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Abstract. In each pure phase of a &(φ)2 quantum field model, we establish local regularity of the
Green's functions and exponential decay for noncritical models. We establish the existence of two-
particle and three-particle Bethe-Salpeter kernels in the Euclidean region.
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1. Introduction

The study of particles in weakly coupled 0*(φ)2 quantum field theories was
begun in [25,26]. The cluster expansions developed in these papers resulted in
the construction of isolated one-particle states. According to the Haag-Ruelle
theory, the existence of π-particle in and out states, and the existence of an isometric
S-matrix, follow from the existence of isolated one particle states. The φ4 model,
in the single phase region, has been shown to be repulsive in the sense that no
even mass spectrum occurs in the two particle bound state interval (w, 2m)
[46, 8,25]. The presence of bound state mass spectrum was indicated for the
φβ — φ4 interaction [25]. Spencer [47] and Spencer and Zirilli [48] have a more
detailed analysis of the energy momentum spectrum for weak coupling, which
goes up to the threshold £^3m —ε, and uses the Bethe-Salpeter equation. An
early version of their work motivated the present paper.
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In this paper we study the Bethe-Salpeter kernel in the wider class of noncritical
3P(φ}2 models, and we also study three body kernels. By definition, a quantum
field is called critical if its mass is zero; otherwise it is noncritical. We expect
particles and a complete set of scattering states for all noncritical &(φ)2 theories.

There are at present five (partially overlapping) methods to construct the
infinite volume &(φ)2 model. The original method [14] of compactness and
convergent subsequences uses operator algebra techniques and estimates based in
part on Euclidean space time localization and decoupling in the Feyman-Kac
formula. This construction applies to the widest class of interactions [14, 42, 43].
The second method is the cluster expansion [25, 26], which applies in the case of
weak coupling or large external field [45], and which gives the most complete
information about the resulting model.

The third method [39, 28, 9, 44] in based on monotone convergence and upper
bounds. The monotonicity is based on Griffiths' inequalities [12, 28], while
the upper bound originates in the estimate [15]

±φ(h)^C(h)(H + I), (1.1)

see also [27, 44, 9, 10]. The passage from this φ-bound to estimates on Wightman
functions is given in [17]. The same simple proof works for Schwinger functions.
It is well known that bounds on Wightman functions imply bounds on Schwinger
functions at noncoinciding points, see for example [40, 41]. In [28], a theory of
conditional expectations based on the Markov property [49, 38] is developed
to handle this point. A variant [24] of the monotonic construction replaces
Dirichlet boundary conditions in (1.1) by weak coupling boundary conditions.

The main advantage of the third method is a proof of Lorentz invariance, of
correlation inequalities and (for φ4 only) of the Lee Yang theorem. See [8, 21-24,
28, 29, 44, 46] for applications.

In the fourth construction [5, 1 1], the compactness of method one is formulated
in a probability framework. The fifth construction is to obtain the weakly coupled
φ4 model by Borel summation of the perturbation series [6]. The convergence
of this method is based on new estimates which require cancellation of vacuum
graphs in the cluster expansion. This method gives a type of uniqueness which
is particularly satisfying in view of the importance of perturbation theory in
calculations.

We study the 0*(φ)2 model obtained by one of these procedures. Much of
Chapter 2 is an assimilation of results known in the literature for some time.
Our starting point is the φj and π bounds

In Chapter 3 we establish the integration by parts formula for the Schwinger
functions S(n} in each pure phase. We use this result in Chapter 4 to analyze the
connected parts of the Schwinger functions (Euclidean Green's functions G(n)).
Let H±ί be the Sobolev space defined by the inner product

1gyL2. (1.2)
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Let H®{ be aj-fold tensor product of such spaces. For noncritical 3?(φ}2 theories,
we prove that G(n\xί, ..., xn) is the kernel of a bounded operator

G(n):H®{^Hfn-j, (1.3)

for Q<j<n. Here we use the φj bound, and exponential clustering, which follows
from the existence of a mass gap. The stronger tree graph decay rate of the G(n}

is known for weak coupling [6]. Since G(n) is translation invariant, it cannot be
compact. However, we show that the restriction of G(n) to a subspace of definite
total momentum is Hubert-Schmidt. This is a crucial bound on the G(n\

An immediate corollary of this bound on G("} is the fact that noncritical
Schwinger functions S(n} for the field φ = φ—(φy are continuous multilinear
functionals on the π-fold product H_1 x... xH_ί. This result was established for
weak coupling in [20]. A second corollary is the existence of the vertex functions
Γ(w)(x l5 ...,xn) (direct correlation functions) for noncritical 0*(φ)2 theories. The
Γ(n) are bounded operators from Hfj to #?"~7, Q<j<n, improving slightly a
bound from [20].

In Chapter 6 we show that the inverse propagator Γ(x) has an exponential
decay rate equal to the CDD radius m. Here m<mrgM where m is the single
particle mass and (m, M) is the upper gap in the spectrum of the two point function.

In Chapter 7 we construct the 2-particle Bethe-Salpeter kernel for non-critical
^(φ)2 models. We use the compactness of the G(n} on constant momentum sub-
spaces, and apply a Fredholm alternative. The exclusion of the eigenvalue zero
in the Fredholm alternative is related to the following property, which we establish
in Chapter 5 for a &(φ)2 measure: If a polynomial &(φ) takes the value zero almost
everywhere on ^'(R2\ then ^2=0, i.e. the coefficients of Evanish. This property
can be rephrased by saying that the Euclidean 0*(φ)2 measure is not supported on
any algebraic variety in &"(R2). We also require this property for polynomials
$(φ) with a definite momentum. It is a consequence of integration by parts, or
of the existence [11] of Euclidean momentum operators π. We remark that some
time ago Bros [3] constructed the two body Bethe-Salpeter kernel in the context
of the Wightman axioms, plus additional assumptions. Finally in Chapter 8,
we consider three particle equations.

The two body Bethe-Salpeter kernel is a bounded operator

(1.4)

satisfying the integral equation

(1.5)

in the case of even &(φ) models. Here R and R0 map H®\ into Hf 2 and are defined
by their kernels

O(XI »*2ί J>ι ,J>2) = G(2)(x, ,3>ι)G(2)(x2 ,y , , ,
(1.6)

Thus
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and formally K is a sum of graphs two particle irreducible between initial and
final states. The construction of K, however, does not have an immediate signifi-
cance for the particle structure. In fact the estimates [47] which yield decay
properties of K(x1,x2',yι,y2) depend on the cluster expansion, and are known
only for weak coupling. The methods of Lebowitz and Penrose [31, 32] from
statistical mechanics given an analytic continuation of decay estimates. The
Lebowitz-Penrose results pertain only to the gap between the ground state and
the first excited state, and are not strong enough to give the existence of particles.
The extension of the Lebowitz-Penrose result [32] to field theory is contained
in [29]. It is an interesting speculation that nontrivial decay properties for
K(xί,x2,yί,y2) are a consequence of the existence of a mass gap. However
analyticity properties in the coupling should not be a consequence of a positive
mass, even in the case ^ = even, cf. [24, Fig. 2.1].

