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Introduction

Given a locally compact abelian group G acting as *-automorphisms ag

on a factor, Connes ([3]) defines a certain subgroup Γ(ot) of the dual group Γ of G.
He shows that under suitable conditions the annihilator of Γ(α) is precisely the
subgroup of h e G for which the automorphism och is implemented by a unitary
element in the centre of the fixed-point algebra of the group. As a corollary it is
proved that if a single *-automorphism α has a spectrum (as a bounded operator
on the factor) which is not the entire unit circle, then a power of α is inner.

In [2], Borchers proves that on any von Neumann algebra a *-automorphism
with a gap in its spectrum has a power which is inner.

Here we generalize the notion of Γ(α) to representations of G as ^automor-
phisms acting on an arbitrary C*-algebra. We show in 2 that Γ(α) is a closed
subgroup of Γ, which satisfies Γ(α) + spα£spα.

In Section 3 we see that for primitive C*-algebras, the spectra of restricted
actions aB on non-zero α-invariant hereditary C*-subalgebras B form an appro-
ximately filtering family of sets (in a sense made precise in3.4).The methods of [3]
are then applicable to simple C*-algebras, and we show in 4 that for suitable
groups the annihilator of Γ(α) is precisely the subgroup of h e G for which ah is
implemented by a unitary element in the centre of the fixed-point algebra of the
bitransposed action on the multiplier algebra. From this it follows that a single
^-automorphism with a gap in its spectrum has a power which is given by a
multiplier.

Studying a single ^-automorphism α on a C*-algebra we show in Section 5
that the methods of [2] may be generalized to give the result that if σ(α) has a gap,
then some power α" is the exponential of a derivation on a non-zero α-invariant
hereditary C*-subalgebra.

When A is a commutative C*-algebra, this method of proof yields that an

for a suitable n is the identity operator on A. In fact, it is noted that with slight
modifications the arguments given carry over to the case where α is an isometric
isomorphism of a commutative semi-simple Banach algebra. This result has
earlier been proved in [6] and.[7], using different methods.

In Section 6, we return to the group setting in the special case where A is a von
Neumann algebra, and reach some generalizations of results obtained for factors
in [3]. We also obtain the result in [2] that a ^-automorphism with gap in its
spectrum has a power which is inner.
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The ideas that appear in this paper stem from the reading of the papers by Borchers ([2]) and
Connes ([3]), as well as from fruitful conversations with G. K. Pedersen.

1. Notation and Preliminaries

In the following, A denotes a C*-algebra, Z its centre.
A cone M in the positive part A+ of A is called hereditary if for every y in M

the relation Orgx^j; implies that xeM. A C*-subalgebra B of A is hereditary
if its positive part B+ is a hereditary cone in A+.

Assume G to be a locally compact abelian group, 0 its unit element. Let α
denote a homomorphism of G into the group aut A of *-automorphisms of A.
Given the continuity condition

\\(xgx — x||-»0 as #->0 VxeA

we call (α, A) a representation of G.
The spectrum of (α, ̂ 4) is defined as a subset of the dual group Γ of G:

O V/e/},

where f{y) = \Gf(g)(g, y)dg and

/ = {/ eL 1(G)|ί/to)α gx^ = O Vx eA} ,

the v4-valued integral &(f)x = jf(g)agxdg being well-defined on account of the
continuity of g^->ugx (see [1, Proposition 1.4]).

When (α, A) is a representation and B an invariant subspace oϊA, the restriction
of the action of α is denoted (aB, B).

We define

where the intersection is taken over all non-zero α-invariant hereditary C*-sub-
algebras B of A.

Let E be a subset of Γ, define the spectral subspace

R*(E) = [{α(/)x|supp /C£,X6A}],

[] denoting closed linear span. We use the symbol U(γ) to denote the family of
compact neighbourhoods of y in Γ.

It is shown e.g. in [9, Proposition 2.4.1] that

y E spocoRa(V)Φ {0} VF e U(γ).

Assume E1 and E2 to be subsets of Γ. Then

(see e.g. [9, Proposition 2.3.9]).
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2. On the Rotation-Group of spa

2.1. Definition. Let H be a closed subset of Γ.
By the rotation-semigroup of H we mean

Clearly, S(H) is a closed semigroup containing the unit element ω of Γ.

