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Abstract.lt is shown that a D-component Euclidean quantum field, φ = (φί,..., φD\ with
λ\φ\4 + β\φ\2 interaction, can be obtained as a limit of (ferromagnetic) classical rotator models; this
extends a result of Simon and Griffiths from the case D= 1. For these Euclidean field models, it is then
shown that a Lee-Yang theorem applies for D = 2 or 3 and that Griffiths' second inequality is valid
for D = 2; a complete proof is included of a Lee-Yang theorem for plane rotator and classical Heisenberg
models. As an application of Griffiths' second inequality for D = 2, an interesting relation between
the "parallel" and "transverse" two-point correlations is obtained.

1. Introduction

Consider a multicomponent scalar field, φ(x, t) = (φ1(x9 f), ..., φD(x, ί))>
d-dimensional space-time with Hamiltonian,

where π = dφ/dt, Q is a polynomial with positive highest coefficient, and A(x,t)
is an external field interacting with φ. The problem of constructing a corresponding
quantum field has been considerably simplified in recent years by the probabilistic
methods of Euclidean field theory (see, for example, the articles in [1]); it has
been particularly realized that the associated Euclidean field is closely related
(via a "lattice approximation") to certain models of ferromagnets from classical
statistical mechanics [2].

The type of model we are concerned with consists of a family of random
D-dimensional "spin" vectors {Sj = (Sj, ...,S1j):j=l,...,N} with joint probability
distribution on ORD)N,

! aj S, + ΣM= i Σf= i W

where

Z=Z({αj},{Jj.)J) = J(RD)I
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and each QJ is a finite positive measure on 1RD. When the model arises from the
Euclidean field determined by (1.1), the Jl

jk are non-negative for (jή^k) and in-
dependent of ί while the ρ^ are given by

ώ = exp(-βJ<M2)), (1.4)

with QJ a polynomial related to Q but altered by terms arising from the quadratic
part of (1.1) and by counterterms needed for renormalization. We note in particular
that in \φ\4 models (i.e. Q quadratic) with d<5, perturbation theory suggests that
each QJ should be quadratic.

Statistical mechanical results have been applied to quantum field models
primarily in the case D = l [1,2]. Certain results, such as the Griffiths-Kelly-
Sherman inequalities, were proven directly (when D = l) for models given by
(1.2)-(1.4) with arbitrary Qy, other results, such as the Lee- Yang theorem require
further approximation and do not apply to arbitrary Qy. Simon and Griffiths [3]
showed (when D=l) that for QJ quadratic, (1.3) could be obtained as a certain
limit of spin-^ Ising models (QJ(S) = (O(S — l)-j-<5(s + l))/2Vj) and consequently that
the "classical" Lee- Yang theorem extends to these φ4 models.

In Section 2 of this paper, we generalize the Simon-Griffiths result to D > 1
by showing that \φ\4 models can be obtained as limits of classical rotator models
(ρj{s) = δ(\s\2 — l)Vj). Our proof is based on a multidimensional local limit theorem
for large deviations [4] and is independent of D (for D > 1). While it is true that
an ad hoc proof of our limit theorem can be given, it nevertheless seems more
natural to place it in the general context of central limit theorems; indeed, the
Simon-Griffiths result appears in this perspective as an application of Khintchine's
classic results on large deviations for sums of independent Bernoulli random
variables [5]. An added advantage is that in this approach analogues of the
Euclidean field theory vertex functions arise in a quite interesting manner (see
Remark 2 following Theorem 5 below).

Section 3 is devoted to the Lee- Yang theorem (D = 2 or 3). We begin with the
results of Suzuki and Fisher for the quantum Heisenberg model [6] together
with Lieb's analysis of the classical limit of quantum spin systems [7]; these
yield a proof of the Lee- Yang theorem for the fully anisotropic classical Heisenberg
model similar to the one sketched previously by Harris [8]. The plane rotator
case then follows by adding an "infinite" self-coupling in a plane, and the \φ\4

model (D = 2 or 3) follows from our classical rotator approximation. In [9],
Lee- Yang theorems for both plane rotators and classical Heisenberg models were
announced, but proofs have not appeared and the hypotheses taken there seem
too weak.