2. φj Bounds and Schwinger Functions

Let 51 be the C*-algebra of the V=ao limit, acting on a Hubert space 2tf .
By [1], 2Γ = «2f, the center of 2Γ. The direct integral decomposition is defined
with respect to Jf we write it as

Jtr = IJf(ξ)dξ (2.1)

so that ξ e Ξ is a label for the set Ξ of phases. Let Ωξ e 3? ξ be the vacuum and let Hξ

be the Hamiltonian. For example, in the φ2 model we expect a single phase for
λ<λc9 and two phases for λ>λc. We expect a continuum of phases in the case of
phase transitions with a continuous group of internal symmetries, so this direct
integral machinery may not be too elaborate for the use we make of it. See [25, 11]
for a further discussion of phases.

We now state our basic φ and π bounds. Let

For general polynomials, all constructions [14, 11] assume free boundary condi-
tions. For & = even + linear, we allow either free or weak coupling boundary
conditions [24]. We let V denote the volume of interaction; for weak coupling
boundary conditions, V is the length of the interval [ — £>,£>] in which the mass
perturbation σ$b_b:φ

2(x):dx is inserted. Note that for V=oo, weak coupling and
Dirichlet boundary data define the same theory, for & = even + linear [24].

Theorem 2.1 a (φj and π bounds). For

±φ(h)^\\h\\1C(H + l), (2.2a)

±π(h)^\\h\\2C(H + I)9 (2.2b)

(2.2c)

for h real and in the appropriate Lp space, and for r>l + (j\d). Here C is a constant,
independent of h and V. In the case j=d, we also require \\h\\ ̂  small
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Theorem 2.1 b (φj bounds). For j^d, V=co and in a.e. pure phase, the bounds
(2.2a) and (2.2c) are valid. Moreover for free boundary conditions

±:^:(Λ)^H + 0(||ft| |1 + ||ft||^:j). (2.2d)

Proof of Theorem 2. la. (2.2a) was proved in [15]. The bound (2.2b) was
established in [16, 17] for F<oo, and the same methods can be used directly
in the infinite volume limit. Bounds related to (2.2c) were first given in [15] and
have been improved independently by Frohlich [11] and the authors (unpub-
lished). For weak coupling, Dirichlet, or free boundary conditions and F<oo,
we use the inequality

for support /ιC[ — α, α], cf. [24, 51]. Because the vacuum energy of the :φj: per-
turbation is convex, and is zero for h = Q, this yields

±:^:(Λ)^ff + 0(*y>dW

We write h = ̂ hn9 suppt hnc[n, n+1], and then by convexity again,

±:<^Λ)^H + 0(1)ΣIIW^

Finally,

ΣIKI" + i)hn\\d/d-j=Σ(\n\ + i)"ΊI(N + 1)1 +Λhn\\dld-j

for α >j/d.
Proof of Theorem 2.ib. The transfer of the φ bound to the infinite volume

limit is given in [15]. The infinite volume limit of the :φj: bounds is established
in [24].

There is also an abstract method for transferring an estimate of the form

±A^H + I (2.3)

to the infinite volume limit, and then into almost every phase [2]. This method
requires an additional estimate, for example

(2.4)

uniform in the volume V. Such an estimate holds in the case A = φ(h),
using [15, Lemma 1.1] and (2.2a)-(2.2c). Hence we obtain (2.2a), with /ιe^,
in the V = oo limit and in almost every pure phase. The role of the inequality
(2.6) is to provide a domain of essential self-adjointness1 for A = φ(h). Having
established the bound and decomposition to pure phases for h e ̂ , we pass to
heL1 using (2.2a). (2.2c) is a consequence of (2.2d), for K=oo. The bound (2.2d)
is given in [11].

1 The general method of using commutation estimates to establish self adjointness was introduced
in [13] to prove self adjointness of space-time averaged field operators φ(f). One abstraction of this
method was presented in [18], and another abstraction was presented in [15]. These results established
essential self adjointness of an operator or form A, satisfying relative bounds with respect to a positive
self adjoint operator H. In our present applications, we use [15: Lemma 1.1, Theorem 1.2] to establish
essential self adjointness of φ(h). Other abstractions and applications have also been given by Nelson
[37], McBryan [33—35], Paris und Lavine [7], and McBryan and Park [36].
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In the case of weak coupling boundary conditions, the basic method relies
on uniform estimates [10, 24] for the analytic generating functionals of the
ordinary and generalized Schwinger functions. By compactness, these functionals
have a limit point, as b-»oo, and the limit point satisfies the same estimate. How-
ever, convergence of the Schwinger functions as b—»co [24; see also Theorem 2.2,
2.4 below] implies that the analytic functions actually have a limit as &-»oo. The
Schwinger functions are constructed from the generating functionals [10] and
yield the infinite volume Hubert space [10, 40, 41]. On this Hubert space, the
bound (2.2c) holds in the sense of a norm estimate on the perturbed semigroup [24].
Further details are omitted.

Theorem 2.2. Let Λ, χ e Cg>, Jχώc = 1, 0^ χ, and V < oo, and

Then

±δHχ^H + 0(l) (2.5)

uniformly as F-»oo. Let Hi = κ{i(κ\ x), ι= 1, 2. Then

uniformly in V, as κί9 κ2—>oo. Again for j=d, we require \\h\\ ̂  small.

Theorem 2.2 follows as an extension of the methods of [15] and [51] for
free and Dirichlet boundary conditions, respectively. It is presumably also true
for weak coupling boundary conditions, but we do not require this fact.

We need to introduce certain function spaces related to the estimates of
Theorem 2.1 Let

p<oo

<ε}. (2.7)

Whenever p= oo, the space J^ι>00,ε will be understood, even if the ε is not explicitly
included.

Before studying the quantum field on the space 3tf(ξ), we require more infor-
mation about its action on ffl.

Theorem 2.3. The quantum field on 3^, specified by a C* algebra construction,
is unitarily equivalent to an Osterwalder-Schrader [40,41] reconstructed field.
The Schwinger functions are moments of a unique measure dq on ^"{R2}.

Remark. Since the covariance of the field under Lorentz transformations is
not known, the corresponding imaginary time fields on ^'(R2) will be time
translation covariant, but the Euclidean invariance is not known.

Proof. We verify the axioms (A1)-(A5), B, C of Frohlich [9] in order to
obtain the imaginary time fields and the reconstructed fields. Thus we want to
study the generating functions

(2.8)
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of the imaginary time measure. For / piecewise constant in ί, J(f) has a Hamilto-
nian definition. If hγ(x\ ..., hn(x) are piecewise constant values of /(•, ί), then

For a finite space cutoff, we know that e~tH is positivity preserving and that the
imaginary time measure on &"(R2) exists. Also J(f) is complex analytic in/ e ^(R2\
for example, and can be bounded using Theorem 2.1.

