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Abstract. We extend methods of high temperature expansions to show that for even weakly
coupled P(¢), quantum field models the Bethe-Salpeter kernel has 4 particle decay. More precisely
if K denotes the Euclidean Bethe-Salpeter kernel

[K(x1, X3, X3, X,)| £ O ™m0t~ 242

where x=(x% x1), dy=2]x3+x3 —x3 —x3| +|x? — x| +|x — x3| and e(1)—0 as A—0. Our methods
apply to other r particle irreducible kernels.

Introduction

In this paper we estimate the decay of r-particle irreducible kernels (r < 3) for
weakly coupled AP(p), quantum field models. To obtain our estimates we extend
the techniques of Glimm, Jaffe, and the author [1] which are related to high
temperature expansions in statistical mechanics. See also [2]. A separate paper
with Zirilli will use the decay of the two particle irreducible Bethe-Salpeter kernel
to investigate the energy momentum spectrum of even AP(¢), models. For weak
coupling we shall establish discreteness of the mass spectrum below 2m and
(for Ap*) asymptotic completeness for states of mass less that 4m— . Here m is the
mass gap and é—0 as A—0. The detailed decay estimates of [3] also yield impor-
tant information about the energy momentum spectrum such as the existence of
single particle states. However such estimates do not seem to be formulated to give
sufficient decay of the Bethe-Salpeter kernel. In statistical mechanics Minlos and
Sinai[4] have made a detailed investigation of the spectral structure of the transfer
matrix for Ising type models. Their techniques are vaguely related to ours.

The free Gaussian measure for the Euclidean field @(x) is denoted by d®(C)=d®
where the covariance is C=(— A4 +m3) ™. Here 4 is the two dimensional Laplacian
and m, is the bare mass. The action V(A) in a region A CR? is defined by

V(A)=Af ;: P@(x)):dx,  x=(x° x'), (1.1)

where P is a positive polynomial. The Wick order is always defined with respect
to d®. The spatially cutoff expectation

fe " 0dp

<Q>A=W (1.2)
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exists for Q € LP(d®)p>1. Moreover when P is even' [5,6] or A/m§<1 [1,3]
the spatially cutoff Schwinger functions

/}111};12 SA(xla LRRE] xn)E ,}ltr}(lz <H?(p('xi)>A:S(xla ey xn)

converge and are Euclidean invariant.
For Q; polynomials in @ we define the truncated or partially connected
expectation

<Q1 LR QM>C=ZQ(_ l)lQl(lgl - 1)!naeg<nieaQi> s (13)

where ¢ ranges over partitions of {1,...,n}. When Q,;=]],cx,®(y) we identify
(1.3)with S°(X ;; X, ...; X,). We use the semicolon to indicate how the truncation
is made. In the case of weak coupling we have an exponential cluster property
so that S%(X;...; X,) decays exponentially fast with the distance between X; and
X ;. This is a result of [ 1, 3].

For the purpose of defining our expansion we consider the lattice Z?=Z xXZ
as a subset of the plane R?. Here Z denotes the integers and R denotes the reals.
Let 4;, j=(j°,j')€ Z* be the closed unit square centered at (j°+3,j* +3). For a
subset X CR? let X, be the set of all line segments b (bonds) joining nearest neigh-
bor lattice sites in the interior of X. Let U(X) [resp. U ,(X)] be the family of sets
formed of unions of lattice squares A CX (resp. of bondsin X ). IfICRlet [, =InZ
correspond to the lines /;={x e R*|x°=i} in I XR.

The coupling of the field @&(x) at different points [in the expectation (1.2)]
comes entirely from the Gaussian measure d®. The idea behind our expansion
is to perturb d@ about a decoupled measure. We break the coupling across a line
l; by introducing (zero) Dirichlet boundary conditions along the line /; in the
covariance. For a set yCR? let 4, be the Laplacian with Dirichlet boundary
conditions on y and define

C,=(—4,+md)".