In Section 4, we obtain correlation inequalities (D = 2) by the methods of
Ginibre [10]; these, together with our Lee- Yang theorem, show decay of the
truncated two-point Schwinger functions for \φ\4 models in a nonzero external
field. We also prove that, in general two-component rotator models with a sym-
metry breaking field along the 1-component,

(1.5)

This estimate implies that the "parallel" correlation length is no less than half
the "transverse" correlation length or equivalently (for field theories) that the
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"parallel" mass gap is no more than twice the "transverse" mass gap. An explana-
tion of this phenomenon in terms of the Goldstone picture is given at the end of
Section 4; we note particularly that in a π — σ model with spontaneously broken
0(2) symmetry (where φ1 and φ2 denote the σ and π fields respectively), our
results do not contradict the possibility of having a zero mass pion and a non-zero
mass σ resonance. We mention finally that (1.5) may be used to compare the
parallel and transverse susceptibilities; this has recently been done by Lebowitz
and Penrose [11] who show, assuming the existence of spontaneous magnetization
in a two-component model, that the parallel susceptibility diverges below the
critical temperature in three or four spatial dimensions1.

2. \φ\4 Fields as Classical Rotators

The main technical result of this section is the following theorem which
generalizes [3, Theorem 1].

Theorem 1. Suppose {Yk: k= 1, 2, ...} are independent random vectors uniformly
distributed on the surface of the unit sphere in 1RD; then for any continuous complex
valued function F(y) on 1R75 which is bounded in modulus by KQ*p(c\y\2) for some K
and c, we have as n-+co

(2.1)

where Y(h) = (Y, + . . . + Fn)/n3/4, An = (2π/Dni/2)D/2, bn = rc1/2D/2, and λ = D2/(4D + 8).

The proof of this theorem is given below (following Theorem 5) for D> 1 and
is largely based on certain results of Richter concerning large deviations in the
central limit theorem (Theorems 3 and 5). We do not include a proof for D= 1,
which could be analogously based on the classic results of Khintchine [5] for
sums of Bernoulli random variables, since this has been given by Simon and
Griffiths [3] it is incidentally only when D = 1 that F need be assumed continuous.
Before stating Richter's results, we give the following corollary of Theorem 1
which, together with Griffiths' method of "analogue spins" [12], will be used to
obtain a Lee- Yang theorem for \φ\4 models (see Theorem 10 below).

Theorem 2. Suppose {S/ .'7=1, ...,N} are random D-dimensional vectors whose
joint probability distribution is given by (1.2), (1.3), and (1.4), with Qj(s2) = λjS4 + βjS2

(λj > 0, βj e 1R) and suppose that { Y j f k : j = l , . . . , N k — 1 , 2, . . . } are independent
random vectors uniformly distributed on the surface of the unit sphere in 1RD; then
(f°r j— 1> •••? N; n= 1, 2, .. .) there exist constants An>Q, Cj>Q,and fcj?fί-» + oo
as n-+co, such that for any continuous complex valued function F(s1?...,%) on
(1RD)N which is bounded in modulus by Kexp(c(|s1|

2 + ... + sN\2)) for some K and c,
we have

j W + Σj^

(2.2)

where YJ(n) = cJ{Yjtl + ... + F^J/n3/4 and δjk is Kronecker's delta.

Proof. This theorem follows immediately from Theorem 1 by standard
arguments after choosing cj = (λ/λj)

ί/4' and bjίn = bn(λj/λ)1/2- βr

1 An analogous result in field theory should follow from the Goldstone theorem.
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The next three theorems are not stated in their most general form.
{Yk:k = 1, 2, ...} will always be independent identically distributed D-dimensional
random vectors whose common distribution is spherically symmetric and non-
trivial (Φ(5(j;)); it will also be assumed that

exp(G(α)) = E(exp(α YJ) < oo V α e IRD .