For any operator H, we define its vacuum energy to be E(H) = mf spectrum H.
Let

) = E(H + φ(f( ,t)))-E(H)9

for / real. Then by Theorem 2.1,

^exp(const.(||/||^:ί+J||(|xΓ+ !)/(-, Oll^.^ί) (2.9)

with a constant uniform in the space cutoff. By Vitali's theorem, J is complex
analytic for / e JSf where JS? is defined by the norms in (2.9). Following Frohlich
[10], we conclude that the space cutoff Schwinger n-point function is a bounded
multilinear functional on ̂  x ... x JSf . By multilinearity, we can restrict each test
function / in the π-point Schwinger function to be supported in a strip

i E Z. Let nt be the number of arguments of the Schwinger function restricted to
this strip; thus £M. = W. With this notation, the Cauchy integral formula combined
with the bound (2.9) shows that the n-point Schwinger function is bounded by
0(Π^!)K", as a functional on Π"^ K = 0(f||(M2 + l) 11^-^+ 1| ||$:}).
This bound is uniform in n and in the space cutoff region. We know that the
space-cutoff Wightman functions converge [15] (after selection of a subsequence),
and by analytic continuation the F->oo limit of the Schwinger functions exists
also. The V=co Schwinger functions have the same <£ norm, O(f^^ \Kn\ which
allows summation of the power series. The resulting functional J(f) is complex
analytic, satisfies (2.9), and is the limit of the finite volume J's. The axioms of
Frohlich are readily verified, because the estimates and positivity conditions
are preserved in the V = oo limit. We only comment that his axiom CI, which
yields sharp time fields, is proved using the second order estimate of [15, Lemma

1.1],

±φ(f)2^\f\UH + I ) 2 , . (2.10)

where \f\y is a Schwartz space norm on /e^, independent of V^co.
From [10], we thus obtain the existence of an imaginary time field theory

over £f'(R2) and an Osterwalder-Schrader reconstructed field theory whose
Schwinger functions are just the functional derivatives of J(f). Thus the recon-
structed Schwinger functions (and Wightman functions) agree with those of the
field theory on 2tf , and so the two field theories are unitarily equivalent [15].
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Theorem 2.4. Let l^jv^d^deg^, l^v^n. The generalized Schwinger
functions

are continuous as multilinear forms on Π" = ι ^M/d-jV w^ norms bounded, by
(Πnί 0^" as above. They are the functional derivatives of

Z is bounded and analytic in ft^e JS?1 > d / d_7 .

Proof. The proof is the same as that of Theorem 2.3, once we know that the
V-+CO limit of the generalized Schwinger functions exists. We insert a momentum
cutoff K and use the bounds which result from Theorem 2.2. We conclude that

is bounded uniformly in K and F, and that

uniformly in K Since ^(^κ can be expressed in terms of ordinary Schwinger
functions by undoing the Wick order, the existence of the F-> oo limit in ίf^κ fol-
lows. By a 3ε argument, the F->oo limit exists in ^("} also, completing the proof.

Remark. The limit (2.1 1) holds for V = oo also and it holds for a.e. phase ξ e Ξ
uniformly in ξ. We next show that the estimates of Theorem 2.4 on the generalized
Schwinger functions are valid in a.e. phase.

Theorem 2.5. For the 0>(φ)2 field theory acting on 34f(ξ), the Schwinger functions
satisfy the bounds of Theorem 2.4, uniformly in ξ, and are the functional derivatives
of a complex analytic function Zξ(h1, ..., hd\ bounded as in Theorem 2.4.

Proof. For test functions smooth in ί, the Schwinger functions with φ(x\
:φj

κ(x): and :φj

κ(x): — :φj

κ,(x): vertices are defined, using the estimate of Theorem 2.1
in the argument of [13]. For E a projection in Jf, the same statement applies to
the Schwinger functions £f E defined in the vacuum ΩE = EΩ. Assuming that h
has compact support in ί, we bound ^(

E

} by KN(Y[iNil)\\EΩ\\2, using the Schwarz
inequality:

Here A is the integral of a time ordered product of φ(x), . . . vertices as above and
of e~tH operators. We suppose that the test functions for A also have compact
support, and we choose the strips in Theorem 2.4 to match the support of the test
functions in A. Then (A* A)2" is also such a time ordered product, with test functions
supported in 2n + 1 times as many time strips. If A is defined by N functional
derivatives of Z, (A*A)n has 2n+1N such functional derivatives; however, only Nt

occur in a given time strip. Thus
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which yields

Thus we see that ^}/\\EQ\\2 satisfies the bounds of Theorem 2.4, unformly in E.
Passing to the pure phases, we have

\\EΩ\\2=$ΞEdξ,

which ΞE is the subset of Ξ corresponding to E e $£ . It follows that <9^n) is L^(E, dζ),
as a functional on 3? x ί d / d - j l x... xJ£lίd/d-jn depending on ξ. These bounds permit
summation of the exponential series, yielding Zξ, for a.e. ξ. They also permit
removal of the ultraviolet cutoff in the φj(x) vertices. This completes the proof.

Results similar to Theorems 2.3-2.5 were obtained independently by Frohlich
[11]. As a reformulation of results of [11], we have the following two theorems:

Theorem 2.6. For the ^(φ}2 field theory acting on J^(ξ\ a.e. pure phase is
unίtarily equivalent to an Osterwalder-Schrader reconstructed theory. If dqξ

denotes the associated path space measure on ^\R2\ then

Z=$Zξdq.

Theorem 2.7. Under the unitary equivalence of Theorem 2.3, Jf = 2Γ is identi-
fied with the algebra J^inv of time translation invariant bounded measurable function
on

Proof. By [11, Lemma 2.17], M^cM ^c\Jl +r\M -, where Jί ' ̂  is L^ of the
σ-field Σ<x> of sets measurable at oo, and Jί + is L^ of the σ-field Σ± generated by
functions φ(x, £), for ±ί^0. Let G be a positive element of J^ lnv. Then G is inva-
riant under the time reflection operator θ [11, Proof of Theorem 2.19]. Let £inv be
the conditional expectation projection onto Jίinv. Then for / e^+,

= S(θfΓfG2dq

and since this is true for all G^O in

Hence

It follows that G defines a bounded operator on J^. G is seen to commute with
Jt§, the functions of the time zero field, and G commutes with time translation,

We have proved that Jί lm is a subalgebra of 2£. Thus we can define a direct
integral decomposition of 9ί with respect to ^inv. Each component 9I(ζ) is an
Osterwalder-Schrader reconstruction with path space measure dqζ equal to a
component of dq under direct integral decomposition of dq with respect to ̂ inv.
Thus the measures dq^ are ergodic under time translation [11, Theorem 2.16].
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Hence they have a cluster property, from which the irreducibility of 9I(Q follows.
By general properties of C*-algebra decompositions, this shows that ̂  = Jf lnv.

3.1. Integration by Parts

The Green's functions ^(M) are defined below as the connected (truncated)
parts of the Schwinger functions £f(n\ with the truncation defined in the standard
fashion. For the case at hand, namely a direct integral of irreducible theories, the
truncation is performed in each pure phase ξ, defining &(g\ and then by definition
&n) = $&Wdξ. The ultraviolet behavior of Sf™ and $(n) are determined by perturba-
tion theory, and these singularities coincide with the local singularities of a massive
free theory. In order to establish this fact, we integrate by parts on path space.
Successive integration by parts yields a representation of ̂ (n) or ^(π) as a sum of
low order perturbation contributions, plus a remainder which is regular in x.
Such an expansion is possible because the 0*(φ)2 model is superrenormalizable.

The formula for integration by parts in the Sf^ is

δR

δφ(x)

where

dx, (3.1.1)

Theorem 3.1.1. The partial integration formula (3.1.1) is valid for the V = co
field theory and in a.e. phase ξ e Ξ.