In general we still take y e U, = U (R?).

If we express R* ~y as a union of components X ;U...uX,, then C, is a direct
sum over the spaces L,(X,)®...®L,(X,). Hence the corresponding measure
d®(C,) factors over the regions X;. Since the interaction is local the expectation
(1.2) also factors.

To interpolate between covariances C and C, we introduce two families of
parameters t=(t;),., and s=(s,),cz2 Qur interpolating covariances C(t,s) are
convex combinations of C, hence they are positive as bilinear forms. We shall
define and estimate these covariances using the Wiener process w(-). Let dPL(w)
be the probability that a path starting at x at time zero will end at time T at y.
We regard this expression as a density in .

Let JE(w)=0 if w(e)e I for some ¢ 0<o< T and let J-(w)=1 otherwise. We
define

Clt, 5, %, y)=[£ e ™TaT[dPT (W Tt + (U= t)ID[ Tolso+(L—s)IT). (L4

! For this case we replace d®(C) by d®(C,,) where C,, indicates that the Laplacian has Dirichlet
conditions on 04.
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From this representation we see that
0=C(t,5,x, ) =Clx, ) »

and for (t)=(s,)=(1), C(s,))=C=(—4+m3)~'. When ;=0 (s,=0) we use
Dirichlet boundary conditions on [; (on b). If ; separates x and y C(t, x, y)=0
at t;=0. Hence t; and s, measure the coupling across /; and b respectively. Let
dd(t, s) be the Gaussian measure of mean zero and covariance C(t, s). The expecta-
tion (1.2) defined with respect to dd(t, s) is denoted by

Ot,s) or §,.

To illustrate a key aspect of our expansion consider a two particle irreducible
kernel k(t, x, y) formed with covariance C(t). A precise definition of k(t) appears
in the next section. We expand k(t, x, y) in a Taylor series in each ¢; to third order
about t,=0. In lowest order perturbation theory (for 1¢p*) k(t, x, y) equals

x © y=212C(t, x,y)*.

Notice if /; separates x and y

3
i Ct, x,y)

=0 0=r=<2. (1.5)

t,=0

As we shall see in Section 2 this identity holds with k(f) replacing C(t)®. Hence
we can write
it

ks = Hex )| =05 T 5l

where i ranges over the interval (x°, y°). This representation enables us to obtain
a 3 particle decay for k(x, y). Similar methods are used to estimate the Bethe-
Salpeter kernel.

The remainder of this paper is organized as follows. Section 2 defines the
r-particle irreducible kernels and shows that their first » derivatives in t; vanish
att;=0asin (1.5). In the next section we extend analyticity methods of Frohlich [7]
to obtain bounds on the t; derivatives. We shall obtain the desired analyticity
via an expansion in the s parameters. This expansion is called the cluster expansion
[1]. We shall review it in Section 4. The final section establishes the convergence
of the cluster expansion by obtaining bounds on the s derivatives.

2. The Bethe-Salpeter Kernel

We express our r-particle irreducible kernels [e.g. k(t, x, y)] as a Neumann
series of Schwinger functions. This will enable us to reduce estimates on irreducible
kernels to estimates on Schwinger functions.

We shall define I' (x, y) to be the inverse of S{(x; y) so that

L%, Y)Siy's ndy =8(x— ). (2.1)
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Using integration by parts (see [1, 8, 9]) we have
Clt); ' P(x); D(y))(t)=8(x — y) — A2 P((x)):; D(y))(0)
=1-—14,(1), 2.2)

where the second equality identifies the kernel with the corresponding operator.
Another application of integration by parts yields

(A:(C™H D)X, y) = P(P(x): ) (0)S(x— y)
— A P(D(x):5: P(D(y)): >(0)
=B,(1). (2.3)

P’ and P” denote the first and second derivatives respectively of the polynomial P.

