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Introduction

Given a locally compact abelian group G acting as *-automorphisms a,
on a factor, Connes ([3]) defines a certain subgroup I'(x) of the dual group I" of G.
He shows that under suitable conditions the annihilator of I'(x) is precisely the
subgroup of he G for which the automorphism o, is implemented by a unitary
element in the centre of the fixed-point algebra of the group. As a corollary it is
proved that if a single *-automorphism « has a spectrum (as a bounded operator
on the factor) which is not the entire unit circle, then a power of o is inner.

In [2], Borchers proves that on any von Neumann algebra a *-automorphism
with a gap in its spectrum has a power which is inner.

Here we generalize the notion of I'(«) to representations of G as *-automor-
phisms acting on an arbitrary C*-algebra. We show in 2 that I'(«) is a closed
subgroup of I', which satisfies I'(a) + spa Cspo.

In Section 3 we see that for primitive C*-algebras, the spectra of restricted
actions o® on non-zero a-invariant hereditary C*-subalgebras B form an appro-
ximately filtering family of sets (in a sense made precise in3.4). The methods of [3]
are then applicable to simple C*-algebras, and we show in 4 that for suitable
groups the annihilator of I'(«) is precisely the subgroup of & e G for which «, is
implemented by a unitary element in the centre of the fixed-point algebra of the
bitransposed action on the multiplier algebra. From this it follows that a single
*-automorphism with a gap in its spectrum has a power which is given by a
multiplier.

Studying a single *-automorphism « on a C*-algebra we show in Section 5
that the methods of [2] may be generalized to give the result that if o(«) has a gap,
then some power o is the exponential of a derivation on a non-zero a-invariant
hereditary C*-subalgebra.

When A is a commutative C*-algebra, this method of proof yields that «"
for a suitable n is the identity operator on A. In fact, it is noted that with slight
modifications the arguments given carry over to the case where « is an isometric
isomorphism of a commutative semi-simple Banach algebra. This result has
earlier been proved in [6] and [7], using different methods.

In Section 6, we return to the group setting in the special case where 4 is a von
Neumann algebra, and reach some generalizations of results obtained for factors
in [3]. We also obtain the result in [2] that a *-automorphism with gap in its
spectrum has a power which is inner.
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The ideas that appear in this paper stem from the reading of the papers by Borchers ([2]) and
Connes ([3]), as well as from fruitful conversations with G. K. Pedersen.

1. Notation and Preliminaries

In the following, A denotes a C*-algebra, Z its centre.

A cone M in the positive part 4, of A is called hereditary if for every y in M
the relation 0<x=<y implies that x e M. A C*-subalgebra B of A4 is hereditary
if its positive part B, is a hereditary cone in 4.

Assume G to be a locally compact abelian group, 0 its unit element. Let o
denote a homomorphism of G into the group aut A of *-automorphisms of A.
Given the continuity condition

o x—x[|—0 as g—0 VxeA

we call (o, A) a representation of G.
The spectrum of (a, A) is defined as a subset of the dual group I' of G:

spa={yellf(»=0 Vfel},
where f(y)=¢/(g)g,7)dg and
I={f e L'"(G)|[ f(9)n,xdg=0Vx € A},

the A4-valued integral of f)x=f(g),xdg being well-defined on account of the
continuity of g-o,x (see [1, Proposition 1.4]).

When (o, A) is a representation and B an invariant subspace of A, the restriction
of the action of « is denoted (o, B).

We define

I'(o)=nspa®,

where the intersection is taken over all non-zero a-invariant hereditary C*-sub-
algebras B of A.
Let E be a subset of I', define the spectral subspace

RYE)=[{o(f)xIsupp f CE, x € A}],

[] denoting closed linear span. We use the symbol f](y) to denote the family of
compact neighbourhoods of y in T
It is shown e.g. in [9, Proposition 2.4.1] that

yespo<>R¥(V)£{0} VVeU()).
Assume E; and E, to be subsets of I'. Then
RYE)RY(E;) SRYE, +E,)

(see e.g. [9, Proposition 2.3.97).
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2. On the Rotation-Group of spa

2.1. Definition. Let H be a closed subset of I'.
By the rotation-semigroup of H we mean

S(H)={yeTly+HCH}=()pcu(H-0).
Clearly, S(H) is a closed semigroup containing the unit element w of I'.