Remark. The left side of (3.1.1) is defined by Theorem 2.6 and 2.10, while the
right side of (3.1.1) has kernels which do not factor. To deal with this situation, we
integrate by parts in each linear factor in :φj:(h)R(φ). This result produces a sum
of many terms, of the form

w = ί UK = i '&(av\Φ(ymw(y}dy , (3. ι.2)
where

and where v(x, y) is a constant times a product of factors C(xt — y ) and C(xf — x^ ).
Let μ~ε be the operator ( — A +Wo)~ ε / 2, and let μ®] be the product of μ~ε

acting on j variables.

Lemma 3.1.2. In (3.1.2), αv^ 1 and C(x) e J^d/αv .

Proof. By definition α v^l, so d/av<ao. Also C(x) is Lp for all p<oo.

Lemma 3.1.3. For ε<0 and any choice of exponents lv in Z+, the function

μ"εΠv = ιC(x-^v)/v (3-1.3)

is bounded and continuous. Here μ~ε acts on x,
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Proof. C(x — yv) has a Fourier transform of magnitude (p2 + mfy~l. Thus
the l = Σlvϊold convolution is bounded by 0(l)(/?2 + Wo)~ 1 + ε / 2, by standard power
counting estimates, see e.g. [19]. After multiplication by μ~ε, the Fourier transform
is integrable, and hence (3.1.3) is bounded. Continuity follows similarly, since

Theorem 3.1.4. For any ε>0, μ®ε

n^
(n} is a bounded continuous function, with

bounds uniform in ξ e Ξ.

Theorem 3.1.5. Let VU} = Y[1^i<i^n(ί + C(xi9xi.)
(3i+jί)). Then ^^(n} is a

bounded continuous function, with bounds uniform in ξ e Ξ.

Proof of Theorems 3.1.1, 3.1 A, 3.1.5. The integration by parts formula (3.1.1)
is known for F<oo. In that case by Theorem 2.6, the representation (3.1.2) and
the Lemmas 3.1.2, 3.1.3 above,

^ Σf inite sum ί dxYl || C(y v - x f) II

where h = Π?= i h^). Since the dual of J^1 is J^f00, in a finite volume μ®ε

n^
(n} is Jίf °°.

Since μ®ε

n maps ^f00 into bounded, continuous functions, Theorem 3.1.4 holds for
F<oo, with bounds uniform in K Similarly, Theorem 3.1.5 holds for K<oo with
bounds uniform in K By limits, the same bounds are valid for F = oo. As in
Chapter 2, these estimates decompose into a.e. phase ξ. This establishes the existen-
ce of the right side of (3.1.1). The existence of the F = oo limit for (3.1.1) follows as
above.

For a polynomial Q(φ\ let QT = T~1$ Q(φ( +t))dt. Then Qτ is bounded in
Lp, for all T< oo and p< oo. Let Q^ be any w* — Lp limit point. In the integration
by parts formula, if we insert a factor Qτ in both sides, a new term is included due to
contraction to Qτ. This term vanishes, however, as T-»oo. Thus the formula
remains valid even when the integrands on both sides are multiplied by Q^ .

Now Q^ is time translation invariant, and thus bounded functions of Qx

belong to «2f, the center of 9ί. Let ̂ ^ denote the subalgebra of Jf, generated by all
such Q^. Then integration by parts remains valid in the direct integral theory,
decomposed with respect to 2t '^ We must only show that a theory for which
^00 — {constants} is irreducible.

We show reducibility implies JfΦ {constants}. Consider a theory with a
multiple vacuum and let P denote the projection onto the space of vacuum
vectors. Suppose R is a polynomial such that RΩ.LΩ, PΩ = Ω, and \\PRΩ\\ = 1.
Then

l=l im 4fo
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and

Thus const. φKoo e ̂ Γ^ and the proof is complete.

3.2. Green's Functions and Graphs

The integration by parts formula will be used in our study of Green's functions,
i.e. connected or truncated Schwinger functions. Here we define truncations for
the generalized Green's functions and relate these to the integration by parts
formula.

Let Al9...,An be functions of φ9 e.g. ^4f = :φ /I:(Λί). Let P be the set of partitions
of {1, ..., w} and for ρeP, let ρ={σ l 5 . . .,σy}, |ρ|=7'. Each σ v i s a subset of {1, ...,«}.

Definition 3.2.1. <Πi^i)τ *s defined recursively by

^>T (3-2.1)

Remark. <f]A)r depends not only on Y[At, but also on its factorization into
the A?s.

Proposition 3.2.2. The inversion of (3.2.1) is

Proof. This is standard.
Consider the case that each At is a monomial in the field. Successive integration

by parts produces a sum of terms, and each term is labelled by a graph D. If 3) is
the set of all such graphs, the identity has the form

> (3-2.3)

where Bv are monomials in the field [formed from derivatives of the A{ or of ,̂
as in (3.1.1)] and determined by D. The vertices of the graph are the Bv, while the
lines arise from contractions C(x — x').

Theorem 3.2.2. With the above definitions of Q) ana Bv

Proof. It is sufficient to treat the case of one integration by parts, in one linear
factor from A±. We use (3.2.2) to define <ΠA )r> and integrate by parts on the
right side in the factor containing A±. We group the result into n+ί terms. There
are n— 1 terms in which Aγ contracts to an Ai9 l^i^n. There is one term with Av

contracted to a new :0>(φ): vertex, and if Al is not Wick ordered, a contraction
of Aγ to itself is also possible. Let E( be the function of φ which results from the
contraction of A^ to :̂ :, and let B'[ be the result of contracting Aί to itself. Since
these last two terms occur for each ρ 6 P, they contribute

Σβ.p ( - i)H(k?l - 1) !(ΓU <Πίs, 4>V(ΓU, A] E\



Two and Three Body Equations 305

Next consider a term with A1 contracted to Ai9 and let Bu be the result of this
contraction. Such a term arises only for certain ρ e P, namely ρ which do not
separate 1 and L Let Pt be the set of all such partitions. This term is

y Iφσ / \ " " i Φ v Φ i

Combining these n+ 1 terms completes the proof of Theorem 3.2.2.

Remark 3.2.3. For any graph D which is not connected, but which has a vacuum
component (so that deg£v = 0, or 5v = const. for some v), the term <Πv^v)r
vanishes.

The truncations defined by (3.2.2) are not linear in the state < >. Thus there is a
difference between truncating in the state defined by Ω e 34? and truncating in
a.e. pure phase ξ. The latter is the correct definition, because it leads to Green's
functions with nice cluster properties. Using the measure dqξ, we define the general
Green's functions as

G<">(*1? ..., xn) = (l:φ(x^:...:φ(xnr:dqξ)τ (3.2.4)

and

G<">(x1,...,xπ) = f sG<Γ>(x1,...,x l i)d$. (3.2.5)

It follows immediately that G(n) and G("] satisfy the bounds of Theorems 3.1.4
and 3.1.5. We improve these bounds in Chapter 4. Using integration by parts, as
in Theorem 3.1.1, we no longer need to restrict jv to be less than d = deg^. However,
in this case, we lose the nice n I bound on the 6f(n} from Chapter 2. In principle,
the G(n) should have an n I estimate (as derivatives of an analytic function) for
factorizing test functions, and for jv^d. See [20, 11].

