to §dth(t)=l. Together with
h, the functions hτ, TΦO defined by

(3)

have also these properties. Therefore if F is any local operator from some &'(®\
the integrals

F±(hτ)=$dthτ(t)F(t±) with ί± = (ί,±ί) (4)

exist as Riemann integrals in the strong topology.
In the subsequent lemma we shall prove that the sequences F± (hτ) converge in

the limit of large T. To abbreviate the argument, it will be convenient to label
certain regions in configuration space; if (9 is any simply connected bounded region
of 1R2, its space-like complement is the union of two disjoint, wedge-shaped regions.
We call the wedge which extends to — oo the left tangent of G and the wedge which
extends to -hoo the right tangent of (9. One easily checks that the space-like
complements of the regions @ + t+ still contain either one of the tangents of (9.
So owing to locality and the support properties of hτ, the elements of the sequence
F+(hτ\ for example, commute with all operators F' localized in the left tangent
of (9 for large enough T> 0. In the proofs that follow we shall make full use of this
fact.

Lemma 1. Let F be any operator which is localized in some simply connected,
bounded region (9, F E ^((9\ and let hτ be any sequence of functions with the pro-
perties specified above.

a) Then the limits lim F±(hτ) exist in the strong topology and \\ lim F±(hτ)\\
Γ-» ±00 Γ-* ±00

^\\F\\.
b) The operators lim F+ (hτ) are uniquely determined by the states which they

T-* ±00 ~~

create from the vacuum.

Proof. Consider for example F+(hτ). Since ||F+(ΛΓ)|| ̂  \\F\\ .\dt\hτ(t)\= \\F\\
it suffices to show that the sequence F+(hτ\ T>0 converges strongly on a dense
set of vectors in $? . Now because of the invariance of the vacuum under transla-
tions, one gets

F+(hτ)Ω= ldthτ(t)U(t+) FQ

and it is then a consequence of the mean ergodic theorem applied to the unitary
group ί-»ϊ/(ί+) that [4]

s-lim F+(/zΓ)ί2 = P+ FΩ .
T-»oθ

Here P+ is the projection onto Jf + , the space of vectors which are invariant
under ί-> U(t+). Therefore if F is any operator which is localized in the left tangent
of (9 one has

s-lim F+(hτ) - FΏ= s-lim F F+(hτ)Ω = F' P+FΩ .
Γ->oo T-> oo*
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But the set of vectors FΏ with F localized in the left tangent of 0 is dense in 3?
and so the first part of the statement follows. It is also obvious from the last equa-
tion that the vacuum is separating for the linear span generated by the operators
limF+(/zr). This proves the second part of the lemma. (Compare also the more

Γ-»oo

detailed proofs given in Ref. [2].) D
Corresponding to the four light-like directions in 1R2 we can now define four

mappings Φ'+, Φ+ut of the set of local operators F into the set of bounded operators
on Jf :

Φ^(F)= s-lim F±(hτ) and Φ^\F) = s-lim F+(ΛΓ). (5)
T-> — oo T-»oo ~

These mappings are linear, positive-semidefmite (since the functions hτ are non-
negative) and they can be extended to the whole field-algebra J^ by continuity.
In the next lemma we give a list of further properties of Φ+ut. (An analogous
lemma holds for Φί.)

Lemma 2. Let Φ°+ l be the mappings of 3F into &(#?) defined above. Then :
a) Φ°y(F) Ψ±=P±F - Ψ±, where Ψ±e3?+ and P+ are the projections on-

to J^ ' + .
b) θίL- Φ°±i = Φ°+i -ocL for all Poincare transformations Leg?. In particular,

αf ± - Φ°±

ut - Φ°±

ut, where ί ± = (f, ± f ), f e R
c) If (9 is a simply connected, bounded region, F e 3F(Φ\ and if F'r(t_) and FΊ(t+)

are - after suitable light-like translations t+ - localized in the right and left tangent
of&, respectively, then [Φ°f(F)5 F'i\ = [Φ°-W, F;] - 0.

d) If &!, (9 2

 are two simply connected, bounded regions which cannot be connected
by a light-like vector t+, Φ1n(&2 + ί+) = 0 for all t+, and if F1e^r(Θ1\ F2e^(&2)
then [ΦTVi), ΦT(F2)] = 0.

e) For arbitrary F, G e ^~ the relation [Φ°+ut(F), Φ0_uί(G)] -0 holds.