We define Γ(y) for yelRD (see [12]) by

= inf(-α ;μ + G(α)). (2.3)

Γ(y) is nonpositive and may take on the value — oo but it has a convergent (for
small \y\) multi-Taylor series,

(2.4)

which can be related to the Taylor series for G,

G(β) = Σ£=ι«2»M2m/(2m)!, (2.5)

yielding in particular that

y2 = - l/u2 , 74 = u4/(u2f . (2.6)

The following theorem is due to Richter [13]; it will be used in the proof of
Theorem 1 to control the tail of the distribution of Y(n).

Theorem 3. For y>0 and any a e IRD,

Pr[( Y! + . . . + YJ α £ y] ̂  exP(^Γ(j;α/n|α|2)) . (2.7)

Proof. We let 7 = (Yι + ... + Yn) α and rewrite Tchebyshev's inequality,

Pr[exp(ry)^^£(exp(r7))]^β"vv , (2.8)
as

Pr [ 7 ̂  (w + wG(rα))/r] ̂  e " w , (2.9)

for r > 0. We choose w = ry— nG(ra) in (2.9) and then choose r so as to maximize w
which yields,

(2.10)

Spherical symmetry now implies that (2.3) may be expressed as

Γ(x) = inf (- m\κ\2 + G(mx)) (2.11)

for any α>0; by choosing x = ya/n\a\2 and a = y/n\x\2 = n\a\2/y, we convert (2.10)
into (2.7) as desired.

In order to see that the next theorem applies to classical rotators, we note
that for Y1 uniformly distributed on the surface of the unit sphere in 1RD,

E(exp(ία Y1)) = const|α|1-1)/2J(D/2).1(|α|)
ί—i)k '

' ί\ ~\2 /Λ\fc .π
l ]
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here Jp denotes the ordinary Bessel function of order p. It follows easily from
(2.12) that u2 = I/A y2=-D,u4=- 6/(D3 + 2D2\ y4=~ 6D2/D + 2, and also that

£(exp(α F1))<exp(w2|α|2/2) for |α| Φθ . (2.13)

Theorem 4. // Yl satisfies (2.13), then Γ(y)<y2\y\2/2 for |y|φO; if in addition
yι is bounded (ie. Pr[|3?1|>fc1]=0 for some uj and y4<0, then there is a y>0
such that

Γ(y)^(γ2\y\2β)-γ\y\4 V j (2.14)

and consequently there is a C>0 such that for y>ί,

Pr[| Y, + . . . + Yn\ ̂  y] ̂  Cy(D- 1)/2exp{(y2y
2/2n)- (y//n3)} . (2.15)

Proof. If Y1 satisfies (2.13), then G(a)<u2\a\2/2 for α|φO, so

a y + u2\a\2/2)=-\y\2/2u2 = y2\y\2/2 (2.16)

for |j?|φO. We now suppose that Y1 is bounded and we define h(y) = (Γ(y) —
y2\y\2/2)/\y\4 for \y\ή=0 and denote by K0 the essential supremum of [FJ. Since
G(α)^X0|α| while G(α)/|α|->X0 as |α|->oo, it can be easily seen that Γ(y)= - oo
for \y\ >K0 while Γ(y) is continuous for \y\ <KQι this implies that h(y) is bounded
away from zero for \y\ e [ε, oo) for any ε>0. We may now obtain (2.14) by noting
that since y4<0, h(y) is bounded away from zero on (0, ε) for small ε by (2.4) so
that y may be taken as — sup{/ι(.y):|j;|Φθ}.

It only remains to derive (2.15). We use (2.7), (2.14), and the straightforwardly
proven geometric fact that there is a constant C1 (depending only on D) such that
there exist unit vectors {v.i=l, •••> MrgCΊj;^"1^2} with the property that
{y:\y\^y}c(ji{y:y vi^y-l}. Consequently,

Pr[|F1 + ... + FJ^]^Cιy
D-1)/2exp^ (2.17)

since \Y{ + ... + Yn\^K0n with probability one, we may assume that y^K0n in
(2.17) which yields (2.15).