We call ordinary the Green's functions

φ(xn)dqξ)τ, (3.2.6)

or their integral, and generalized the Green's functions (3.2.4).

4. Regularity of the Green's Functions

There are two aspects of the regularity of the Green's functions: their short
distance singularities (ultraviolet behavior) and their long distance decay (infrared
behavior). The intermediate range behavior is settled by the general fact that the
cf(n} are reaj analytic at noncoinciding points. The infrared behavior is controlled
by the assumption that we are dealing with a noncritical theory. In the case of a
physical mass m>0, the G(n} decay exponentially under large separation of
points, \G(n}\^e~mr. We assume that decay occurs in all Euclidean directions, as
is the case for a Lorentz invariant theory with m > 0. The following theorem bounds
the ultraviolet behavior:

Theorem 4.1. For n>2, the ordinary ^(φ)2 Green's functions (3.2.6) are
bounded and continuous for a.e. ξeΞ, with bounds uniform in ξ. For n = 2,
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Gf\x—xf) — C(x — xf) has this property. For the generalized Green's functions of a
&(φ)2 theory, μ®ε

nG
("} and ^^G^ are bounded and continuous for a.e. £ e Ξ

(cf. Theorems 3.1.4-3.1.5), with bounds uniform ξ.

Proof. The bounds on μ®ε

nG
(n} and ̂  G(π) follow from Theorems 3.1.4-3.1.5

and the definition of G(n}. The bound on the ordinary Green's functions (all jv= 1)
follows from the proof of these theorems, once we observe that there are no
φ(xi) — φ(xj) contractions in G(n\ because of the truncations. Here we require
n > 2, or if n = 2, we exclude the one (zero order) term with such a contraction.

For the long distance behavior we use the comparison function

& —FT pε\xt-xι\
Θ ε — [[l^ί<l^ne

Theorem 4.2. For a noncritical 0>(φ)2 model with exponential decay ^ m in
all Euclidean directions, the functions

β> n-δ(^(n) & (jί>-lr<(n)
&E^®nV > &£^{j] U

are bounded and continuous for some ε > 0 and for any δ>Q. For the ordinary Green's
functions, the same is true for

Proof. We modify the proof of Theorems 3.1.4-3.1.5 to obtain the exponential
decay. Let d be the diameter of {x1,...,xn}, and let (xt, xj) be the pair determining
this diameter. We consider two parallel lines separated by distance r which are
perpendicular to the line (xt, x7 ) and which separate {x1 , ..., xn} into two nonempty
clusters { I l 9 I 2 } > We assume each xf has a distance at least r from the lines. We
assert such lines always exist with r^dβn, see [30].

For a term labelled by a graph D, let ρ(D) be the partition of { 1, . . ., n} determined
by the connected components of D. If ρ does not refine {/1? 72}, then G contains
a sequence of contractions of length r. In this case, the term is dominated by
O(e~m°r), so the corresponding contributions to G(n} have exponential decay.
Thus we consider partitions ρ which refine {/1? /2}. In each integration dz over a
generalized Green's function in a connected component, we restrict dz to lie on the
same side of the parallel lines as the xt variables of that component. The contribu-
tion from the complementary z region is again exponentially small. However,
the contribution with z restricted in this fashion is also exponentially small, as one
sees by using the Schwarz inequality and the mass ra>0 in a standard fashion.

We now obtain expressions for the constant momentum subspace of H®{ and
for the restriction of G(n} to this subspace. In L2(R2j) = L2(R2)®j, the functions
/(x1 ?...,xn) of zero total momentum are invariant under the transformation
X-^X + α. We define a norm on such functions

namely the L2 norm in x2, ...,xw, and we let Jf(0) denote the zero momentum
Hubert space. Functions of total momentum P have the form

and |/p| = |/|. We also write j^(n\P) to indicate the number of particles.
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The norm in H®{ is determined by μ| j and the mappings

H f j — >L2(R2)®j — >H®{
1 μ®j zv μ®j x

are unitary. We define the momentum P vectors ̂  + (P) in H®{ by

(4.2)

with the norm |μ®j/P| = |/pl±
We consider G ( f l )(x l 5 ...,xw) as the kernel of an integral operator G(n} from

//?{ to Hfn~j. This is unitarily equivalent to the operator

as a transformation from L®J to Lfn~j. The unitary equivalence commutes with
translations.

If we extend G(n) to a map from Jf ̂ (P) to Jf (f ~j)(P), this is unitarily equivalent
to μ@nG

(n} as a map from Jf (j\P) to Jf '"^(P).

Theorem 4.3. (a) For a noncrίtίcal &(φ}2 model, and 0<j<n, the ordinary
Green's functions G(n) is a bounded operator from H®{ to Hfn~j.

(b) // in addition n>2, then G(n) defines a Hilbert- Schmidt map, μ@nG
(n\ from

to ^f(n-j\p).
Remark. In essence, this theorem states that after differentiating each variable

of G(n} once, the result μ@nG
(n} is an L2 function of the difference variables. The

proof also shows that μ@nG
(n} is continuous in P, and vanishes in Hubert-Schmidt

norm as P->oo.

Theorem 4.4. For a noncritical 0>(φ)2 model, and 0<j<n, the generalized G(n)

is a bounded operator from H®{+ε to Hf"~j, for ε>0.

We prove Theorem 4.3; the proof of Theorem 4.4 is similar. We integrate by
parts in each linear factor φ(xί) in G(n\ Because of truncation (see Theorem 3.2.2)
there are no φ(x^} — φ(Xk) contractions. If n ̂  deg ̂ , there is one factor proportional
to

SY[l=1C(Xi-z)dz = F(Xl,...9XJ (4.2)

and this term fulfills the conclusions of the theorem. In fact, the Fourier transform
of μ®nF is proportional to

which is the kernel of a bounded operator from L® j to Lfn~{ verifying the
conclusion of (a). Furthermore,

2P ί)"1Π?=2 μ(Pi)\\l2

^ const. ,

proving that (4.2) also satisfies the conclusion of (b).
The remaining terms are all of the form
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where G(r) is a generalized Green's function. By Theorem 4.2, μ@nTis continuous,
and exponentially decreasing in its difference variables. The theorem follows
from these facts.

5. The Support of dq

Following Frohlich [11], we introduce the Euclidean π operators which
generate the translation group φ-+φ + f.

. (5.1)

The Jacobian in (5.1) is

^^ = exp-[^(/) + 0((-J+mS)/) + K/,(-^+m§)/>], (5.2)

where

In view of the bounds of Chapter 2, we choose

fe&ltdn(-Δ+m2

0Γ
1&ι.w-ιnHl9 (5.3)

where Hί is a Sobolev space. Then (5.2) belongs to Lp(<f'(R2\dq) for all p<oo.

Theorem 5.1 [11]. The Euclidean π operators are self adjoint operators on the
Euclidean space J^^ = L2(^f(R2\dq). The generating functional

£(/, flf) - <Ω, eίφ(9}eiπ(f)Ωy (5.4)

is entire analytic for g e Lί^d/d_ί and f in (5.3).