Proof. (The proofs are completely analogous for Φ+ut and Φ°_ut and we therefore
sketch the arguments only for Φ+ut.)

a) As in the preceding lemma, the statement follows from the invariance of
Ψ+ e Jf + under the translations £-» U(t+) and the mean ergodic theorem.

b) It is obvious from the definition of Φ°+ut that αx Φ°+

ut- Φ°+

ut αx for arbitrary
translations. To prove aΛ - Φ°+t = Φ(yt aΛ for Lorentz boosts A, note that the
vectors t+ are eigenvectors of Λ, At+ =λ t+ for some λ>0. Hence

α^(Φ°+

ut(F))= s-lim j at hτ(t) FA(λ ί+)= s-lim $ at hλτ(t) - FA(t+) ,
Γ->oo Γ->oo

where FΛ = aΛ(F) and h(t) = λε~1 - h(λ£~l - 1). Clearly h belongs to the set of func-
tions h introduced above. Then the statement follows from the fact that Φ+ut

does not depend on the special choice of h within this set.
The relation α ί + Φ+υt = Φ+ut is a consequence of the estimate

||αί+(Φr(^))-Φ°+

uWII^ lim $ ds\h(s-\T\-£ t)-h(s)\ - | |F||=0.
Γ->oo

c) For FI which are localized in the left tangent of & this is trivial since the
approximations F+(hτ) of Φ+ut(F) commute with F\ for large T. However because
of α ί+ - Φ°+

ut=Φ°+

ut one has furthermore
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d) Since the regions &1 and G2 are simply connected there exists a translation
ί+ such that (&ί+t+) and Θ2

 are space-like separated. If (&ί + t+), for example,
is localized in the left tangent of $2> then according to (c),

[ΦHFJ, «W2)] = s-lim [F! + (ΛΓ), Φ°+

ut(F2)] =0 .
T->OO

e) If F and G are local operators one gets from (c),

[Φ°+ut(F), Φ°_ut(G)] = s-lim [Φ°+

ut(F), G_(ΛΓ)] = 0 .
T-+QO

But every F, G e 3F can be uniformly approximated by local operators and thus
the statement follows from the continuity of Φ+ut and Φ™\ D

Since the operators Φ*±(F) and Φ°+\F) are the restrictions of the local fields F
to the light-cone (the "mass-shell") in momentum space, we shall call them asymp-
totic fields in analogy with ordinary collision theory. It is an amusing although
not unexpected fact that the asymptotic fields are bounded. So even in a model
with underlying particle structure one does not get, by our construction, the funda-
mental free fields themselves but only bounded functions of them. In the general
case the wave states should also be decomposable into elementary subsystems.
Therefore one expects that the asymptotic fields Φ + (F) and Φ°±\F) are always
built up out of certain basic field operators. However, we shall not discuss this
question here.

The unusual localization properties of the asymptotic fields in configuration
space are due to the peculiar geometry of the two-dimensional Minkowski space
which does not allow the spreading of waves with time. So the waves behave
almost classically, and the commutation relations for the asymptotic fields given
in the preceding lemma may be interpreted as the Huyghens principle translated
into field theory. The non-dispersive character of the motion of waves can also
be read off the following lemma, which is the analog of the well-known LSZ
asymptotic condition [5].

Lemma 3.IfFε^andt+= (ί, ± ί) then

w-lim F(t ± ) = Φΐ (F) and w-lim F(f ± ) = Φ°±ut(F) .
ί — >• — oo f — * oo

Proof. Applying methods such as those of Borchers [6] or Maison [7], one
can show that

w-lim U(t±) = P± .
ί-» oo

Therefore if F e ^(&) and F' is any operator which is localized in the left tangent
of 0, one gets

w-lim F(ί+) FΏ = w-lim F U(t+)FΩ = Ff - P+FΩ = Φ™\F) - FΏ .

Here Lemma 2 has been used for the last equality. Since every operator F e 2F
can be uniformly approximated by local ones and since the set of vectors FΏ
is dense in 2tf the statement follows. D

To conclude this section let us briefly sketch how to construct the asymp-
totic field algebras J^+ut and J^±. If Θ1 is a simply connected, bounded region
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in configuration space, we define the local algebra JΓ°l

ut($1) as the von Neumann
algebra which is generated by the operators Φ+ut(F)> Fe ^(Θ^\ For arbitrary
bounded regions & we define ^^\(S) as the smallest von Neumann algebra con-
taining all ^™\®u with Θ^cO. The asymptotic field algebra J^°+

ut is then the
global C*-algebra of the local algebras ^\0\ With this definition the net
Φ-+έF°+\(9) is local, co variant, and enjoys all the properties usually required
in relativistic quantum theory.

3. Colliding Waves and the 5-Matrix

From our discussion of the asymptotic fields it is now almost evident how to
construct states corresponding to a given asymptotic configuration of waves.
Take any pair of vectors Ψ ± e Jf +. Since the C*-algebra 3F is irreducibly repre-
sented in ffl \ there exists a pair of operators F+ e 2P such that Ψ+=F+Ω and
Ψ_=F_Ω [8, Theorem 1.21.17]. We then define the incoming and outgoing
collision states of the waves Ψ+,Ψ_ by 2

Ψ+ x <P_ =Φiί(F+)Φί°(F_)Ω and Ψ+ °xΨ_ = Φΐt(F+)Φlut(F_)Ω . (6)

This definition does not depend on the special choice of F+ and F_. In fact, the
states Ψ+ x Ψ_ and Ψ+°xΨ _ are a direct product of the vectors Ψ+ and Ψ^9 as
the next lemma shows.

Lemma 4. For the collision states Ψ + °xΨ_ one has the relations
a) (Ψ+°xΨ_, Ψ'+°xΨ'_) = (Ψ+, Ψ'+] (Ψ_, Ψ'.) .
b) U(L)'(Ψ+°xΨ_) = (U+(L)Ψ+)°x(U_(L}Ψ_), Le0>.