For weak coupling A, is a bounded operator on L? since its kernel decays
exponentially for large | x — y|. Local regularity is assured by the fact that Schwinger
functions for AP(¢), models have at worst log singularities at coinciding argu-
ments. Hence for small 1 we can define

I=(1-4,)"'Ct)~*
=C()" '+ A1—214,)"'B, . (2.4
The one particle irreducible kernel is then
k(t, x, y)=(()— &) ")x, y)
=A(1—AA(£))"'By(1). (2.5)

Let Q,, Q, be polynomials in ¢. We define the one particle irreducible expecta-
tion by

Q15 0,0M(1)=<0y; Q2>C_I<Q1 5 D(21) (O (21, 2,)D(23); Q) (t)dz . (2.6)

To define the Bethe-Salpeter kernel we restrict our attention to the case where
P is even and define

Dy(x1, %55 X3, X4) =Si(X1, X35 X3, X4)
DXy, X5 5 X3, X4)=Sy(x1, X3)SX2, X4) + S(x1, X4)S(x2, X3)
G(x)=(D,— Do,)(x) .
The Bethe-Salpeter kernel K is defined to be the solution of the equation
D,=Dy,+DyK.D,. 2.7)

We regard D, and D as operators on L*(R?)® L*(R?) where ®; is the symmetric
tensor product. Hence formally

K,=Do'~D;'=3I'I'~D;". (2.8)
Let H, ; be the Sobolev space defined by the inner product
L) ={fi(=A+m3)* gD 1ara -



Decay of the Bethe-Salpeter Kernel 147

Glimm and Jaffe [9] have shown that in any P(¢), theory with a positive mass,
the Bethe-Salpeter kernel (t=(1)) is defined and is a bounded operator from
®2H ., to ®2H_,. We shall define D, * for weak coupling by a Neumann series

D '=(Dy,+G) '=(1+Dg,'G) 'Do,* .
Hence

K=(14+Dy'G) *(Dg,'G.Dg,"). (2.9)
We isolate the singularities of Dy, G, using integration by parts

Cl0)y," Glxy, X, X3, X4) = — A P(D(x1)) 15 D(x,); D(x3); P(x4) D
and

C(0);,' C(t)s, G(x) = A2 P'D(x )15 P(D(x2)) 3 D(x3); Dx4) (2)

= A6(xy — X)C P (D(x 1)) 15 P(x3); D(x4) (1) -

See [1] and [9] for similar calculations. Using (2.5) we can write

Dot G, =AA,(8)=A8(x1 — x) A5 (X, X3, Xa) + A2 A5 (X1, X5, X3, Xg)
also

Do' G Dot = AB,(t)=Y A6WBY(1),

v Bk

where 6% is a product of § functions of (x;— x;). The kernels A,, A5,, BY? are of
the form

Moy 1@y >0dy (2.10)

where o,(x;, x;)=k(t, x;, y;) or 8(x;—y;). By the cluster expansion [1] the function
(2.10) is exponentially decreasing in |x;— x|, i=j and is locally in L* We say that
(2.10) is in DL*. By definition we have

Agdxy, .. xg)= 2§32r(x1’ X2, V3> Ya)SdV3> X3)SVa» X4)dy

so that A%(x,, x3,x4) and A5,(x;, X,, X3, x3) are well defined functions in DL?.
Thus for small 1 we can define

K(t)=A(1+24,(2) " ' B,(0) 2.11)

as a distribution by a convergent Neumann series. When t=(1) it is easy to see
that K is a bounded function in momentum space [apart from a factor 5(Z4Pi)]-
In the case of 1p* we can write B, as

AB, =2418(x{ — X,)0(x, — x3)0(x3 — X4) + 22 Z’a(k)B(Zk)(t)
so that
K(t)=—24.0+ K, , (2.12)

where B4 is again of the form (2.10)
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If ., Q, are Polynomials in @ and P is even we define the two particle irre-
ducible expectation by

€0130:%(1)=<0Q1:0,>0) = [<Q1, P))T(x, YK D(y), Q2 pdxdy

= [<Q 13 P(x ) P(x2) > D, (X1, X3, X35 XK D(x1)D(x2); Q> (1)dx . (2.13)
We can again use previous methods to show the last term is well defined but we
omit details.