The following theorem is also due to Richter [4] we do not include its complete
proof which uses a saddle-point method but rather give a brief sketch in Remark 1
below. In order to see that its hypotheses are satisfied for classical rotators (when
D> 1), we note that for F: uniformly distributed on the surface of the unit sphere
in RD, (2.12) implies that \E(Qxp(ia- ¥^ = 0(1/1^°- 1)l2) for large α| so that
£(expz'(α Y1 + ... +α YM)) is an L1 function of α for n>2D/(D— 1) which implies
via an inverse Fourier transform that for n>2D/(D—l), the probability distribu-
tion of Y j + ... + ¥„ has a bounded density.

Theorem 5. // there is an nQ such that the probability distribution of Y{ + . . . + Yn

is absolutely continuous with bounded density fn(y) for n > n0, then for yn <\y\ = o(h)
and for sufficiently large n,

<2 18)
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Remark 1. The Fourier transform of fn(y) is (2π)~D/2exp(ttG(/6)) so that by
taking an inverse Fourier transform and changing the contour of integration,
we have

(2.19)

Richter chooses α0 so that the contour passes through a saddle-point and then
estimates the integral asymptotically for large n\ the value of the exponential at
the saddle-point, which gives the principal part of the integral, may be evaluated
as the minimum along the ridge:

exp [ inf ( - α y + nG(a))} = Qxp[_nΓ(y/n)~] . (2.20)
[aelRD J

For an alternate version of Theorem 5 which explains the relation of Γ to entropy,
see [14, Section A.4].

Remark 2. Γ is a finite dimensional version of the generating function for
vertex functions in Euclidean quantum field theory which is known to exist for
certain P(φ)2 models [15]. A version of Theorem 3 is then applicable (e.g. with
n= 1) to relate the tail of the distribution of P(φ)2 fields to the vertex functions;
for φ4 fields the first conclusion of Theorem 4 would also be applicable since an
analogue of (2.13) has been shown to follow from the Lee- Yang theorem [16]. It
would be quite interesting to obtain some generalization of Theorem 5 which
applied to sums of independent Euclidean fields; such a result could be a useful
new tool for studying vertex functions.

Proof of Theorem 1 (for D>1): fn(y) = n3D/4fn(n3/4y) is the probability density
of Y(n) so that the left hand side of (2.1) is

(bn\ y\2}fn(y}dy = !&) + I2(n) + I3(n) , (2.21)

where 71? /2, /3 are respectively obtained by restricting the region of integration
on the left hand side of (2.21) to {|j|^n"1/4}, {n~1 / 4<|y|<αj, {\y\^an} respec-
tively; for reasons which are made clear below, we choose αn so that (αn)

4/log^^oo
while α>1/12-*0.

The assumed bound on F implies that

d
)dy-^Q as n-»oo .

We similarly have

|/3(n)| ̂  - (const/^/4) f £ exp((c + bn)y2}dH(y) , (2.23)

where H(y) — Pr[| Y(ή)\ > j/] integrating by parts and using the fact that H(y) = 0
for y>n1/4 yields

4) (exp((c + bn)a2

n)H(an) + 2(c + bn)

Since bn = n1/2y2/2, we have from (2.15) and the fact that H(y)=Q for y>n1/4,

H(y) ί CyV-^2n^-^exp( - bny
2 - y/)

1 2 2 4 ( ' J
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so that (2.24) implies that

\I3(n)\ = 0(n(D~ 2)/4exp(cα2 - yα4) + nD'4 Jα^exp(cy2 _ yy*)dy)

= O ( r c e x p - y α - » as rc-»oo .

It remains to show that ί2(n) converges to the right hand side of (2.1); it is
here that Theorem 5 is used. We first scale (2.18) by n3/4 and then use (2.4) to see
that for n~1/4<\y\<an = o(n1/12) = o(n1/4l

(2.27)

Consequently, it follows that as n-»oo,

λ^dy (2.28)

which completes the proof of Theorem 1.
Remark 3. It is clear from the above proof that the conclusions of Theorem 1

remain valid for F/s other than classical rotators (with appropriate changes of
An, bn9 λ) providing the hypotheses of Theorems 4 and 5 are satisfied. This fact
seems to endow \φ\4 models with a kind of universality which should perhaps be
further investigated.