2.2. Lemma. Let Hbea closed symmetric subset of Γ,ω e H. Then ω e S(H) ξ. H,
and S(H) is a group.

Proof. That ωeH implies S(H)QH is obvious. To see that S(H) is a group,
it suffices to prove that it is symmetric. Let θ e H, then — θ e H by symmetry, and
so for a given y e S(H) there exists η eH such that y = η + θ. From this we see that
— y=—η — θeH — θ. Since θ was arbitrary in H, this implies that —yeS(H).

2.3. Proposition. Lei (α, A) be a representation of G. Then

and Γ(α) z's α c/αsed subgroup of Γ.

Proof Let ^ e spa and y2 e Γ(α). We want to see that

Let F, F 1 ? and V2 be compact neighbourhoods of 7i+y2> Ti a n d 72 respectively,
such that V1 + V2CV. Take qφO, X i G ^ ^ ) and let 5 denote the smallest
hereditary C*-subalgebra containing the orbit {^g{x%Xι)\g e G}.

Then B+{0}, so by the definition of Γ(α) we can find x2eBnR"(V2)9 x2 + 0.
If oίg(x1)x2 =0 for every p G , then bx2 = 0 for every b in B. But if (uλ)Λ is an

approximate unit for B, then ||wλx2 — ĉ̂  || —>0, whence x2 = 0, a contradiction.
So we can find g1eG such that α f f l(x1)x2 + 0, and as αg i(xx) e R^VJ and x2 e Ra{V2)
this product belongs to R\VX + F2)C.Rα(F). It follows that 7 i + y 2 e s p a . So we
have shown that

Γ(α)£S(spα).

The same relation obviously holds when we restrict the action to a non-zero
α-invariant hereditary C*-subalgebra B,

Γ((xB)QS(spaB),

and as Γ(cήQΓ(oίB) we see that

thus

so Γ(α) is a semigroup. Since Γ(α) is closed, symmetric and contains ω, it is a closed
subgroup of Γ.

2.4. Remark. Γ(α) is often smaller than S(spα). In fact, let u be a unitary operator
on the Hubert space H with spectrum equal to the unit circle T. The automorphism
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of B(H) defined by

α(x) = uxu*

has spectrum equal to the unit circle T (see e.g. [3, Lemma 2.3.10 (a)]). Thus

Obviously, u is in the centre of the fixed-point algebra of α, thus so is each of its
spectral projections p. Let p be chosen so that

\\up~λp\\<ε

then specie {z||z| = l and |z-l |<2ε} and so we see that Γ(α)={l}.

3. Γ(α) for Primitive C*-Algebras

Recall that A is called primitive if {0} is a primitive ideal. In this section, we
want to see that Γ(α) for a primitive C*-algebra can be viewed as the intersection
of a filter-basis.

The following lemma, which is presumably well-known, is included for the
sake of completeness.

3.1. Lemma. Let A be a C*-algebra, L a closed left ideal, R a closed right ideal,
IL (resp. IR) the smallest closed 2-sided ideal containing L (resp. R).

The following conditions are equivalent:

(i) LnR={0},

(ii) ILnIR = {0}.

Proof. Assume ILnIR = {0}, then trivially Lr)R = {0}.

Conversely, assume LnR = {0}, and set An(R)= {x e A\Rx = {0}}. An(R) is a
closed ideal containing L, so An(R)2IL.

Let An(An{R))={xeA\xAn{R)={0}}, then An(An(R))2R and is a closed
2-sided ideal. Thus IRIL= {0}, from which it follows that IRnIL= {0} (here we use
that A is a C*-algebra, thus IRIL = IRr)IL).

3.2. Corollary .Let Lbe a non-zero closed left ideal and R a non-zero closed right
ideal of the primitive C*-algebra A. Then LnR φ{0}

Proof Immediate from 3.1, since no non-zero closed 2-sided ideals of a
primitive algebra have zero intersection.

3.3. Lemma. Let A be a primitive C*-algebra, (α, A) a representation of G.
Let A1 and A2 be non-zero σAnvariant hereditary C*-subalgebras of A, V a compact
neighbourhood of ω in Γ.