2.2. Lemma. Let H be a closed symmetric subset of I'ycw € H. Then w € S(H)C H,
and S(H) is a group.

Proof. That w e H implies S(H)C H is obvious. To see that S(H) is a group,
it suffices to prove that it is symmetric. Let 0 € H, then —6 € H by symmetry, and
so for a given y e S(H) there exists # € H such that y=#-+6. From this we see that
—y=—n—0eH-0. Since § was arbitrary in H, this implies that —y e S(H).

2.3. Proposition. Let («, A) be a representation of G. Then
I(@)ES(spa),

and () is a closed subgroup of T.
Proof. Let y, e spa and vy, € I'(o). We want to see that

Y1 t+72 ESpa.

Let V, V;, and V, be compact neighbourhoods of y, +7y,, y; and y, respectively,
such that V,+V,CV. Take x,=+0, x, e R(V,) and let B denote the smallest
hereditary C*-subalgebra containing the orbit {o (x{x,)lg € G}.

Then B {0}, so by the definition of I'(x) we can find x, e BARXV,), x, +0.

If o,(x,)x, =0 for every g € G, then bx, =0 for every b in B. But if (u,), is an
approximate unit for B, then |u,x,—x,|—0, whence x,=0, a contradiction.
So we can find g, € G such that o, (x,)x,+0, and as a,,(x;) € R%(V;) and x, € R(V,)
this product belongs to R*V; + V,)CR*(V). It follows that y;+7y, espa. So we
have shown that

I'() S S(spe) .

The same relation obviously holds when we restrict the action to a non-zero
a-invariant hereditary C*-subalgebra B,

re?)<Sspa?),

and as I'(a) ST'(®) we see that
I'(@)ES(spe?),

thus
(o) € S(nspe®) = S(I(w))

so I'(x) is a semigroup. Since I'(x) is closed, symmetric and contains w, it is a closed
subgroup of I'.

2.4. Remark. I'(x)is often smaller than S(spa). In fact, let u be a unitary operator
on the Hilbert space H with spectrum equal to the unit circle T. The automorphism



178 D. Olesen

of B(H) defined by
o x) = uxu*

has spectrum equal to the unit circle T (see e.g. [3, Lemma 2.3.10 (a)]). Thus
S(spa)=T.

Obviously, u is in the centre of the fixed-point algebra of o, thus so is each of its
spectral projections p. Let p be chosen so that

llup—Jpll<e
then spa?*?C {z]|z|]=1 and |z— 1| <2¢} and so we see that I'(a)={1}.

3. I'(«) for Primitive C*-Algebras

Recall that 4 is called primitive if {0} is a primitive ideal. In this section, we
want to see that I'(«) for a primitive C*-algebra can be viewed as the intersection
of a filter-basis.

The following lemma, which is presumably well-known, is included for the
sake of completeness.

3.1. Lemma. Let A be a C*-algebra, L a closed left ideal, R a closed right ideal,
I, (resp. Iy) the smallest closed 2-sided ideal containing L (resp. R).

The following conditions are equivalent:
(i) LnR={0},
(i) I;nIx={0}.

Proof. Assume I; Iz =1{0}, then trivially LnR = {0}.

Conversely, assume LNR= {0}, and set An(R)={x e A|[Rx={0}}. An(R) is a
closed ideal containing L, so An(R)21;.

Let An(An(R))={x € A|]xAn(R)={0}}, then An(An(R))2R and is a closed
2-sided ideal. Thus I, = {0}, from which it follows that IznI, = {0} (here we use
that A is a C*-algebra, thus IgI; =IzxNI}).

3.2. Corollary.Let L be a non-zero closed left ideal and R a non-zero closed right
ideal of the primitive C*-algebra A. Then LNR = {0}

Proof. Immediate from 3.1, since no non-zero closed 2-sided ideals of a
primitive algebra have zero intersection.

3.3. Lemma. Let A be a primitive C*-algebra, («, A) a representation of G.
Let A, and A, be non-zero a-invariant hereditary C*-subalgebras of A, V a compact
neighbourhood of w in I.

There exist non-zero a-invariant hereditary C*-subalgebras B; S A, and B,C A4,
such that

spaBicV +spa i, j=1,2.
Proof. Let L;={xe A|x*xe A;} fori=1,2.
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It follows from 3.2 that we can find x#0, x e L;nL%. Choose f € L*(G) such
that

supp f—supp fC V
and take y=o(f)x. Then
ye(LynLE)NR*(supp f) .