Next we state our main theorems in momentum space. We let g, p, z be the
(Euclidean) momentum conjugate to the variables

X{—Xy Xg—X3 X3+X4 X{+X,
2 7 2 72 2
respectively and we express K in these variables. The one particle irreducible
kernel k(x— y) is expressed using u as the momentum conjugate to x— y.

Theorem 1. Let k, K, and K be defined as above [with t =(1)] and suppose P is
even and ¢>0 is given. Then for m, sufficiently large and A>0 sufficiently small
k(u), K{(p, q, z) and K(p, q, z) are analytic and bounded by a constant (depending
on my) in the region

tmu®| < 3mo(1—e), Tmq°], [Im p°| < 2mo(1 —e)

2.14
[Imq'|, [Imp'|<e, [Imz%| <4my(1~e). 219

Remark. The analyticity properties of K follow formally from a bound of
the form

IK(X)' = O(X)e—m‘)(l —¢)(d2 —const.) ,
where
dy(x%)=2|x + x9 — x3 — x9| +x — x|+ |x3 — x3| ,

and O(x) is the kernel of a finite positive measure.
For our next theorem suppose Q; and Q, are polynomials in @ localized at
times < — T/2 and at times = T'/2 respectively.

Theorem 2. Let {;)' be the i particle irreducible expectation defined above,
i=1,2. Suppose P is even and ¢>0 is given. Then for mq sufficiently large and 2.>0
sufficiently small (independent of Q;)

KQ1, Q2>i| =M(Q,, Q,, mo)e_(l Fimo(1=aT (2.15)

Now we show that for the r-particle irreducible kernels defined above the
first r derivatives in t; vanish at t;=0. We remark that this result is obviously valid
in every order of perturbation theory. Moreover using Theorem B of [2] it is
possible to show perturbation theory actually establishes these identities in the
case of Ap* for weak coupling.

Forie Z let R% ={xe R*: +x°+i}. Let P, (resp. P¥) be the projection onto
L*(R%) (resp. onto L*(R% xR%). To compute the derivatives in t we shall use the
formula

SiX ;s X)=—4[SUX 15 s X5 20, 2,)C 7 Xz, 2,)dz, (2.16)
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where the superscript denotes a derivative with respect to ¢;. Recall that the semi-
colon indicates which subtractions are made in the truncation (1.3). The right hand
side of (2.16) is well defined using integration by parts as above and the identity

Cl=-C/icct.

See [1, 8].

The proofs of the following lemmas are complete except for minor technicalities
about the domains of various kernels. These technicalities may be dealt with either
by using a lattice approximation or by a more indirect method using integration
by parts.

Lemma 2.1. Let I; separate x and y. Then
ir k(t, x, y) =0 r=0,1. (2.17)
dt; =0

When P is even (2.17) also holds for r=2.

Proof. First note that since Si(x;y)=0 when ;=0 S; commutes with P, .
Hence I',commutes with P, and therefore (2.17) holds when r=0. By (2.16) we have

Sf(x1 3X2)= _ﬂsf(xﬁ X2521, Zz)C_ 1(Z1> zy)dz .
When t;=0 and x9, 20 <i<x9, 29
Six15 X521, 25)=87(x15 21)87(225 X3) . (2.13)

Combining the above identities we obtain

d d
g Kexy) =E(F(t)—C_1(t))

dt; 0 =0

:(_FIS;:FI_ C_l)l:,-:o

=ISCt8r,—C1=0.
The factor of § in (2.16) is eliminated by interchanging z; and z, above. Now
suppose P is even. Then