There exist non-zero a-invariant hereditary C*-sub algebras B1 QAX and B2ίA2

such that

spα β i C F + spα*', i,j= 1, 2.

Proof Let Lt = {xe A\x*x e At} for i = 1, 2.
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It follows from 3.2 that we can find xφO, x eZ^nLf. Choose / eL^G) such
that

supp/-supp/cF

and take y = a(f)x. Then

Let L(ag(y)) denote the smallest closed left ideal containing the orbit {ug{y)}geG.
Then

LKG0)£Li and Uφ

Put

and

B2 = L(ag(y*))n(L(φ*ψ,

then for i=l,2

Take 7 e spa*2, V2 e t/(y) and x2 ^ ^ α (l / 2) n ^2 ? ^2 +0- As x2 G J52 there is an appro-
ximate unit (uλ)C(B2)+ ={L(aLg(y*))+ such that

and if now x2

α^();) = 0 f° r a^l ^ in G we had that uλx\ = 0, thus x% = x2 = 0. So there
exists g2 in G such that x2ug2{y) + 0.

From x e B2 it follows that

We see as above that this implies the existence of gγ in G so

Now inspection reveals that

and

X l e R%- supp /)Kα(F2)Rα(supp /)QR\V2 - F)

which shows that

( F 2 - F ) n s p α β l Φ 0

i.e.

so we have

The other inclusion follows from symmetry.
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3.4. Lemma. Let A be a primitive C*-algebra, (α, A) a representation of G.
The family F(a) of subsets of Γ of the form

F + spα5,

where V runs through the compact neighbourhoods U(ω) of ω in Γ and B through
the non-zero ^-invariant hereditary C*-sub algebras of A form a filter-basis with
intersection Γ(<x).

Proof That Γ(a) = f)F{a)(V + spocB) is obvious. To see that F(α) is a filter-basis
take two elements Vί -f spor41 and V2 + spα^2, and take V e U(ω) such that

VCV1 and V+VcV2.

Lemma 3.3 applied to Au A2, and Vshows that we can find B1QAί and B2QA2

such that F + s p α ^ ^ F i + s p α ^ 1 and F + spαB lC V+ F + s p α ^ C V2 + spaA2.
Here we have used that sp is a monotone increasing function of the subalgebras,

i.e. that f ^ g ^ l ^ s p α ^
Thus we have found

V + spuBl C^+spa

3.5. Remark. In case A is any C*-algebra, 3.4 shows that the family {spαβ+ V}
is a filter-basis if we allow only such non-zero α-invariant hereditary C*-subalgebras
B which generate essential ideals — i.e. ideals that have no non-zero orthogonal
closed two-sided ideals in A.

4. Automorphisms of Simple C*-Algebras

By a simple C*-algebra A we mean one whose only closed two-sided ideals
are {0} and A. Each hereditary C*-subalgebra B of a simple C*-algebra A is
itself simple (see e.g. [11, Theorem 1.6]).

When A is embedded in its second dual A" (itself a von Neumann algebra,
see [4,12.1]), we denote by the multiplier algebra of A the C*-algebra M(A) =
C]aeAiχ εA"\xaeA and axe A} (see [12]). If α is a ^-automorphism of A, its
bitransposed a" is a ^-automorphism of A".

If δ is a derivation of A, δ" is a derivation of A".
By the annihilator θ° of a subset θ in Γ we mean the group of g e G such that

(#, y) = 1 for every y e θ.

4.1. Proposition. Let A be a simple C*-algebra. Let (α, A) be a representation
of G. Assume that for every compact neighbourhood V of ω in Γ there is a non-zero
^-invariant hereditary C*-subalgebra Ao in A such that

spocAoC Γ(a) + V.

Then ah is implemented by a unitary element u in the multiplier algebra M(A) for
every h in (Γ(α))°.