U±(L) are the unitary representations of the Poincare group & in J^ + and Jjf_9

respectively. (These relations hold also for Ψ+xΨ_ if "out" is replaced by "in".)

Proof. Both statements are a simple consequence of Lemma 2.
a) Bearing in mind that Ψ+=F+Ω and Ψf± = F'±Ω for certain operators

F±,F'±e^, one gets the string of equalities

(Ψ+°xΨ-9Ψ'+ °x Ψ'- ) = (Φ°+

ut(F + )Φ°_ut(F _ )Ω, Φ°+

ut( '̂+ )Φ°-ut(F'_ )Ω)

- (Φ°?\F'+ )*Φ™\F + )Ω, Φ°-\F _ )* Φ°_ut(F_ )Ω)

-(Φ°+

ut(FV)*Φ°+

ut(F+)ί2, Ω)(Ω, Φ°r(F_)*Φ^(F_)Ω)

where use has been made of the fact that the quotient spaces Jf + /[c Ω] and
Jf _/[c Ω] are orthogonal.

b) The second half of the lemma follows from the commutativity of the map-
pings Φ+ut with the Poincare transformations, αL Φ+ut = Φ+uί αL. D

As a consequence of the lemma, the spaces J^m and J f out which are generated
by the vectors Ψ+ x Ψ_ and Ψ+°xΨ_ are a direct product of Jf + and Jf _,

and jrout = j f + ° χ j r _ , (7)

Note that with this definition Ω = Ωx Ω = Ω x Ω, Ψ+ = Ψ+ x Ω= Ψ+ x Ω and
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and the Poincare transformations L^U(L) act like a tensor product on these
spaces. This is the mathematical expression of the physical fact that there are no
correlations between the constituents Ψ+ and Ψ_ of the collision states. However in

order to make sure that the vectors Ψ+°xΨ_, for example, really correspond
to an outgoing configuration of waves Ψ+ and Ψ_, one has to calculate the
expectation values of local observables within these states at large positive times.
Using the results of the preceding section it is an easy exercise to verify that for
arbitrary A, B e ̂

lim (ψ+ °χψ_, A(t+)B(t.)Ψ+ °xΨ-.) = (Ψ+, AΨ+)(Ψ_, BΨ_) (8)
ί->00

and in space-like or positive time-like directions n

\ \ Ψ +

0 χ Ψ _ \ \ 2 . (9)

°So the vectors Ψ+x Ψ_ behave at asymptotic times like the waves Ψ+ and Ψ_
going out to the right and left, respectively. This justifies our construction.

Knowing how to interpret the collision states it makes physical sense to define
an S-matrix for the waves. We put

S Ψ+°xΨ. = Ψ+xΨ-. (10)

and extend the domain of S to arbitrary vectors in Jtfout by linearity. As a con-
sequence of Lemma 4, S is an isometry which maps Jjfouίonto Jfmand it commutes
with the Poincare transformations U(L). So S has the usual physical interpreta-
tion [1] and it is therefore the appropriate quantity to describe collision pro-
cesses of waves.

4. Models with Trivial S-Matrix

Stimulated by the hope that one may gain a better understanding of the structural
differences between interacting and non-interacting theories, there has always
been some interest in conceptually simple criteria which characterize models
with a trivial 5-matrix. Several results in this direction have been obtained in the
Wightman formalism [9-11]. However, almost nothing is known in the algebraic
framework of field theory. We therefore believe that it is worth While to place the
following criterion on record, in which it is shown that waves do not scatter if
the correlations between localized operators vanish at large time-like distances.
Again this result is due the non-dispersive motion of the waves in two dimensions
and it fits completely with intuitive expectations.

Lemma 5. If for arbitrary F, G e 2F the relation

s-lim[F(t),G]=0 with F(t)=U(t)FU(tΓ1

ί->oo

holds then the S-matrίx defined in (10) is trivial.

Proof. There exists a pair of operators F± e ̂  which create the states Ψ + e Jf ±

from the vacuum, F±Ω=Ψ + . Thus, as an immediate consequence of Lemma 2
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and Lemma 3, one gets

\\Ψ+°xΨ-.-Ψ+x Ψ^\\ = \\Φ0^(F+)Φ0^(F_)Ω-Φ^(F+)Φ^(F_)Ω\\

= ||w-lim(F+(ί+)F_Ω-F_(-ί-ί-)F+Ω||

and therefore Ψ+ xΨ_ = Ψ+ °χψ_ . D
It is obvious from the proof of the lemma that the assumptions could be con-

siderably weakened. So it would suffice for the argument that all operators
F± e 3F which create vectors Ψ+e^f± from the vacuum have asymptotically
vanishing time-like correlations, s-lim [F+(ί)5 F_^Ω = 0. However, the strong con-

ί->oo

vergence of this sequence is crucial for the proof and cannot be replaced by weak
convergence, for example. In fact it follows from the basic assumptions that
w-lim [F+(£),F_]Ω = 0 regardless of whether the S-matrix is trivial or not.
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