Let L(x,(y)) denote the smallest closed left ideal containing the orbit {o,(y)},cq-
Then

Lioag(y)S Ly and Ll (y*)SL,.
Put

By = Liatg(y)N(L(otg(0)*
and

By = L{o(y*) (Lot (y*)*
then fori=1,2

B,SLNL¥=A,.

Take y espa®2, V, € U(y) and x, € R(V,)nB,, x, £0. As x, € B, there is an appro-
ximate unit (u;) C(B,) = (L(,(y*))+ such that

[ x5u; —x, (=0

and if now x,0,(y)=0 for all g in G we had that u,x% =0, thus x% =x,=0. So there
exists g, in G such that x,au,,(y)=0.
From x € B, it follows that

ll14332004, (V) — x50, (¥) [ 0.
We see as above that this implies the existence of g, in G so
Xy =0, ()X, (1) #0..
Now inspection reveals that
x1 € Lo ()N (Lo (y)* = By
and
x; € RA(—supp /IRY(V)R*supp /) SRV, - V)
which shows that
(Vy,— V)nspalr+0
ie.
y eV +spoat
so we have
spaB2CV +spaft.

The other inclusion follows from symmetry.
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3.4. Lemma. Let A be a primitive C*-algebra, (o, A) a representation of G.
The family F(o) of subsets of T of the form

V +spa?,

where V runs through the compact neighbourhoods U(a)) of win T and B through
the non-zero a-invariant hereditary C*-subalgebras of A form a filter-basis with
intersection I'(x).

Proof. That I'(oe)= ﬂF(a)(V%—SpaB) is obvious. To see that F() is a filter-basis
take two elements V; +spa?t and V, +spa??, and take V e U(w) such that

Vcv, and V4+VCV,.

Lemma 3.3 applied to 4, A,, and V shows that we can find B;C A, and B,C 4,
such that ¥V +spa® CV, +spatt and V +spaP' CV+V +spaP2C V, +spat?

Here we have used that sp is a monotone increasing function of the subalgebras,
ie. that B,C A,=spa® Cspatt,

Thus we have found

V +spofrc(Vy +spat)n(V, +spat?).

3.5. Remark. In case A is any C*-algebra, 3.4 shows that the family {spa®+ V'}
is a filter-basis if we allow only such non-zero a-invariant hereditary C*-subalgebras
B which generate essential ideals — i.e. ideals that have no non-zero orthogonal
closed two-sided ideals in A.

4. Automorphisms of Simple C*-Algebras

By a simple C*-algebra 4 we mean one whose only closed two-sided ideals
are {0} and A. Each hereditary C*-subalgebra B of a simple C*-algebra 4 is
itself simple (see e.g. [11, Theorem 1.6]).

When A is embedded in its second dual 4” (itself a von Neumann algebra,
see [4, 12.1]), we denote by the multiplier algebra of A the C*-algebra M(A)=
(Naca{xeA’|xae Aand axe A} (see [12]). If o is a *-automorphism of 4, its
bitransposed «” is a *-automorphism of A"

If § is a derivation of A4, 8" is a derivation of 4”.

By the annihilator 6° of a subset 0 in I' we mean the group of g € G such that
(g,7)=1for every y € 0.

4.1. Proposition. Let A be a simple C*-algebra. Let (o, A) be a representation
of G. Assume that for every compact neighbourhood V of w in I there is a non-zero
a-invariant hereditary C*-subalgebra A, in A such that

spatoCT(o)+V.

Then o, is implemented by a unitary element u in the multiplier algebra M(A) for
every h in (I'(«))°.

Proof. Let he(I'(«))°, let V, be the neighbourhood of 1 on the unit circle
{10 e[ —e, £]}. Choose a neighbourhood V of w in I" such that (h, V)CV,. For
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this ¥, take A, as a non-zero a-invariant hereditary C*-subalgebra of A4, such that
spatoC ()4 V.
Then
a(ey°)={(h, )ly e spo°}
SHhylyel)+V}
={hylyeVicV,
and so by a classical result (see e.g. [5, IIL, 9, 4]) the principal branch of the loga-
rithm of ¢’ is a derivation &,. As 8, derives A, 65 derives 4 and since A4, is
simple we know from [8, Theorem 2.1] that i5; has a minimal positive generator
hy in M(A,), ad(hy)=1d3, where the spectrum of hyC[0,¢]. Thus e . o=
on 4. [That a derivation of a simple C*-algebra is always given by some multiplier
was originally proved by Sakai [13]. Here we need the stronger result for later
use (4.2).]