Proof Let /ze(Γ(α))°, let Vε be the neighbourhood of 1 on the unit circle
{eίθ\θ G [ —ε, ε]}. Choose a neighbourhood V of ω in Γ such that (h, V)c Vε. For
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this V, take Ao as a non-zero α-invariant hereditary C*-subalgebra of A, such that

spo

Then

= {(Ky)\yeV}QVε

and so by a classical result (see e.g. [5, III, 9, 4]) the principal branch of the loga-
rithm of αjf° is a derivation δ0. As <50 derives Ao, δo

f derives AQ and since Ao is
simple we know from [8, Theorem 2.1] that iδ'ό has a minimal positive generator
h0 in M{A0), ad(Λ0) = i<5S, where the spectrum of /zoC[0,ε]. Thus e~iho • eiho = ot^
on AQ. [That a derivation of a simple C*-algebra is always given by some multiplier
was originally proved by Sakai [13]. Here we need the stronger result for later
use (4.2).]

We claim that A0'=pA"p for some ^''-invariant projection p in A", when AQ
is viewed in the canonical embedding in A". To see this, let (uλ) be an approximate
unit in Ao so that uλtp. Clearly, pA"p2A0. Take xeA'+, then by the Kaplansky
density theorem ([5,1.3.5]) x* is the strong limit of a net (xt) of self-adjoint
operators with norm less than or equal to ||x^||, thus

and so

Since uλx
2uλ^ \\x2 \\u2

λ^ \\x\\u2

λ eA0 we have that uλxfuλeA0. From this we
conclude that pA"pQAs

0 = A" 0. Thus we have shown that oιh" is inner on pA'p,
and by a simple computation, see e.g. [2, 5.7 Lemma] this implies that αΛ" is
inner on c(p)A", c(p) denoting the central support of p in A". Here c(p)=l, since
c(p)A"nA is a non-zero ideal in A which contains Ao and is norm-closed, thus
equal to A itself. This means there is a unitary u extending eiho such that

oίh(x) = uxu*\/x G A".

We claim that u multiplies A. To see this, note that u multiplies Ao, and that the
set I={XEA\UX EA} is a closed right ideal of A. Take ye A, xel, then uyx =
(uyu*)(ux) = a(y)ux e A.

Thus / is also a left ideal, so it becomes a 2-sided ideal. As 12 Aθ9 this means
I = A.

4.2. Theorem. Let (α, A) be a representation of G on the simple C*-algebra A.
If spα/Γ(α) is compact, then (Γ(a))° is the subgroup of elements h in G such that

ah(x) = uxu* Vx e A

for some unitary element u in M(A) which belongs to the centre of the fixed-point
algebra for (a", A").

Proof. Assume ah = u-u*, u e M(A)nZ(A"a').TheΐQ exists a λeσ(u) such that
whenever / is a continuous function on the circle which is non-vanishing on a
compact neighbourhood of λ we have f{u)Af(ύf^{ϋ).
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Taking p to be the spectral projection of u corresponding to an interval V
around λ we see that B = pA"pr\A is a non-zero hereditary subalgebra of A,
invariant under α. Since \\up — λp\\ <ε for some ε > 0 we have that the spectrum
of α" on pA"p is contained in a 2ε-neighbourhood of 1 on the circle. Thus σ(α£) =
{(h, y)\λ e spαβ} is contained in this neighbourhood, and as the preceding argument
is valid for any ε > 0 this shows that (h, γ)=ί when

Let Vo be a compact neighbourhood of ω in Γ. With k denoting the quotient
map Γκ>Γ/Γ(α) we have that k~1{k(V0)) = K0 + Γ(α).

Let F(a) be the filter-basis {F + spαΰ) as defined in 3.4. The image sets k(Fx),
Fί G F ( 4 form a filter-basis of compact sets such that k~1(k(F1)) = Fi (by 2.3
above) and nfe(F1)={0}. There exists FoeF{a) such that

KF0)ck(V0)

i.e.

But this implies that a non-zero invariant hereditary C*-subalgebra Ao of A can
be found such that

and so by Proposition 4.1 we have that for every h e (Γ(α))°, α^ is given by a unitary
element u of the multiplier algebra M(A).

We claim that u is fixed under the action of α/ for every g in G. Note that
och"(x) = ocg"(u)xag"(u*) for every x e A" - indeed,

ag"(u)x*g"(u*) = otg"(uoc_;(x)u*) = α / ( α Λ _ ; ' ( x ) ) - a f c"(x).