3. Zeros of Partition Functions

The primary purpose of this section is to obtain a Lee- Yang theorem for \φ\4

models and classical rotators with D = 2 or 3. We include a complete proof for
the classical case since, as explained in the introduction, the present status of
Lee- Yang theorems for these models is somewhat unclear.

We define the partition function for a classical Heisenberg model as

where {Yj'J= 1, ..., N} are independent 3-dimensional random vectors uniformly
distributed on the surface of the unit sphere in IR3. Our analysis of the zeros of Zc

is based on the following theorem of Suzuki and Fisher [6] concerning the partition
function ZQ of a quantum Heisenberg model of spin /(/=\/2, 1, 3/2, ...). ZQ is
defined as

ZQ({aj}, { J}J, /) = (2/ + 1) -*Tr(exp£?= , Λj σj + Σ5!*= i Σ?= 1 JX^)) > (3 2)

where [σj = (σ], σ2, σ|) :j = 1, . . ., N} are standard quantum mechanical spin
operators satisfyibg: [σ^ σk~] = 0 for jφ/c, [σj,σ2] = /cr| (and cyclically), and
(σj)2 + (σ2)2 -h(σ3)2 = /(/+!); these operators act on the tensor product
(g)^! <C2/+1 in the usual way [7].

Theorem 6. // \J2

jk\^J}k, \J]k\^J}k, and aj = (aj9090) with α^O for all j, k;
then for any /,

j } , { J ( k } , / ) (3.3)

is an entire function of z all of whose zeros are pure imaginary.
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Proof. This theorem is basically given by Suzuki and Fisher in [6] we only
note here that their proof allows Jkkή=Q since they reduce the general spin /
situation to the /=l/2 case where (σ

ί)2 = (σ2)2 = (σ3)2=^l/4.
The next theorem is due to Lieb [7].

Theorem 7. For any choice of {α,-}, { J* fc},

], {a ,-}, /) ^ IZC({(/ + l)α,}, { JjJ) (3.4)

I)2 + (/ + ί)δjk/2)J(k , (3.6)

(3-7)

.4/2). (3.8)

Zc({α;}, {Jjk}) = Jim Z2({α7.//}, {J}*//2}, /) . (3.9)

Proof. These results are all contained in [7] we include a statement of Lieb's
inequalities to make clear that (3.9) is still valid with Λ/cΦO.

We can now prove a Lee- Yang Theorem for classical Heisenberg models.

Theorem 8. // 1 J2

k\ ^ Jjk, \J]k\ ^ Jjk, and aj = (aj9 0, 0) with aj ̂  0 for all j, k; then

Zc(z)^Zc({zα,},{J}J) (3.10)

is an entire function of z all of whose zeros are pure imaginary.

Proof. We define Z^(z) to be the right hand side of (3.3) with aj replaced by
a^l/ and J\k replaced by J]\J/2 for all 7, /c, L Now, Z^(z)->Zc(z) as ^/-^oo uni-
formly on compact subsets of real z by Theorem 7. Moreover, the normalized
trace [in (3.2)] of a matrix is bounded by the matrix norm, and \\σ}//\\ ^ 1, so that
Z^(z) is uniformly bounded on compact subsets of complex z (a more elegant
argument actually shows that |Z^(z)|^Z^(Rez); this is based on the fact that
|(Tr(exp(v4 + LB))|<^Tr(exp(,4)) for self-adjoint A and B\ The Vitali convergence
theorem thus implies that Zj-»Zc as /->oo uniformly on compact subsets of
complex z. Theorem 6 together with Hurwitz' Theorem [17, p. 205] then implies
that the zeros of Zc are all pure imaginary as desired.

As a corollary to Theorem 8, we obtain a Lee- Yang theorem for plane rotators:

Theorem 9. Suppose { X j ' . j = l , ...9N} are independent 2-dίmensional random
vectors uniformly distributed on the unit circle in 1R2, and

Z(z) = £(exp(z£7= ! ajXj + ££t= t £f= t J^Xΰ) (3.1 1)

with a^O and \J2

k\ rg Jjk for all 7, k; then Z(z) is an entire function of z all of whose
zeros are pure imaginary.