We claim that Aj=pA"p for some «"-invariant projection p in A”, when Ag
is viewed in the canonical embedding in A”. To see this, let (#,) be an approximate
unit in A, so that u, #p. Clearly, pA"p2 A,. Take x € A, then by the Kaplansky
density theorem ([5,1.3.5]) x* is the strong limit of a net (x;) of self-adjoint
operators with norm less than or equal to |x*|, thus

x?-5x

and so
u;x7u; = pxp .

Since u,x7u, <[ x7|u? < ||x|u? e A, we have that u,x?u, e A,. From this we
conclude that pA"pC Ay =A",. Thus we have shown that o,” is inner on pA”p,
and by a simple computation, see e.g. [2, 5.7 Lemma] this implies that «,” is
inner on c(p)A”, ¢(p) denoting the central support of p in A”. Here c(p)= 1, since
c(p)A"N A is a non-zero ideal in 4 which contains 4, and is norm-closed, thus
equal to A itself. This means there is a unitary u extending e such that

o (X) = uxu*Vx €A
We claim that u multiplies 4. To see this, note that 4 multiplies A,, and that the
set I={xe Alux e A} is a closed right ideal of 4. Take ye 4, x e, then uyx=
(uyu*)ux)=o(y)ux € A.

Thus I is also a left ideal, so it becomes a 2-sided ideal. As 12 A4,, this means
I=A.

4.2. Theorem. Let (o, A) be a representation of G on the simple C*-algebra A.
If spo/I'(er) is compact, then (I'(«))° is the subgroup of elements h in G such that

a(xX)=uxu* VxeAd

for some unitary element u in M(A) which belongs to the centre of the fixed-point
algebra for (o, A”).

Proof. Assume o, =1u-u*, ue M(A)NZ(A"*")There exists a 1€ a(u) such that
whenever f is a continuous function on the circle which is non-vanishing on a
compact neighbourhood of 4 we have f(u)A f(u)* = {0}.
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Taking p to be the spectral projection of u corresponding to an interval V'
around 4 we see that B=pA"pnA is a non-zero hereditary subalgebra of A4,
invariant under o. Since ||up— Ap| <e for some ¢>0 we have that the spectrum
of o” on pA”p is contained in a 2e-neighbourhood of 1 on the circle. Thus a(0f)=
{(h, y)|4 € spaP} is contained in this neighbourhood, and as the preceding argument
is valid for any &> 0 this shows that (h, y)=1 when

yenspef=I(x).

Let V, be a compact neighbourhood of w in I'. With k denoting the quotient
map I'—TI"/T'(«) we have that k™ 1(k(V,)) =V, + ().

Let F(x) be the filter-basis {V +spo®) as defined in 3.4. The image sets k(F,),
F, € F(x), form a filter-basis of compact sets such that k™ !(k(F,))=F, (by 2.3
above) and Nk(F,)={0}. There exists F, e F(x) such that

k(F o) Ck(Vy)
ie.
FoCVo+T().

But this implies that a non-zero invariant hereditary C*-subalgebra 4, of 4 can
be found such that

spa®oCFoCVy+ ()

and so by Proposition 4.1 we have that for every h e (I'(«))°, o}, is given by a unitary
element u of the multiplier algebra M(A).

We claim that u is fixed under the action of «,” for every g in G. Note that
o (x) =a,"(u)xar,"(u*) for every x € A” —indeed,

ot (u)xo, " (u*) = o (o _ ;" (x)u™) = o1, " (00, — (%)) = 0,"(x) .

So a,"(u) u* belongs to the centre of M(A) which consists of the scalars since 4 is
primitive, [12, Proposition 2.7]. Thus

o, (u)=7y,u, y,/)=1. The map gy, is a character on G since
P+ (1) = gy (1) = 01" (o0, " () = 01" (pput) = plot," ) = Py gt -
Recall how the element u was constructed in 4.1 as an extension of a partial
isometry e with spectrum in V,={e”| —e<0<¢}. Since by 4.1 up=e™ with p
an o’-invariant projection we have that for every g in G
loty"(u)p—pll =llot,"(up—p) | = up—pll Se™ — 1 <e
thus
= ||(up—p)+(p—y,up)
= llup—pll+lloy"(wp—pll
<2e.