So (^"(M) W* belongs to the centre of M(A) which consists of the scalars since A is
primitive, [12, Proposition 2.7]. Thus

ag"(u) = ygu, \γg\ = 1. The map ^^y^ is a character on G since

yg+h(u) = ag+h(u) = ag"(<x.h"(u)) = <x,g"(γhu) = yh{oLg"u) = yhygu .

Recall how the element u was constructed in 4.1 as an extension of a partial
isometry eiho with spectrum in F f i ={e ί β |—ε^0^e}. Since by 4.1 up = eiho with p
an α^-invariant projection we have that for every g in G

thus

< 2 ε .

Since this evaluation is independent of g, we have that yg=ί for every # in G.
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4.3. Corollary. Let a be a *-automorphism of the simple C*-algebra A.
(i) If the spectrum σ(α) of a as a bounded operator on A satisfies that S(σ(a)) = {1},

then a is implemented by a unitary in M(A).
(ii) // σ(α) is not the unit circle, then for some natural number n the power an

is implemented by a unitary in M(A).

Proof, (i) Let (α, A) denote the representation of TL.
Then spα = σ(α) (see [3, Lemma 2.3.8] or [10, Lemma 2.3]) and by 2.2 we have

thatΓ(α)gS(σ(α))={l}.
Thus 4.2 gives the desired conclusion.

(ii) If α has a gap in σ(α), then we must have S(σ(cή)= \en j m = 0 for some
natural number n. Thus 4.2 yields that α" is unitarily implemented.

4.4. Corollary. Let (α, A) be a representation of G on the simple C*-algebra A
such that

| |α g -ι | | ->0 as g->0

i denoting the identity automorphism of A. Then och is implemented by a unitary
in M(A) for every h e (Γ(α))°.

Proof This is immediate from 4.2 and the fact that the continuity condition
above implies that spa is compact ([10, Proposition 2.1]).

5. Single ^-Automorphisms of C*-Algebras

When dealing with a single *-automorphism α on the C*-algebra A, we often
think of the associated representation of Z, nh>α", and note that spa as defined for
the representation coincides with the spectrum σ(α) of α as an element of B(A),
the bounded linear operators on A (see [3, Lemma 2.3.8] or [10, Lemma 2.3]).
Throughout this section, T denotes the unit circle.

5.1. Proposition. Let A be a C*-algebra, let a be a *-automorphism of A.
Either Γ(α) = T or there exists a smallest natural number m such that on a canonically
associated non-zero ^-invariant ideal Jm we have

defining

where the intersection is taken over all non-zero a-invariant hereditary C*-subalgebras
B that generate essential ideals of Jm.

Proof By l(B) we mean the maximal length of a connected component in
I\σ(αΰ), B a non-zero α-invariant hereditary C*-subalgebra of A. Let

sup/(£) =
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where B runs through all such. Either / = 0, in which case Γ(a) = T. Or />0, in

which case we claim that / = — for some m. To see this, take Bε so l(Bε)>l — ε,

and define

L c={xe>l|x*xeJB e}.

Let a0 elRbe so that [by (a, b) we mean {eιt\a<t<b}~]

We want to prove T\σ(αβε) D (ε, / — ε). If not, we could find y e(ε, / — ε)nσ(αβε),
a n d ε ^ O ' s o that (y — β l 5y + ε1)C(ε, / —ε).

since y e σ(αBε), and the smallest right ideal L* in Lf containing this set is spanned
by elements of the form (<x{f)x)y, where supp / C (y — εx ,γ + εx) and x e Bz, y e Lf.

is non-zero since (α(/)x)y e Lf implies y*(α(/)x*) e L t and thus

(α(/)x*) e Lf Li = LJ n L i = 5 t

and if this element is zero, so is {oc(f)x)y. If all elements (α(/)x)y were zero, then
since (Bε)+ = ( L * ) + , α(/)x = 0 for all x in J5ε, a contradiction.