Proof. Given {α,-}, { JjJ, {JjjJ, we define

Zn(z) = BnZ
c({za{J]k(n)}}, (3.12)
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with aj = (aj, 0, 0), J]k(n) = J'jk + nδjk(i =1,2), J]k(n) = 0, and

> (3.13)

where {Yj} are independent 3-dimensional rotators. Since (Yj)2 + (Yj)2 = 1 — (Γ|)2,
we may use the fact that for suitably chosen J5n,

£Mexp( - n(y,}2)δ(y\ + yl + y\- l)-+δ(y2 + y2- 1)%3) (3-14)

to conclude that Zn-»Z uniformly on compact subsets of C. By Theorem 8,
Zn has only pure imaginary zeros so that by Hurwitz' theorem Z has only pure
imaginary zeros; this completes the proof.

Our final result is a Lee- Yang theorem for \φ\4 models (D = 2 or 3).

Theorem 10. Let Z(z) = Z({zaj], {J]k}) be defined by (1.3) and (1.4) with Qj(s2) =
λjS* + βjS2 (λj>0, βj€JK) and D = 2 or 3. Suppose further that aj ^0, α} = 0 (iφ 1),
Jjk^|Jj k| (/Φl,7Φfc), and J^k^Jl

kk (/φl); then Z(z) is an entire function of z all
of whose zeros are pure imaginary.

Proof. This theorem follows immediately from Theorems 2, 8, and 9, via
standard arguments.

Remark 4. The reason we have only been able to obtain results on zeros of
the partition function (Theorems 8, 9, and 10) for those nonquantum models
where the spin dimension D satisfies D ̂  3, is that our proofs are all based on the
quantum model result (D = 3) of Suzuki-Fisher (Theorem 6). There seem to be
good reasons why analogous Lee- Yang theorems should apply to arbitrary spin
dimension; in fact, Eq. (2.12) shows that for a single D-dimensional classical
rotator Y, exp(z71) has only pure imaginary zeros so that the results of [18]
imply a weak Lee- Yang theorem (valid under the extra assumption that «/}& = ()
for i Φ 1). In order to obtain a stronger result for D > 3, and in view of the fact that
the Suzuki-Fisher theorem is itself based on a classical spin-^ approximation, it
would appear reasonable to search for a direct spin-^ approximation to D-dimen-
sional classical rotators (or \φ\4 models); such a result would have the additional
advantage of eliminating the need for much of the material of this section.

4. Correlation Inequalities

The first theorem of this section states a version of the first inequality of
Griffiths, Kelly, and Sherman which is appropriate for D-spin dimensional
ferromagnets; its proof follows simply from the methods developed in [19,10,2].
When α J ^OVj we write α^O and for a multi-index n = (n1, ...,nD) we denote
(S1)"1 ...(SD)nD by Snι we say ρ(s) is reflection invariant if for each k it is invariant
under (s1,...,/, ...,^-φ1,...,-/,..., SD).

Theorem 11. Suppose {Sj'.j= 1,..., N} are random D-dimensional vectors whose
joint probability distribution is given by (1.2) and (1.3) with each QJ reflection invariant
and such that Jexp(fo|s|2)dρ7 (s)<oo V f c > 0 ; if a^Q and JJ k ^ O V / , f c , i (j+k\ then
for any n^...,nN,

(4.1)
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Proof. It suffices to show that for any choice of {ny},

^ (4.2)

We may assume, without loss of generality, that Jl

kk = 0, since these terms could
in any case be absorbed into the ρk's. Expanding the exponential factor in (4.2)
as an infinite series gives a multi-Taylor series for (4.2) in powers of {α}, Jl

jk} each
coefficient of which is expressible as a product of factors of the form

Svnφdρfa) (4.3)

for some multi-index ntj. Since alp Jl

jk ^ 0, we need only show that the expression
(4.3) is non-negative; this follows from the reflection in variance of QJ which implies
that (4.3) vanishes unless m} is even for all i.