Since this evaluation is independent of g, we have that y,=1 for every g in G.
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4.3. Corollary. Let o be a *-automorphism of the simple C*-algebra A.

(i) If the spectrum o(a) of o as a bounded operator on A satisfies that S(o(x))= {1},
then o is implemented by a unitary in M(A).

(1) If o(a) is not the unit circle, then for some natural number n the power o
is implemented by a unitary in M(A).

Proof. (i) Let (, A) denote the representation of Z.

Then spa = o(x) (see [3, Lemma 2.3.8] or [10, Lemma 2.3]) and by 2.2 we have
that I'(e) € S(o(o))= {1}.

Thus 4.2 gives the desired conclusion.

n

imoon n—1
(i) If « has a gap in o(x), then we must have S(a(x))= {e n? }mzo for some
natural number n. Thus 4.2 yields that «" is unitarily implemented.

4.4. Corollary. Let (o, A) be a representation of G on the simple C*-algebra A
such that

fo,—1[[=0 as g—0

1 denoting the identity automorphism of A. Then w, is implemented by a unitary
in M(A) for every he(I'(x))°.

Proof. This is immediate from 4.2 and the fact that the continuity condition
above implies that spa is compact ([10, Proposition 2.17).

5. Single *-Automorphisms of C*-Algebras

When dealing with a single *-automorphism o on the C*-algebra A, we often
think of the associated representation of Z, n—¢", and note that spo as defined for
the representation coincides with the spectrum o(c) of o as an element of B(A),
the bounded linear operators on A (see [3, Lemma 2.3.8] or [10, Lemma 2.37).
Throughout this section, T denotes the unit circle.

5.1. Proposition. Let A be a C*-algebra, let o be a *-automorphism of A.
Either I'(0) =T or there exists a smallest natural number m such that on a canonically
associated non-zero a-invariant ideal J,, we have

iEZn}m_ 1

F'(ocJ"‘):{e’" s=0 -
defining
') = mI(B)essemial spa®,

where the intersection is taken over all non-zero a-invariant hereditary C*-subalgebras
B that generate essential ideals of J,,.

Proof. By I(B) we mean the maximal length of a connected component in
T\o(o?), B a non-zero a-invariant hereditary C*-subalgebra of A. Let

sup (B)=1,
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where B runs through all such. Either =0, in which case I'(0)=T. Or [>0, in
which case we claim that l=%r for some m. To see this, take B, so I[(B)>[—¢,
and define

L,={xeAlx*xeB,}.
Let a, € R be so that [by (a, b) we mean {e'la<t<b}]

T o(s%)> (ao 4+ ag+ _f) .

2 2

We want to prove TN\a(a?9) D (e, [—e). If not, we could find 7y € (¢, [ —e)na(aPe),
and ¢; >0'so that (y—g,,y+¢;)C(g, [ —¢).

R (y ey, 7481+ {0}

since y € o{a™), and the smallest right ideal L} in L} containing this set is spanned
by elements of the form (o f)x)y, where supp f C(y—é&,y+¢;) and xeB,, ye L¥.

B,=L,nL¥CLNL}=B,
is non-zero since (a( f)x)y € L* implies y*(a(f)x*) € L; and thus
@ f)x)yy*(f)x*) e LfL, =L¥nL, =B,

and if this element is zero, so is (a(f)x)y. If all elements («( f)x)y were zero, then
since (B,) y =(L¥),,a(f)x=0 for all x in B,, a contradiction.
B, is also a-invariant, and it is spanned by elements of the form

(@ S)x)yz(()v) ,

where x and v are in B,, y e L¥, z € L,. Since then yz e B, we have that all elements
belong to

R*(y—ey,7+e)R*(spo®) SR*(y — ey, 7 +e;) +spa’).
Thus

spa C(y—ey,y+e;)+spa’
and so

€

T\spo®1D (ao +3

€
+y+eq, a0+l—§+y—81>

€ €
D a0+l—~§, a0+l+§
but B, C B, implies T\spa®' 2 T\spa®* thus
5 & €
TNspa®D a0+§, a0+l+§

a contradiction to the definition of .
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Repeating the above argument we find that for every k in Z

T\o(o?) D (kI + (k+ 1)e, (k+ 1) — (k+ 1)e)

from which we conclude that [ =—2n—7;, min IN.