Bγ is also α-invariant, and it is spanned by elements of the form

(a(f)x)yz(a(g)v),

where x and v are in Bε, y e Lf, z ε Lε. Since then yz e Bε we have that all elements
belong to

Thus

spαβ l Q (y — ε1, y + ε^ 4- spαBε

and so

I \ s p α B l

T 1 - 2 ' " o τ ( τ 2 j

but Bx QBε implies Γ\sραB l 2 Γ\spαB ε thus

a contradiction to the definition of /.
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Repeating the above argument we find that for every k in Έ

T\σ(aBή D (Id + (k + l)ε, (k + 1)/ - (k + l)e)

from which we conclude that / = — , m in N.
m

Let Jm be the sum of all ideals I which are generated by non-zero α-invariant

Gi i , — I
l m/

hereditary C*-subalgebras B for which l(B)> . Given aei , — I define
m + 1 \ m + l m/

Fα to be the set of pairs (/, B) with / a two-sided ideal generated by the non-zero
α-invariant hereditary C*-subalgebra B which satisfies

π a , π α

Given the ordering (/x, B±) ̂  (/2, β 2) if h = 12 a n ( i ^i=hn^2^Fa has a maximal
element (7α, Ba). This is based on the relation

when (Iμ,Bμ) is a totally ordered family and I = ΣIμ,Bμ = LμnL* with
L μ = {x eA\x*x E Bμ} and B = LnL* with L = ΣLμ. Note that

L μ ={xe 4|x*x e Bμ =

so Bμ = LnL* = Lμ

Let y e ( n l \ φ δ f and ε > 0 be so that (7-ε,y + ε ) C ( Π μ T \ φ β μ ) ) ? then
α(/)χ = 0 when supp/c(y —ε,y + ε) and xeLnL*. Since for y e L n L * , y^O
we have that y* is the norm-limit of sums Σxμ, x μ e L J we see that (Σxμ)y*-+y in
norm, and x = (Σxμ)y* eL*L. Thus α(/)); = 0 when supp/C(y —ε,y + ε), so
γ G T\σ(otB). The other inclusion

is obvious.
Since the ideal generated by B contains all Iμ, it must contain I. However,

/ contains all Iμ, thus all Lμ, thus L, so I2B. It follows that (I,B)eFa,(I9B) =
sup (Jμ, Sμ).

So Fa has a maximal element (Ia,Ba). We claim that /α is an essential ideal
in Jm. If not, we could find IQ Jm with Inla= {0}. By the same reasoning as above
we see that / must contain a non-zero α-invariant hereditary subalgebra B1 so that

k π a k π a

m I m

and so (Ia + I,Ba + B1) ^ (Jfl, Ba) in Fa.
I 2π 2π\

Since the argument given above was valid for all a e , — we see that the
\ m + l m)

intersection over all B that generate essential ideals must be contained in the m'th
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roots of unity. However, since for any non-zero B, l(B)^—, we have
m

1
_ ί i^π)

Γ\a m)2\em j s = 0 . From this the desired equality follows.

5.2. Lemma. Let Abe a C*~algebra, a a *-automorphism of A. If the spectrum
of α has a gap, then a power of α is the exponential of a derivation when restricted
to a non-zero ^-invariant hereditary C*-subalgebra.

Proof. With notation as in the proof of 5.1 we have that / = — >0, and since
m

the spectra spαβ where B generates an essential ideal in Jm are approximately
filtering by 3.5 we see that given a compact neighbourhood V of ω in Γ we can
find such a B so that

Thus by the argument given in the proof of 4.1 we have for a suitably chosen
Vo a Bo such that (<xm)Bo = eδ, with δ a derivation of Bo.

5.3. Corollary. Let A be a commutative C*-algebra, a a *-automorphism of A
with a gap in its spectrum. Then am° is the identity operator for some natural number m0.

Proof In the commutative case, the hereditary C*-subalgebras are two-sided
ideals. Using the notation from above, we see that on Ba = Ia the power αm is the
identity. Taking the quotient A/Ia we see that no ideal I in this C*-algebra can

have /(/)> T. If such an ideal existed, it would contain non-zero subideals
m + 1

(k-π a k π a\ . . 1 ,with gaps containing u —-, \--l and taking inverse images we would
\ m 2 m 2)

have larger ideals than Ia in Fa. Thus we have found a new C*-algebra (A/Ia) where

2π
/ = sup/(/) = , p>0.

m + p

Repeating the argument we get that am+p is the identity on an ideal Iap in A/Ia,
thus am'im+p) is the identity on Ia + / α . Continuing in this fashion, we can make

but a finite number of steps, since l(A) > 0 means that l(A) > for some n. Thus

we have found that at least ocnl is the identity on A - in fact we can do with the power
m (m+ p)... n which may be strictly smaller than n\.