Theorem 5. 2. The Euclidean operators exist as self adjoint operators on
^f^(ξ) = L2(^'(R2\dqξ). The generating functional Eξ, defined as in (5.4), charac-
terizes the Weyl form of the commutation relations. (It satisfies positive definiteness,
continuity and commutation relations.) Moreover E = §Eξdξ, and Eξ satisfies the
bounds of Theorem 5.1.

This theorem is essentially contained in [11]. The key step is to show that (5.2)
is the Jacobean of the translated measure on ^f^(ξ).

It is convenient to work with a domain of smooth vectors 2 which is dense in
JΊf#(ξ). Let 3) be the linear span of Ω = 1 and the vectors

AΩ, Λ = ̂  = (Π?=

where gn is a symmetric function in ^(R2)®n. Then

,

where we assume that Ω is invariant under the action of Euclidean translations
U(a). 3) is not invariant under π(/), and so we introduce the domain 2', spanned
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by the vector Ω and

AΩ,A = Ylΐ=1:φ
v*(gά, v^d. (5.50

Then

:φv(f)' & C 9' U(a)& C & (5.6')

for v ̂  d, and

. (5.7)

The relation (5.7) follows from the canonical commutation relations and the
identity

π(/)0 =-1- (nf) + Φ((-Δ+ m2

Q)f)}Ω , (5.8)

which is the infinitesimal form of (5.2).

Theorem 5.3. The L2 inner product defined by dqξ is nondegenerate on 2 x@t.

Remark. The equation 5 = 0, where

B = Σn-oAn(q) (5.9)

defines a polynomial variety in &"(R2). The theorem states that dqξ is not supported
on any polynomial variety. Here An is defined by (5.5).

Proof. Assume that for all C e ®, §CBdqξ = Q. Since B e L2(dqξ) and since 3) is
dense in & in the L2(dqξ) norm, by the remark following Theorem 2.4,
also. Thus

and so for all /} e ̂ (JR2), we have

= Nl(-ifίgN(f1®...®fN). (5.10)

It follows that gN = Q, and by induction #,,^0 for all n. This completes the proof.
We need to improve this result by allowing An to lie in a constant momentum

subspace. We denote the pure phase vacuum j dqξ by < > = < >ξ, as above, and
we assume a nonzero mass gap.

Theorem 5.4. Assume an exponential decay rate for correlations, uniformly
in all Euclidean directions. Given p e R2, suppose

0=f[<C, U(a}eipaBy-(CXeίpaBy-]da (5.11)

for all Ce9. Then

n^l . (5.12)

Proof. The integrand in (5.11) is rapidly decreasing in α, as a consequence of
the nonzero mass gap and Theorem 4.2. In fact, the expansion into connected
Green's functions yields a sum of products, and each product contains at least



310 J. Glimm and A. Jaffe

one factor with variables from both B and C. This factor decays rapidly in |α|
by Theorem 4.2 and the fact that gn e &*, while the other factors are bounded. We
then follow the proof of Theorem 5.3.

For application in Chapters 7,8, we want to consider kernels gn e H®1 rather
than in ίf . In this case, An given by (5.5) is not in general defined (even for the free
field) but requires some subtraction, e.g. Wick ordering would be sufficient. We
define the Wick ordering with respect to the measure dqξ, i.e. with respect to the
function Ω = 1.

In order to analyze higher portions of the energy spectrum, it is also necessary
to subtract states associated with the span of n= 1, 2,... fields, φ(f\ φ(f)φ(g\ etc.
We consider here the cases n = Q, 1. We discuss briefly the n = 2 subtraction in
Chapter 8, when we introduce equations for three particle states.

Let PJ be the projection of 3Ίf#(ξ) onto the closed subspace of degree j poly-
nomials in φ which are orthogonal to all degree / polynomials, l<j.

Theorem 5.5. With the hypotheses of Theorem 5.4,

(5.13)

P,B= -^Bφ(y)yΓ(2\y-z)φ(z)dydz (5.14)

where φ = φ-(φy, B is defined by (5.9) and each gn e ^(R2n).

Proof. Since (5.13) is obvious, we need only verify (5.14). By Theorem 4.2,
) = (Bφ(y]y is a rapidly decreasing element of Hί. Since Γ(2) ://!--»//_! [20],

and

G(2)(/^®/z)^0(l)||/z||2_1 , (5.14a)

cf. [20]. Thus the right side of (5.14) is in L2(ίf'(R2\ dqξ). Finally we note that the
right side of (5.14) equals: 0 for B=l; φ(χ) for B = φ(x)\ and 0 if £1 to 1 and
Bl_φ(x\ all x. These properties characterize P1? hence (5.14).

Corollary 5.6. Let

B = $φ(x)φ(y)g(x,y)dxdy. (5.15)

Then (5.13) and (5.14) admit extensions to g e H®\, by continuity.

Proof. We note

Thus by Theorem 4.3, we see that (5.14) extends by continuity to 0e#?2. To
establish (5.13) on H?f, we note that

||(1 - P0)β|| 2 =

and each term extends to H®\ by continuity, using Theorem 4.3 and (5.14a).
We now assume the decay properties of Γ(2)(x) established in Chapter 6,

to sharpen our estimates.

Theorem 5.7. Suppose g is symmetric and is exponentially decreasing in the
variable x + y, so that for all /?, with \β\ sufficiently small,

eβ'(x+y)g(x,y)eH®l.
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Then with B given by (5.15),

Γ(2}^Bφ(-)yEH_1 (5.16)

is exponentially decreasing.

Proof. As above, <£</>(•)> is exponentially decreasing, and hence an element of
H1 m, as defined in (6.9). By Theorem 6.4, and mgrra, (5.16) is an element of H_ί m.

We remark that in the hypothesis of Theorem 5.4, we could write (5.11) as
0- J<C, (1 - P0)U(a)eipaByda .

Theorem 5.8. With B, g as above, suppose that

0 = f <C, (1 - PO - P,}U(a)eipaByda (5.17)

for all Ce 2. Then

0 = f 0(*ι - α, x2 ~ a)eίpada . (5.18)

Proof. We treat (1 — P0) and Pj separately, since each of these projections
has rapid decay in a. We see this by expanding each term as a sum of products of
connected Green's functions. Using the exponential decay of g in the variable
x + y, the (mass gap) exponential decay of the connected Green's functions and
Theorem 6.4, the decay in a follows. Two commutators with π then yield (5.18).

Remark 5.9. The decay of the integrand does not depend on the local regu-
larity of C e <$. In particular, we may take C = B.

6. Decay of Γ(2) (x) and CDD Zeros

We consider an Osterwalder-Schrader theory with the (connected) momentum
space two point function

<6 1>
We assume 0<m^M. If, in addition, m<M and ZφO, the model has an isolated
one particle state of mass m, and in that case Z is the field strength renormalization
constant. By positivity, Z^O and rfv^O, and we assume §dv(a)a~ί<co. If the
theory is canonical, then in addition

l . (6.2)

The inverse propagator — χ(p)"1 is also the one particle irreducible part of χ(p)
The Fourier transform of — χ(p)~1 is Γ(2)(x), and convolution by Γ(2) is an iso-
morphism of f/ ! onto H_ 1 ? by [20, Theorem 2.1 and Remark 2].