Let J,, be the sum of all ideals I which are generated by non-zero a-invariant

hereditary C*-subalgebras B for which I(B)>m2—f1. Given a e(;nﬁ« 213) define

+1' m
F, to be the set of pairs (I, B) with I a two-sided ideal generated by the non-zero
a-invariant hereditary C*-subalgebra B which satisfies

noa
Uk=1,3,‘..,2m—1<km kn—i- )CT\G(O()

Given the ordering (I, B,)<(I,,B,)if I, CI, and B; =I1,nB,, F, hasa maximal
element (I,, B,). This is based on the relation

TNo(®)=([),T\o(cP#))°

when (I,,B,) is a totally ordered family and I=2XI, B,=L,nL} with
L,={xeAlx*xeB,} and B=LnL* with L=XL,. Note that

L,={xeAlx*xeB,=Bnl,}=LnI,

soB,=LnL}=L,nL*.

Let ye(r\]['\a(ocB“))O and £>0 be so that (y—e,y+¢)C([),T\o(e®), then
o f)x=0 when supp f C(y—e,y+¢) and xe LnL¥. Since for yeLmL* y=0
we have that y* is the norm-limit of sums Zx,, x,, eL* we see that (Zx,)y*—y in
norm, and x=(Zx,)y*eL¥L. Thus «f)y=0 when supp f C(y—e, y+3) SO
v € T\o(c®). The other inclusion

o(@®) S (), TNa(e)°

is obvious.

Since the ideal generated by B contains all I, it must contain I. However,
I contains all I, thus all L,, thus L, so I2 B. It follows that (I, B) e F,, (I, B)=
sup (I, B,).

So F, has a maximal element (I,, B,). We claim that I, is an essential ideal
in J,,. If not, we could find I CJ,, with InI,= {0}. By the same reasoning as above
we see that I must contain a non-zero a-invariant hereditary subalgebra B! so that

T\(o(«®")> Uk=1,3,..2m-1 (I—“
and so (I,+1I,B,+B")>(I,,B,)in F,.

+1"m
intersection over all B that generate essential ideals must be contained in the m’th

. . . 2 2
Since the argument given above was valid for all a e (m_n , _n) we see that the
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. . 2n
roots of unity. However, since for any non-zero B, [(B)<—, we have
m

S| Mm 1
I'(e’)2 {e " }S‘zo . From this the desired equality follows.

5.2. Lemma. Let A be a C*-algebra, o a *-automorphism of A. If the spectrum
of o has a gap, then a power of « is the exponential of a derivation when restricted
to a non-zero a-invariant hereditary C*-subalgebra.

Proof. With notation as in the proof of 5.1 we have that ! =2—n>0, and since
m

the spectra spa® where B generates an essential ideal in J,, are approximately
filtering by 3.5 we see that given a compact neighbourhood V of w in I we can
find such a B so that

m—1

iSan
spafC (o) + V-——{e"‘ }s=0 +V.

Thus by the argument given in the proof of 4.1 we have for a suitably chosen
Vy a B, such that («")®°= ¢°, with § a derivation of B,.

5.3. Corollary. Let A be a commutative C*-algebra, o a *-automorphism of A
withagapinits spectrum. Then o is the identity operator for some natural number my,.

Proof. In the commutative case, the hereditary C*-subalgebras are two-sided
ideals. Using the notation from above, we see that on B,=1, the power o™ is the
identity. Taking the quotient 4/I, we see that no ideal I in this C*-algebra can

2
have l(I)>;E—1. If such an ideal existed, it would contain non-zero subideals

. .. k-m ak-n a L .
with gaps containing U 7——5,74-5 , and taking inverse images we would
have larger ideals than I, in F,,. Thus we have found a new C*-algebra (4/1,) where

2n
I=sup ()= , >0.
pll)=— P
Repeating the argument we get that o *7 is the identity on an ideal I, in A/I,,
thus o™ ™*P is the identity on I,,+1,. Continuing in this fashion, we can make

. 2
but a finite number of steps, since /(4) >0 means that l(A)>n—+n—1 for some n. Thus

we have found that at least o is the identity on A —in fact we can do with the power
m-(m+p)... n which may be strictly smaller than n!.