5.4. Remark. It follows from the construction in 5.1 that the spectrum of α on
each of the ideals we have found is exactly the roots of unity for the natural
number q such that aq = id. The spectrum of α thus becomes the finite union of
these subgroups of the circle.

5.5. Remark. Note that the argument from 5.1 in the commutative case carries
over to isometric isomorphisms acting on arbitrary semi-simple Banach algebras.
We take ideals instead of hereditary subalgebras, and then the arguments do not
depend on specific C*-algebra properties. This result has earlier been proved in [6]
and [7] by different methods.
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6. Automorphisms of von Neumann Algebras

In this section we prove the von Neumann algebra analogue of 4.1. We show
that this leads to a new proof of the result in [2] which states that a ̂ -automorphism
α acting on a von Neumann algebra either has its spectrum equal to the unit
circle or has some power α" which is inner. One should note, however, that we also
derive a new proof of the theorem in [1] that every one-parameter group of
automorphisms satisfying a spectrum condition is (at least pointwise) inner.
That the unitary implementing operators may be chosen to form a group then
follows from cohomology considerations.

In this section, A denotes a von Neumann algebra, A% its predual, (a, A)
a representation of G which is σ(A, A%) — continuous, i.e.

φ((xgx—x)-»0 as #->0 \/φ eAj. VxeA.

6.1. Lemma. Let E be an ̂ -invariant norm-closed subspace of A,F i
closure in A.

Proof. As EQF we have that spα£gspαF. Let γ espαF and V e U(γ). Choose
/ G L1(G) with supp fcV and take xeF such that

α(/)xφθ.

We know that there is a net (xλ)CE which converges σ-weakly to x. This implies
that

(see [1, Proposition 1.4] or [8, Proposition 1.3]).
Thus we can find λ such that α(/)xλΦ0, which implies that γ e spα£.
6.2. Remark. Let as in [2] Po denote the set of projections in the centre of the

fixed-point algebra for (α, A). If follows from 6.1 that

In the following, we write spαp for spocpAp.

6.3. Proposition. Let A be a von Neumann algebra, Z its centre. Let (α, A)
be a representation of G. Let θ be a closed subset of the dual group Γ. Assume that
for every V e U(ω) and Oφg e ZnP0 there exists Oφp e Po such that p^q and

Then ah is implemented by a unitary u in the centre of the fixed-point algebra for
every h in the orthogonal of θ.

Proof. Fix V e U(ω) and choose p as above. As in 4.1 we get v?h = eδ, with δ a
derivation of pAp. Since pAp is a von Neumann algebra, δ is inner, thus ocp is
implemented by a unitary u e pAp. It follows from [2, 5.7 Lemma] that α£(p) is
unitarily implemented on c(p)A. Take q=l-c(p) and repeat this argument with
Pi^q. Let q0 denote the maximal element of ZnP0 such that ah is unitarily
implemented on q0A. If 1 — qoφ0 we could find po^l — qo such that oth was
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unitarily implemented on c(po)Λ, thus on (q0 + c(po))A, a contradiction to the
maximality of q0. Thus q0 = 1.

6.4. Corollary. Let A C B(H), H a Hίlbert space, and let (u, H) be a strongly
continuous unitary representation of 1R with spuC[0, oo). Let (oc,A) denote the
representation defined by

at(x) = utxu_t \JxeA.

Then oct is inner for every t in R.

Proof Let s e R Define

[] denoting closed linear span in H. (This family is identical to the one defined
in [1, Theorem 3.1].) Let q denote the projection-valued measure oϊut, i.e.

If q\δ, oo)= 1 for some <5>0, the translated measure qδ[s, oo) = q[s + δ, oo) belongs
to the group e~ιtδut which also implements α and has positive spectrum. Now we
have that for any unitary group vt implementing ott with spi;C[0, oo)

s-a, oo) Vα>0 .