§z= —%fsf(x1a X232, Zz)é— 1(21, z,)dz
+HS§(X1, X25215225 23, Z4)C_ 1(21, Zz)c_ l(zaa z4)dz .
When t;=0 and x}, 20 <i<x9, 23, 23, 23
Si(xy, .- z4)=8(x1, 21)S5(x3, X35 23, 24) -
There are eight terms of this form obtained by reordering the positions of the z;.
Hence
d? .. . ..
i k(t, x, y) 0= =S +20 S TSI — C_l(t)lt,:o
i =
=C! “%IC_ (%, 22)8(22, X35 23, 2a) (x5 — Y)C_ Y23, 24)dzdx,
+2jC_ (x, 208123, X5 23, 2 (x5 — y)C'” 1(23, zg)dzdx, — ¢!
=0.
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Lemma 2.2. Let P be even. If [, separates x{, X, from X5, X, then

dl‘

— K(t, x) =0 for 0Zr<3. (2.19)
dt; =0

If I, separates x, from x,, X3, X4, (2.19) holds for 0=<r=<2.
Proof. First suppose x?¢, x <i<x3, x$, and let r=2. Then from (2.18)
dZ

—_p-1
a2

=C'—IC.‘llt,:O :
=0

Since K,=Dg,' — D; ! we have
d2
s

It is easy to show D, and D; ! commute with P*, P~ and P°=1—P"— P~
when t;=0. Note that at ;=0

K| =C'C'+D; DDt -2D DD DD Y, (2.20)

;=0

DM Y15 ¥25 V35 Vo) =5 0015 V) (Vas va) + 5001, v {2, v3) s (2.21)

on the range P°. Since
D= ‘%jS§(x1, X3 X3, X4521, Zz)clal(zb z,)dz ,

one can check that P*D,P~ =P~ D,P* =0 for t;=0. This implies that the third
term on the right of (2.20) can be written

—2D;'P"D,P°D;'P°D,P*D; Y|, _,.
If 9<i<y9 and t,=0 then

P™D,P°= —[Dx1, X251, 21)C ™ Uzy, 228z, y2)dz .

Note that there are four configurations of the y° which contribute to the D’s of
(2.20). Moreover for each such configuration only one term on the right of (2.21)
contributed to P°D, ! P°. Hence the third term on the right of (2.20) is

—2C71C.
The second term equals
P~ D.P* = —3[S(xy, X33 X3, X435 21, 22)C Uz, 2,)dz
FLI860xy, Xg3 X3y X435 215 253 23, 2)C 7 M2y, 22)C T Hzs, zg)dz . (2.22)

For t;=0 the first term on the right of (2.22) vanishes as above. When
29,29<i<29, 29 and t;=0 the second integrand equals

Si(x1, X35 21, 23)81(22, 245 X3, X4)C ™ 1(21, 7,)C™ 1(23, Z4).

There are four such configurations of z; which contribute to (2.22). Now (2.19)
follows easily when r=2. The remaining cases are similar.
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Lemma 2.3. Let Q, and Q, be as in Theorem 2. Then for — T/2<i< T/2 we have
dr
dt;
at t,;=0 for 0<r=j.

The proof is similar to that of Lemmas 2.1 and 2.2.

(013 0,X(1)=0

3. Analyticity

Let f(t) be one of the r-particle irreducible kernels of Theorems 1 or 2. By
Lemmas 2.1 and 2.3 the Taylor expansion consists of only one remainder term

fe=0={3]1; (;i' 8{;‘“) f(tydt (3.1)

when f is r; particle irreducible across [;. More precisely if f =k(z, x, y), i ranges
over x° <i<y°and we take r;=1 (or 2 if P is even). In the case of the Bethe-Salpeter
kernel (P even) suppose x§ <x9 <x3<xJ. Then i ranges over xJ <i<x3. We take
r;=3 for x3<i<xJ and r,=2 otherwise. When f(t)=<Q;; 0,)(t), i ranges over
the interval (— T/2, T/2) and r;=j for P even, j=1,2.