5.4. Remark. 1t follows from the construction in 5.1 that the spectrum of o on
each of the ideals we have found is exactly the roots of unity for the natural
number g such that «?=1id. The spectrum of & thus becomes the finite union of
these subgroups of the circle.

5.5. Remark. Note that the argument from 5.1 in the commutative case carries
over to isometric isomorphisms acting on arbitrary semi-simple Banach algebras.
We take ideals instead of hereditary subalgebras, and then the arguments do not
depend on specific C*-algebra properties. This result has earlier been proved in [6]
and [7] by different methods.
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6. Automorphisms of von Neumann Algebras

In this section we prove the von Neumann algebra analogue of 4.1. We show
that this leads to a new proof of the result in [2] which states thata *-automorphism
o acting on a von Neumann algebra either has its spectrum equal to the unit
circle or has some power o” which is inner. One should note, however, that we also
derive a new proof of the theorem in [1] that every one-parameter group of
automorphisms satisfying a spectrum condition is (at least pointwise) inner.
That the unitary implementing operators may be chosen to form a group then
follows from cohomology considerations.

In this section, A4 denotes a von Neumann algebra, 4, its predual, (o, 4)
a representation of G which is o(4, 4,) — continuous, i.e.

Pla,x—x)—0 as g-0 Voed, Vxed.

6.1. Lemma. Let E be an a-invariant norm-closed subspace of A, F its (A, A,,) —
closure in A.

spof =spaf .

Proof. As ECF we have that spa”Cspa”. Let y espa” and Ve U(y). Choose
f € L*(G) with supp f CV and take x € F such that

o f)x=0.

We know that there is a net (x,)C E which converges g-weakly to x. This implies
that

o f )xz Bl f)x

(see [1, Proposition 1.4] or [8, Proposition 1.3]).

Thus we can find 1 such that o(f)x, +0, which implies that y e spaE.

6.2. Remark. Let as in [2] P, denote the set of projections in the centre of the
fixed-point algebra for («, ). If follows from 6.1 that

F(@)= (" perqyo) P .
In the following, we write spa? for spa?“?.

6.3. Proposition. Let A be a von Neumann algebra, Z its centre. Let (o, A)
be a representation of G. Let 0 be a closed subset of the dual group I'. Assume that
for every V e U(w) and 0==q € ZN P, there exists 0% p € P, such that p<q and

spaPCO+V .

Then «, is implemented by a unitary u in the centre of the fixed-point algebra for
every h in the orthogonal of 6.

Proof. Fix V e U(w) and choose p as above. As in 4.1 we get of =¢°, with § a
derivation of pAp. Since pAp is a von Neumann algebra, § is inner, thus of is
implemented by a unitary u e pAp. It follows from [2,5.7 Lemma] that of® is
unitarily implemented on ¢(p)A. Take g=1—c(p) and repeat this argument with
p1=gq. Let g, denote the maximal element of ZNnP, such that «, is unitarily
implemented on gyA. If 1—-¢,+0 we could find p,<1—g, such that o, was
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unitarily implemented on ¢(py)4, thus on (g, +c(py))A4, a contradiction to the
maximality of go. Thus g,=1.

6.4. Corollary. Let ACB(H), H a Hilbert space, and let (u, H) be a strongly
continuous unitary representation of R with spuC[0, «). Let (o, A) denote the
representation defined by

o (X)=uxu_, VxeAd.

Then o, is inner for every t in IR.
Proof. Let s eIR. Define

pls, 0)H =", <, [R*[t, 0)H],

[1 denoting closed linear span in H. (This family is identical to the one defined
in [1, Theorem 3.1].) Let g denote the projection-valued measure of u,, i.e.

u, =g e"*dg(x).

If ¢[J, c0)=1 for some 6 >0, the translated measure g4[s, 00)=g[s+J, c0) belongs
to the group e "°y, which also implements o and has positive spectrum. Now we
have that for any unitary group v, implementing ¢, with spvC [0, co)

R*[s, 00)H = R*[s, 0)R’[ — a1, 0) ER’[s—a, 0)  Va>0.

From this it follows that [R*[e, oo)H]ng for every ¢>0. Applying the same
argument to of =uf - u°,, e a fixed-projection in the centre of A, we see that
[R*[e, c0)eH ] CeH.

Thus ep[a,go)<e for very ¢>0. This shows that (1 — p[e, c0))e=0.