From this it follows that [Rα[ε, oo)H]cH for every ε>0. Applying the same
argument to αf = wf wi ί5 e a fixed-projection in the centre of A, we see that

[ [ , ) ]
Thus ep[ε, oo)<g for very ε>0. This shows that (1—p[ε, oo))e + 0.
[As we know (e.g. using that every derivation of A is inner) that Z is pointwise

fixed under αf, we have that c(l—p[ε, oo))=l.] It follows from the definition
above that

thus Γ(oc)={O} and 6.3 can be applied with θ = Γ(cή={0}.

6.5. Corollary. Let A be α von Neumann algebra, α a *-automorphism, with a
spectrum which is not the entire circle. Then some power of α is inner.

Proof. From 5.2 we know that with

Z = sup/(/?) = — ,

αm is inner on a subalgebra qmAqm (the σ-closure of the hereditary subalgebra Ba).
Thus αm is inner on c(qm)A, and c(qm)A must be the σ-closure of Jm in 5.1. Taking
(1 — c(qm)) A as our new von Neumann algebra, we get that

sup l(p) = —, mί>m.
OΦp|l-φm) m l

So we can repeat the argument, obtaining that αm i is inner on c(qmι)A C (1 — c(qm))A.
After a finite number of steps we have finished, since the gap in σ(α) has a connected
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component of strictly positive length. Adding the relevant powers of the imple-
menting operators we get that αm 'm i > ' "m k is inner on A.

6.6. Remark. For α as above we see that on each central summand c(qmι)A,
Γ'(α) is of order mι - and this is also true for Γ'(αe), e a central projection in c(qmι)A.
Thus the intersection over spα^ where c(q)=l in A and oί(q) = q yields the finite
union of the subgroups of order mu I = 1,..., k. This generalizes the commutative
result that the spectrum of α is the finite union of subgroups (5.4).

As a final application of 5.3 we show that if (α, A) e Kn in the terminology of [2]
(see Definition 6.8 below), then α" is implemented by a unitary in the centre of the
fixed-point algebra of α, and ak is not so for any /cφOmod n.
By P o we mean the set of projections in the centre of the fixed-point algebra of α.

6.7. Definition ([2, 3.6 Definition]). Let α be a *-automorphism of A, let (α, A)
denote the representation of Έ defined by m->α". (α, A) is said to belong to class

κ - i ί .
(i) For every pair pγ and p2 in P o ,

(ii) For every non-zero / in PonZ and every V e U(ω) there exists a non-zero
in P o , such that

6.8. Lemma. Let (α, ̂ 4) foe α representation of G.
Let px and p2 be in P o .

Proo/. Let px and p 2 be in P o . In case c(p1)c(p2)
:=0 we have 5(spαPl^P2) = T,

and so the statement is obviously correct. Assume c(p1)c(p2) + 0> or equivalently
thatp1Ap2

:¥{0}. Let y espaPίAp2 (which is non-empty when p1Ap2=¥{0}) and let
V G U(ω).

Let p be the range projection of RaPl ΛPz {y + V}9 then p + 0. Now p^p is the
smallest hereditary σ-closed subalgebra of A containing R*PlΛP2{γ + V}, thus
generated by elements of the form

from which we see that

We know that

S ( s p α * ^ ) = Π,es P α ^ 2 f]veύ(0) ( s p α ^ ^ 2 - ( 7

and so Γ(α)= ΠpePo\{0} s P α P implies that

6.9. Proposition, (α, A) e Kn if and only if
(i) Γ(α) is of order n,
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(ii) for every non-zero f in PonZ and every V in U(ω) there is a non-zero
p^fin Po such that spocpCΓ(α) + V .

Proof. If (α, A) e Kn we only need to prove (i) above. Now it follows from 6.7

(i) that Γ(a)=f)pePomspap'2 f]pePoS(spap)2\e n JM = 0- Since 6.7 (ii) implies

that Γ(ot)Q\en }m = 0 , we have (i).
Conversely, assume (i) and (ii) above, then 6.8 shows that (α, A)eKn.

6.10. Corollary. Let (a,A)eKn. Then a is implemented by a unitary in the
centre of the fixed-point algebra of α, and this is not the case for ock when fcφ 0 mod n.

Proof. This is an immediate consequence of 6.3, and the fact that if ak — u u*,
with u in the centre of the fixed-point algebra, then k e (Γ(α))° (see the argument
in the proof of 4.2).
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