In this section we show how to estimate the ¢; derivatives by “globalizing”
analyticity techniques of Frohlich [7]. Frohlich obtained “local” estimates on
connected Schwinger functions S° by getting bounds on the logarithm of the
generating functional J(hg(-)) for small complex 4 and g in local test function.
By the Cauchy formula for derivatives these bounds yield estimates on S°. In
general J(hg) can vanish for global g and thus destroy the analyticity of the
logarithm. However for weak coupling and small |h|, J does not vanish even for
global g because the cluster expansion converges [1]. This fact will be extremely
useful as a tool in obtaining bounds for nonlocal ¢ derivatives.

In order to motivate how we use analyticity methods to bound ¢ derivatives
suppose we want to bound [ [;0/0t,{®(x))(¢) for ie ICZ. From (2.16) we see that
multiple derivatives yield generalized connected Schwinger functions, with nume-
rical kernels C™'=—C~'CC~! localized along the lines /;. There are two basic
problems we encounter in attempting to estimate the ¢ derivatives.

The first problem is that when we take |I| derivatives we get |I]! (unconnected)

0 . L
terms. Furthermore the kernels a C are not localized about a lattice line segment
i

b as in [1] but along an entire line and it seems that one needs tree graph decay to
control the dz integration in (2.16). Eckmann, Magnen and Seneor [2] have
established such a decay but with an |I|! coefficient.

The analyticity methods avoid both of these problems. To illustrate this
consider a perturbation of V (1.1) by

Yier @ =3I |0 i<z P(x)dx . (3.2

Let {®(x)>(h) denote the expectation of &(x) with respect to the perturbed action
(3.2). The derivatives of this expression with respect to h; are analogous to the t;
derivatives (2.16).
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The cluster expansion [1] shows that for A/m3 < 1 the expectation is an analytic
function of h; and that |<®(x)>(h)| <M for |h]<e~*. We can choose ¢ small for
large m, by scaling. Then

0
[Teer A <<I’(X)>(h)ih e D)W [(h; *2mi)dh (3.3)

where the contour is || =&~ !. Hence we have the bound
[ 5 <O 00 64

These methods may be used to give new bounds on S%x;...x,) of the form
IS/ < Const ] [4N(4)!, (3.5)

where N(4) is the number of x; localized in the lattice square A. This bound
depends on weak coupling. In statistical mechanics such bounds appear in [10].

Suppose that we wish to extend a bound of the form (3.4) to
CB(x)8:5.. . 5:P(x,)%: )¢ In general the perturbation h,®! is not analytic in h since
exp (—h®®) becomes unbounded for negative h. So we consider the new inter-
action density

[T+ Ry, 4, D0(x):dx)e™ . (3.6)

One can show for weak coupling that the corresponding expectation is analytic
in h; for |h]<e™! and the bound (3.4) follows. Since it seems clear that { »(¢) is
not analytic in ¢ we shall form an expression similar to (3.6) which is analytic
in the h parameter and whose derivatives in h at h=0 yield the ¢ derivatives.

Let us compute the ¢; derivatives using integration by parts. The basic formula
is [1, 8]

a — AV — a — AV
where
i C- A =jd d i C(t )—2
ar, = Fe= I 5 MO N S a008(y)

For ICZ let I be the r fold disjoint union of I with itself. We order I” by defining
i™ < km) if either i<k or i=k and m<m'. Here m and m’ denote the copy index
for i and k respectively. For aCI® let

d

6?=niaﬁa

where r; is the number of copies of i which are in a. Let CI® and let 22(B) be the
partitions of . Then by Leibnitz rule we have

afj.e_ AVQdcp(t): Zneg‘(ﬂ)jnaen[agc ' A¢]€_1VQd¢(t) . (37)