In contrast to the previous theorem, Griffiths' second inequality has not been
extended to multicomponent ferromagnets in any generality; it is not even known
whether the isotropic classical Heisenberg model (classical rotator with D = 3)
satisfies any inequality of this type. However, for D = 2, Ginibre's results for plane
rotators can be extended to Q(\φ\2} models. We first state two lemmas basically
corresponding to examples given by Ginibre in his general formulation of Griffiths'
inequalities (see [10] for details).

Lemma 1. Let 3F be the set of multinomials in {cos(m1θί + . . . + mN9N) : m{ e TL]
with non-negative coefficients; then for any finite family {/1? ...,/„} of elements
of ^ and any sequence of plus or minus signs,

ίoπ-ίoπΠ?'=ι^^Π?=1(/^1' ..,^)±/;W, ...,Θ'N))^0. (4.4)

Lemma 2. Let & be the set of multinomials in {flJL i nj(r) '• eacn nj(r) *s non~
negative, nondecr easing on [0, oo) and 0(exp(έ>r2)) for some b>ϋ} with non-negative
coefficients; then for any positive measures Vj(r) (j = 1, . . ., N) such that j*^ exp(ί?r2)
dVj(r)< oo Vfo, j and any finite family {01? . . ., gn} of elements of & and any sequence
of plus or minus signs,

fo .JoΠWv/^ (4.5)

Remark 5. In [10], the analogue of Lemma 1 for the group TL2 (spin |) and
Lemma 2 were used to prove the GKS inequalities for continuous one-dimensional
spins. We proceed to apply the same method for D = 2.

We define Ά as the family of functions on (IR2)^ which (in polar coordinates)
are multinomials of functions from 3? and ̂  with non-negative coefficients.

Theorem 12. Suppose {Sj\j= 1, ..., N} are random 2-dimensional vectors whose
joint probability distribution is given by (1.2) and (1.3) with each dρj{s) = dρj(θ, r) =
dθjdVj(r) and such that Jexp(φ|2)dρ/s)<oo V&J; if a j = (aj9 0) ̂  0, \J2

jk\^J]k

and Jlk^J{k for all , fc, then for any F, G e J,

(4.6)

E(F(S19 . . ., SN)G(S19 . . . , SN)) ^ E(F(S19 . . ., SN))E(G(Sl9 . . ., SN)) . (4.7)
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Proof. We first note that, by absorbing the appropriate factor into vk(r\ we
may assume, without loss of generality, that \Jlk\^ Jkk. Next we notice that for
arbitrary 7, fc,

Jjksjsί + J2

ks
2s2

k = r/k{ Jjk - \J2

k\)cosθ1cosθ2

+ \Jtk\cos(θι-sj1β2)} 6J2,

where sjk = sgn(J2

k). Also, α ; s^ = ap] = afjcosθj e J. The theorem now follows
from [10, Proposition 3].

Remark 6. For any choice of n l 5 ...,%, f|JL ! (sj)"-1' e =2, but in general f^JL i(sy)Wj

does not belong to .̂ Although Theorem 12 only proves monotonicity in the
thermodynamic limit for expectations of functions in J, this is still sufficient to
imply uniqueness of the thermodynamic limit (i.e., independent of the shape of the
finite volume regions but possibly dependent on boundary conditions)2. We note
that some new correlation inequalities related to those of Theorem 12 have
recently been obtained [20, 21].

Remark 7. One important application of the Lee-Yang theorem and GKS
inequalities for D = 1 was the decay of the truncated two-point Schwinger function
for λφ4 + βφ2 — aφ models (αφO) [22, Section IX.4] which in turn implies uni-
queness of the vacuum. The same methods, when combined with Theorems 10
and 12, can be used for D = 2 to yield that for λ((φ1}2 + (φ2)2)2 + β((φ1}2 ; +
(φ2}2}-aφl models (αφO), E(φl(x)φ1(xf))-E(φί(x))E(φ1(xf))-^Q as |x-x'|->oo.
The φ2-> — φ2 symmetry for such a model shows that E(φ1(x)φ2(x')) = Q = E(φ2(x)\
so that the only other non-zero two-point function to investigate is E(φ2(x)φ(x')) —
E(φ2(x))E(φ2(x')) = E(φ2(x)φ2(x')); the following theorem shows that this "trans-
verse" two-point function decays at least as fast as the square root of the "parallel"
truncated two point function.