We are concerned here with the exponential decay rate m of Γ(2)(x), since such
decay is related to the spectral properties of the theory. We find that if m< M, then

(6.3)

and m is related to the complex zeros of χ(p). In case m < M, then the decay rate m
is not associated with any physical particle. For instance, if M is the mass of an
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isolated bound state, we find

m<m<M, (6.4)

In case the strict inequality (6.4) holds, the propagator χ(p) has a CDD zero, see
Castillejo, Dalitz, and Dyson [4].

Our results are nontrίvial only if m<M, i.e. if an upper mass gap exists in the
propagator.

Definition 6.1. We define the CDD root m as the root, in the interval (m, M],
of the equation

γγi^ — ~W\

- - - d v ί f l H O . (6.5)

If no such root exists, or if m = M, define m = M.
Remark 6.2. Assume a canonical theory (6.4). Then for ZφO

11/2

(6.6)m = ζ+z ζ+z
where ζ e [0,1 — Z] is defined by the equation

C = IM2~-?2^v(fl). (6.7)
a — m

For example, if dv(α) is a point mass at α = M2, then m=[(l— Z)w2 + ZM2]1/2,
with ζ = 1 — Z and (6.4) holds. CDD zeros are absent if and only if

/If2 —m 2

(6.8)

We show below that Γ(2)(x) has the decay rate m. In order to make precise the
notion of decay rate we introduce the Sobolev-Paley-Wiener space Hp>λ. For
Λ, = 0, we let Hpfλ=Hp, the usual Sobolev space. For λ>Q, we have

Definition 6.3. Let Hp λ be those distributions / for which

e«x(-A+a)pl2fεL2 (6.9)

for all α with |α| <λ. Here α>/l1 / 2 and such a is sufficiently large not to affect the
exponential decay rate of/.

Theorem 6.4. (α) The convolution operator Γ(2\x) is a continuous transforma-
tion from H1 λ to H_lyλfor any λ^m.

(b) If m<M, then Γ(2\x) is not densely defined, from Hί λ to H_ί λ for any
λ>m.

Remark. This is the precise sense in which Γ(2)(x) decays at the rate m. Thus
the presence of CDD zeros is equivalent to a decay rate m not associated with a
physical particle.

Lemma 6.5. Let The a convolution operator with kernel T(x), and suppose that
when a is sufficiently large,
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is analytic for k = σ + iτ, with \τ\<λ, and is bounded in σ for each fixed \τ\<λ.
Then the operator

is continuous. (Here |τ| is the Euclidean norm.)

Proof. By Fourier transformation, Hp λ contains those functions / such
that for |α| <λ and k real,

e«'v(a + k2)pl2f(k)eL2.

Thus a convolution operator Tis bounded from Hp λ to Hqtλ if for k real,

FΛ = ea^(a + k2)((ί-p}/2f(k)e-^ (6.10)

is a bounded operator on L2 for all real α, |α|<Λ,. In case the series converges,
Fa is given by the Baker-Campbell-Hausdorff formula as a sum of multiplication
operators on L2,

Thus the operator norm of Fa on L2 is bounded by

1 „, ,
f _. (6.11)

We estimate (6.11), using the Cauchy integral formula and the assumption of
boundedness on (a + k2)(q~p)l2T(k). By a rotation of coordinates, we may suppose
that α is parallel to the x1 coordinate axis. Thus we estimate the derivatives of
(a + k2)(q~p)/2f(k), for k = σ real, by integrating over a disc \σ1 — zi\^β, centered
at σ, and with \<x\<β<λ. Then

\dkj

where A = A(β) is independent of n and σ. We conclude that

Proof of Theorem 6.4. We note

r ^ m / ϊ \ / l 9 ? \ - 1 r , . Γ (k ' "l \ J ί \\ is i 0\
— Γ^Ί/cV/r-ί-m ) = Z+\a>M2 ~TO «ΦO ? (6.12)J = \ /c2 + α /

and we first establish (b). If Γ(2)(x) has a decay rate /?, the Fourier transform
f(2\k) has an analytic continuation defined for |τ| < β. In particular, for σ = 0,

m 2-τ 2

The integral in (6.13) decreases from 0 to

m2-M2

(6.13)
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as τ2 increases from m2 to M2. If m<M, then m is the first zero of (6.13). Thus we
have β^m, proving (b).

To establish (a), we note that for A ̂  B, B + x > 0, the function (A + x)(B + x)"l

is mono tonic increasing in x. Thus for fc2 = (σ-Mτ)2,

_
Re

k2+a

(σ2-τ2 + α)2 σ 2-τ 2+α

(6.14)

For |τ| <m, (6.13) is strictly positive. Thus by (6.14),

We conclude that the right side of (6.12) is nonsingular and bounded away from
zero uniformly in σ, for fixed |τ| <m. Furthermore in (6.12).

is analytic in k2 for τ2<m2, since Re(/c2 + α) = σ2 — τ2+^^σ2 + M2 — m2>0.
Thus (/c2 + m2)~1Γ(/c) is analytic |τ |<m and bounded uniformly in σ for fixed
|τ|<m. We conclude that Lemma 6.5 applies to Γ(2)(x) in the case p=—q=l,
λ^m, and the proof is complete.

7. The Two Particle Bethe-Salpeter Kernel

In this chapter, we prove the existence of the Bethe-Salpeter kernel Kξ in the
Euclidean region, for almost every pure phase ξ. Let R and R0 be defined as in
(1.6) so that

(x29 yj (7.1)

and

R(XI, *2> yι,y2)=Ro(χι> ^ y^ y2)+^4)(x1? x2, yl9y2)
JGf (Xl9 χ2, z)Γf\z, z')G^(z\ yι,y2)dzdz'

= <Φ(χί)φ(χ2)(i -PO- Pι)Φ(yι)Φ(y2)> (7.2)
Here Γ(2}= — G(2]~l, so that R is one particle irreducible between the initial
variables x — (x l5 x2) and the final variables y = (yι, y2). Then Kξ is defined by

R = RQ + RQKξR (7.3)

or

Kξ-R^-R-1. (7.4)
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Theorem 7.1. Consider a 0>(φ)2 model and suppose that (a) the V=oo limit is
Lorentz invariant and (b) the mass m = mξ in the pure phase ξ is strictly positive.
Then Kξ defined by (7.3H7.4) is a bounded operator from SymHf2 to H®\.

Remark. We expect that the hypotheses are valid for all noncritical λ&(φ)2 — μφ
models. They have been verified for weak coupling (i.e. λ <ζ m2, or μ ^> m^) [25, 26, 45]
and for even ^(φ)2 models in the single phase region or λφ4 — μφ with μφO
[39,28,9,44,29,24].

The kernel Kξ is formally two particle irreducible between initial and final
states, so we expect a configuration exponential decay rate 3m, or 4m for an even
theory, assuming the absence of bound states and CDD zeros.

Proof. We know that ΛQ ^Hf 2->ff?ί is bounded, from the spectral repre-
sentation for the two point function [20]. To establish the same result for R~l,
we work in subspaces 2? ±(P) of H®1 with definite total momentum, see (4.2).
By Theorem 4.3 (b), μΘπG(4) is Hubert-Schmidt on ̂ (P\ so G(4) is Hubert-Schmidt
from JT_(P) to Jf + (P). Since Γ(2) is an isomorphism of H1 onto H_l [20], the
last term in (7.2) is also Hubert-Schmidt from Jtf _(P) to 3? +(P\ with norm 0 as
|P|->oo. By the Fredholm alternative, R~l is defined if R has no null vectors on
JT_(P).