For each o C I we introduce a complex variable h(x).
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Let j=(j,,j,) € Z* be a localization index and define
Cix1, x3)= X4, (x1)Clxy, xz)XA,2 (x2),
where y, is the characteristic function of 4. By (3.7) we have
e~ Qdo(t)
0 _
= Zneg’(ﬁ) (naen 5;1(——> jnaen I_Ijel“(l + h(a)a?cj : AtD)e AVQd@(t)
o) h=0
(3.8)

Note that if more than one copy of an integer appears in o then 0;C=0 because

C(¢) is only linear in the ¢;. The next two lemmas enable us to make a connection

with ¢ derivatives and derivatives in the parameter h(«) introduced above.
Define

0
55 = Zne@(ﬂ) naen m .

Lemma 3.1. Let F, and F, be smooth functions of h. Then

5£(F1 Fz) = Zacﬁ (57.F1)(5£/“F2) .

0
Proof. 5£F1F2=Zne@(m naen%FlFZ

0 0
=Z‘rze@(ﬁ) Z"1+"2=" (nalenl ah(al)Fl)(nazeﬂ:z WFZ)

0 0
=Zacﬁ (ane@w nanem m F1>(mea> Hazenz MFZ)'

Lemma 3.2. Let f(t, h) be smooth functions of t and h such that
5ffjlh=0 = 5£fjlh=0

then

aﬂ_[fjlh=0=5ﬂ—[fjlh=0 (3.9a)
and

O Mh=0=0h =0 - (3.9b)

Proof. (3.9a) follows from Lemma 3.1. We establish (3.9b) by induction on |f],
the number of elements of . By Lemma 3.1

0=0ff ' f=Y0orf"o"f.
Hence by induction at h=0 we have
oS == I Ny S o
= SapOif b =t
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Let Q be a polynomial in ¢. We define the expectation

_”—Iorc ™ njeZ"(l + h(oc)@?‘Cj “Agle” 'WQd‘p([)

Q=] T+ W)C, - dgye ™ da(s)

and set
C(t, h, x, y)={DP(x)P(y))(t, h) at A=0.
Similarly using (2.4)+2.6), (2.12), and (2.13) we can define
k(z, h), K(t, h), { Yi(t, h).
Let f(¢, h) denote one of the above kernels. Then (3.8) and Lemma 3.2 imply that
S (t, W= o=0f(t, Wlpeo, oaCI™. (3.11)

Notice that f(t, h) is formally analytic in A.
Let w(x,...x,)e L**([]j=14,). For acI®” let d(@)=co if « contains more
than one copy of any integer. Otherwise we define

d)=0 Jauj=1
d()=max {|i—jl:i,jea}.

(3.10)

(3.12)

The following theorem estimates S(z,h) as a function of h, where h=(h())
and ©e 2(1").

AET

Theorem 3. Let ¢>0, re Z* and 1CZ be given. Then for my(r, ¢) sufficiently
large and Amy, r, &) sufficiently small

JWOEKT TE@(x)7 > (8, hdx = <Q,, (¢, h)
is analytic in h, for h in the region
(o) S et —eMd@* L) (3.13)

Let wy-wy,=w and T =dist.(supp wy, supp w,). Then for h in (3.13) there is a
constant a such that

I<Qu, Qu, ) (t, M S e T s M (]| Lars, deg Q) . (3.14)

The proof of this theorem is given in the following sections. The idea behind
the proof is this: We shall show in Section 5 that

IJa:C.(x, y)dyl < O(1)e ™4 .