[As we know (e.g. using that every derivation of A is inner) that Z is pointwise
fixed under «,, we have that c(1—p[e, 0))=1.] It follows from the definition
above that

spa’ P [, ¢]
thus I'(e)= {0} and 6.3 can be applied with 6=TI"(x)={0}.

6.5. Corollary. Let A be a von Neumann algebra, o a *-automorphism with a
spectrum which is not the entire circle. Then some power of o is inner.

Proof. From 5.2 we know that with

2n
lzsup l(p)——:%’

o™ is inner on a subalgebra g,,4q,, (the g-closure of the hereditary subalgebra B,).
Thus «™ is inner on ¢(g,,)4, and ¢(g,,)4 must be the o-closure of J,, in 5.1. Taking
(1 —c(g,,)) A as our new von Neumann algebra, we get that

2n
sup lp)=—, my>m.
0%p=<1—clgm) my

So we can repeat the argument, obtaining that o™ is inner on ¢(g,, )4 C(1 — c(g,,))A.
After a finite number of steps we have finished, since the gap in o(«) has a connected
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component of strictly positive length. Adding the relevant powers of the imple-
menting operators we get that ¢™ ™" is inner on A.

6.6. Remark. For o as above we see that on each central summand c(q,, )4,
I'"(«) is of order m; — and this is also true for I''(«°), e a central projection in ¢(g,,,)A.
Thus the intersection over spa? where ¢(q)=1 in 4 and a(g)=gq yields the finite
union of the subgroups of order m,;, [=1, ..., k. This generalizes the commutative
result that the spectrum of « is the finite union of subgroups (5.4).

As a final application of 5.3 we show that if («, A) € K,, in the terminology of [2]
(see Definition 6.8 below), then " is implemented by a unitary in the centre of the
fixed-point algebra of «, and «* is not so for any k=0 mod n.

By P, we mean the set of projections in the centre of the fixed-point algebra of a.

6.7. Definition ([2, 3.6 Definition]). Let « be a *-automorphism of A4, let (a, A)
denote the representation of Z defined by n—o". (o, A) is said to belong to class
K, if

(i) For every pair p; and p, in P,

iin—27t a1
€ " oo S(spa47?)

(i) For every non-zero f in P,nZ and every V e U(w) there exists a non-zero
p=f in P, such that

{imzn n-1
spaPCle” [0 V.

6.8. Lemma. Let (o, A) be a representation of G.
Let py and p, be in P,. Then

I(o) € S(spaPt4p?)

Proof. Let p; and p, be in P,. In case ¢(p;)c(p,)=0 we have S(spo?*4??)=T,
and so the statement is obviously correct. Assume c(p,)c(p,)+0, or equivalently
that p, Ap,+{0}. Let y € spa?t4P2 (which is non-empty when p, Ap, + {0}) and let
VeU(w).

Let p be the range projection of R**“**{y+V}, then p+0. Now pAp is the
smallest hereditary o-closed subalgebra of A containing R***™{y+V}, thus
generated by elements of the form

@ N)p1xp2)yz* (@ FIp2vps) =Py (o f)xXp2)yz*po(ed F)opy)
from which we see that

spo? Cspo 4Pz —(y+ V).
We know that

Sspe? )= () sespanan, | \vevo) (PP P2 —(y+ V)
and s0 I'(0)= () yepy\ 0y SPo? implies that

() S S(spaPi4p?)

6.9. Proposition. (c, A) e K, if and only if
(1) I'(e) is of order n,
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(i) for every non-zero f in PonZ and every V in U(w) there is a non-zero
p=< fin Py such that spa? CT'()+V .

Proof. If (o, A) € K,, we only need to prove (i) above. Now it follows from 6.7

n—1

(i) that I'(0) =) ycpor0; SPH” 2 ) pep, S(SPAF) 2 {ei#n}mzo. Since 6.7 (i) implies

.m x n—1
that I'(#)C {e n? }mzo, we have (i).
Conversely, assume (i) and (ii) above, then 6.8 shows that (o, 4) € K,,.

6.10. Corollary. Let (v, A)e K,. Then o is implemented by a unitary in the
centre of the fixed-point algebra of «, and this is not the case for o* when k=0 mod n.

Proof. This is an immediate consequence of 6.3, and the fact that if o*=u - u*,
with u in the centre of the fixed-point algebra, then k e (I'(«))° (see the argument
in the proof of 4.2).
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