For simplicity, we suppose <(/>>«* = 0. In other words, we replace φ by φ of
Chapter 5. With this assumption, G(2) and G(3) are also Schwinger functions,
and (7.2) becomes

R(x9 y) = S£\x9 y)-S<?\xl9x2)φ(yi9 y2)

9 z)[G(2)] - \z, z')Sf(z', y)dzdz' . (7.5)

The above subtractions remove intermediate vacuum and one particle states, and
are related to the projections P0 and P1 of Chapter 5. Let

χ(h)=ίφ(x1)φ(x2)h(xl9x2)dx1dx2 . (7.6)

Then

R(g®h) = <χ(0)(l - PO - Λ)χ(Λ)>* - (7-7)

Furthermore, representing (1-Po-PJχ as a polynomial of degree 2, we find

z9 z)φ(z')dzdzf , (7.8)

and

<χ(/z)(/>(z)>ξ = ίG(3)(x1? x29 z)h(x,,x2)dx . (7.9)

We note

(7.10)

We now consider R acting from J^_(P) to J^(P\ and we suppose that .R has
a nonzero null space. For simplicity, we treat the case P = 0. We suppose that there
is a nonzero even function / in L2(R2) such that
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We multiply this equation by

and integrate over x t. For g e CJ, we obtain

0 = J^φRXx)/!^ , x2) ~ h(x$ + w, x4 + w

where

h(y,z) = f ( y - z ) g ( y + z).

Intermsof(7.6)-7.9),

0 = d

where hw(y, z) = h(y + w, z + w). By Theorem 5.8 and Remark 5.9, with X(h) = B=C,
we have

v = )n(y + a9z + a)aa = ) j ( y — z)g(y + z + za)aa = consι.j(y--z).

Thus χ(h) = 0 and so jR has no null vectors (except zero) in the space of definite
momentum.

It follows that R\$P_(P) has a bounded inverse. Since the inverse depends
continuously on P, and remains bounded uniformly as P~->oo, jR, defined on ffl _^
has a bounded inverse. This completes the proof of Theorem 7.1.

8. Three Particle Equations

The three particle scattering equation is defined in analogy to Chapter 7,
after subtraction of the two body rescattering processes. We give two procedures
for these subtractions, one based on the two-body Bethe-Salpeter kernel, the
other based on Faddeev-type equations for two-body rescattering processes.
We expect that a quantitative analysis of the three-body equation will yield insight
into such problems as: Do three-particle bound states occur? Is S unitary up to
the four-particle threshold?

Let α= 12, 13, 23 labeled pairs of initial or final particles. A two particle process
occurs in a channel labeled by a pair α, β. The free Green's function for a two
particle channel is

ί,yβ2)&2\XaL2, yβί}] (8.1)

where i φu, jφ β. The total R0 is

) , (8.2)

where ̂ π ranges over the six permutations (ij, k) of (1, 2, 3).
We also define the two particle scattering kernels

,^)G(4)(xβ,^), (8.3)

where i φoίjφ β. Graphically, Raβ represents scattering processes with initial state
(i, α), final state (/, β), and two particle scattering in the α, β channel. See Fig. 8.1.
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i i

Fig. 8.1. A two particle process

Proposition 8.1. The operators R$, R0, and Raβ are bounded transformations
H®1 to H f 3 . The norm of RΆβ is O(X) as λ =

Proof. This follows immediately by the bounds of [20].
Definition 82. The two-body Bethe-Salpeter kernel Xαα for the three body

problem is

K^KSTM^ + KααΓ 1 . (8.4)

KΆβ is defined by a permutation of the y variables of Kαα. The two body amplitude
^2-body satisfies

We remark that KΛβ has the form

Γ ) , (8.6)

where K is the Bethe-Salpeter kernel (7.4) for the channel (α/?) and — Γ is the
inverse propagator for the remaining particle.

Theorem 8.3. Under the hypotheses of Theorem 7.1, Kaβ and

are bounded maps from Sym/ίf 3 to H®\, with \\KΛβ\\^O(λ) as λ-^0. Also for λ
sufficiently small, jR2-body *s a bounded map from Sym H®\ to H f 3 .

Proof. The bound on Kaβ follows by Theorem 7.1 which bounds K of (7.4)
and the properties of Γ established in [20]. Since RQ 1 is bounded from Sym iff 3

to H?ι, the existence and boundedness of ^ϊ-body follows. We note by (8.5),

and, by the above, the norm of R0Kα/? from Hf 3 to Hf 3 is 0(λ). Thus for λ suffi-
ciently small,

is bounded. It follows that

J? . r j®3 rr®3
K2-body^-l~> Λl

exists and is bounded.

Theorem 8.4. Consider R^-bo^y restricted to a constant momentum subspace :
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Then for \P\ sufficiently large, R2.b0dy(P) ™ bounded from SymJ^_(P) to tf +(P).
ί/ze minimum \P\ may depend on λ.) Also as |P|-»oo,

Pr00/. Each of the operators RQ,R^β,Raβ,KΛβ is translation invariant, and
thus acts on constant momentum subspaces. By Theorem 4.3 (b), Raβ(Ra

Q

β}~1 is a
bounded operator on SymJf + (P), with norm 0(1) as |P|— >oo. We choose |P|
sufficiently large so that

R0κaβ= -ΛotftfΓ'Σ^i (- V^Γ1)"
has norm on sym 3Ίf + (P) less than 1. Thus ||^a/?i^oKa/?ll <1 on sym^f+(P) and

is invertible. The inverse £2-body(^) *s bounded from SymJ-f _(P) to Jf + (P), since
#0(P) is. Also (R0K^)(P) has norm 0(1) as |P|->oo, so ||K2.body(P)-Λ0(P)ll-f- is
0(1). Here || || _ + denotes the norm from sym^f _(P) to Jf +(P).

We remark that instead of using the direct definition (8.5) oϊ R2_body, we could
also use Faddeev type equations to separate the two body forces. Let JR(α) denote
the sum of 2-body rescattering diagrams in which the initial two-body scattering
involves the pair α. Then the Feddeev equations are

(8.7)

As above, we find

Theorem 8.5. For λ sufficiently small, the Eq. (8.7) have a unique solution
R(a):H®l-*Hf3. For constant total momentum P, the equations (8.7) have a unique
solution K(α, P):jr_(P)^^+(P), for \P\ sufficiently large (depending on λ).

For small λ, we define

We expect that #2-body = #2-bodr

We now define the three body Bethe-Salpeter kernel K(3\ by the equations

and

or

Theorem 8.6. Under the hypothesis of Theorem 7 A, R(3Γ' and K(3} exist as
bounded operators from SymHf 3 to H®1, and satisfy (8.10). For weak coupling,
(SΛ1) also holds.
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Remark. N-body equations, as well as a further study of the three body
equations, will be contained in a subsequent article. By definition — K(n} is the
connected part of R(n)~l.
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