Theorem 13. Suppose {Sj .j=l, ...,N} are random 2-dimensional vectors
satisfying the hypotheses of Theorem 12 then

[_E(S]Si}-]2^ [£(SjSi)-£(Sj)£(Sί)] - [£(SjSi) + £(Sj)£(Sj[)] . (4.9)

Proof. Following [10], we use the Ginibre-Percus method of introducing an
independent identically distributed duplicate system {S'j : j = 1 , . . . , N} . Then,
using polar coordinates, we have from Theorem 12,

E(r//κ>s(θ,+ ΘJKrίcos^- θ'k)) ^ £(r/jCos(0j+ ffj))E(r^kcos(θk- θ'k)) . (4.10)

Expanding the cosines, factoring the expectations via the independence of the
two systems, and using the fact that (by the symmetry S?-> — S? or θ}- > — θ^j)

E(Sj) = E(S2

k) = E(SjS2

k) = E(SjS1

k) = Q \/j,k, (4.11)

yields

(4.12)

which gives (4.9) as desired.
If the "parallel" truncated two-point function decays exponentially, then

Theorem 13 implies that the "transverse" two-point function does so as well with

For example SΐS^ = \/2niπj(cos(Θl-ΘJ)-cos(θl }-θJ)).
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correlation length no greater than twice the "parallel" correlation length; for a
2-component field theory model, this means that the "transverse" mass gap is at
least half the "parallel" mass gap (in the presence of a non-zero external field
which defines the parallel and transverse directions).

To compare these mass inequalities with the Goldstone picture of broken
symmetry, we consider a π — σ model with spontaneously broken 0(2) symmetry
where φl and φ2 of (1.1) respectively denote the σ and π fields. Spontaneously
broken symmetry corresponds to the choice of a pure phase (with zero external
field) in the Euclidean world in which E(φ1) = M>0 while £(φ2) = 0; the pion is
thus to be the Goldstone boson of this model. For simplicity we consider a (φ φ)2

model with effective potential,

V(φ) = A(φ φ)2-B(φ φ) (4.13)

and with A, B>0. A minimum of V(φ1, 0) occurs at φ1 = (B/2A)1/2 which is thus
the Goldstone value of M; with this choice of M, we let θ = φ — (M, 0) and rewrite
Fas

V(θ) = V(θ + (M, 0)) - VQ(Θ) + V^θ) (4.14)

where

V0(Θ) = 4M2A[Θ1']2 + const (4.15)

and

)2 . (4.16)

Now in the simplest version of the Goldstone picture, one disregards V± and,
based on the fact that the coefficient of [θ2]2 in V0 is zero, concludes that the pion
has zero mass while the "σ-field particle" has positive mass. This explanation
appears to be in direct contradiction with Theorem 13 which implies that whenever
the π-field mass gap vanishes, so must the σ-field mass gap; to remove the contra-
diction and also to indicate that the square root of Theorem 13 is optimal3 we
follow an analysis due to Coleman [23] by considering V1.

The point is that the term 4M#1[Θ2]2 in Vl couples the θ1 and θ2 fields in such
a way that what we formerly regarded as a σ-particle with positive mass is now
changed into a σ-resonance (with positive mass). Moreover, since the state of θ1

applied to the vacuum is now coupled to the state of [θ2]2 applied to the vacuum,
the σ-resonance should decay into two (zero-mass) pions; this, together with the
fact that the σ-resonance cannot decay into one pion by the 92-+ — θ2 symmetry
(G-parity), indicates that the square root of Theorem 13 gives the correct relation
between transverse (π) and parallel (σ) two-point functions. We note however
that in the 4-state Potts model (classical "rotator" with discrete values θ~2kπ/4
(fc = 0, 1, 2, 3)), the transverse and parallel spatial decay rates can be shown to be
the same since the model can be expressed in terms of sums and differences of two
identical spin-^ Ising models. On the other hand, the Goldstone picture suggests
that the square root relationship of Theorem 13 should apply to (continuous)
rotators for any D ̂  2.

3 For some values of the coupling constant.
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