This estimate comes from the fact that the Weiner path [see (1.4)] must hit each
linel,, iex so that it must traverse a distance of at last d(«x). When « has more than
one copy of the same integer 07C vanishes so we can take d(«)= co. If o contains
only a single element we do not gain a convergence factor from the covariance.
However for every h(a), x e 7 there is a derivative A, which differentiates the
exponent giving us effectively a factor of 1*”” where p is the degree of the interaction.
This is because

(A" exp (— AV)~ AP
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as one can easily check. By choosing A< e ™ and m, large we can see that
)07 C 44

is small compared to 1 when £ lies in the region (3.13). Hence the cluster expansion
in the new parameters (s,) can be applied as in [1] to show

jl_[ac I 1—[]624(1 + h(a)ﬁac A(p)Qe— lvdﬁﬁ( )
Tl 100 ] Lieze (1 H(@)02C ;- Ag)e™ " dd(z)

is analytic for h satisfying (3.13).

Next we state a lemma which will be useful for establishing Theorem 1.

Let {{(x), (je Z?) be a continuous partition of unity with {; supported in the
region |j—x|< 1.

(@)(h, t)=

Lemma 3.3. Let f(x) and g(xy, ..., x4) be continuous functions. Under the
hypothesis of Theorem 3 the expressions

[z, 1, 0, %) £ (L 0)dxs FK(E by )] [i= 1 Gix)g(x)dx (3.15)

are analytic and uniformly bounded by | f'{|,,19¢| ., for h belonging to (3.13). Here||,
is the sup norm and K may be replaced by K ;.

We now turn to the proof of Theorem 1 using Theorem 3 and the above
lemma. The proof of Theorem 2 is similar. It suffices to show that for t=1 and
h=0, (3.15) is bounded by

[f| e 3mot =801 =Const) 1 p=mo(1 =Dt J& ~ Const.) (3.16)

respectively. The analyticity of the spatial momenta (p', ¢*...) is obtained from
the above bound using the Euclidean invariance of k, K, and K.

Let B,=[0,;°—1]% be the three fold disjoint union of the integers in the
interval [0, j°—1]. From (3.1) and (3.11) we have

kO, X)L (x)= o[ [t /2)0¢ k(t, 0, x)dtL; f (x)
= [o([ Tt /2008 k2, 1, 0, )= odt L f (X)

'—j(ntz/z)Zneg‘(ﬁl) §k(t h 0 x)naen 2 dhdtc f(X (317)

where the contour is given by |h(a)| = ™! 9@+ After integrating over x and
applying Lemma 3.3 we see that each term in the sum over = is bounded by
O exp [—mo(1—e)) ,(d()+1)]. It is important to note that for me 2(f,),

Zaen(d(a)+ 1)_2 300— 1) .

For the Bethe-Salpeter kernel we shall suppose 1 <j? + 1 <0, , — lfori=1,...,4,
and set

Bo=[R+1 78— 11PUIE+1L/8 - 1PUI8+1,ja — 119

(Other configurations of j? can be treated similarly.) As above we have an equation
entirely analogous to (3.17) and

K (xys s X)gO] Ti= 1 x|
=Const. |g|ooZneg’(ﬂz) exp [—mo(1— 8)Zaen(d(a) +1)]. (3.18)
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We note that for m e 2(8,)
Yaen(d@) +1)Z 303 — 8 — 21 + 48 — 5§ — 21+ 31 — /5 -2
2d,(j°)—20.

We now estimate the sum over € Z =2(f,) or Z(f,). Consider all partitions =
having » elements o;, i<n ordered so that min o;<min o;,,. Given a sequence
of positive integers ¢; we count the number of partitions for which d(o,)+1=c¢;;
1 <i<n.If we fix c and min o then there are at most 2* o C Z® such that d(x)+1=c
because « is in fact a subset of I where I=Zn[min«, mina+c]. Given the
sequence c;, we can choose min ¢; in at most 4c¢;_; ways or else the o, would not
form a partition. Thus the sum (3.17), (3.18) is bounded by

4c; ,—mo(l —¢)c,
Zn Zcfgl,z"c.»gco Hi4ci2 e

- 1-2
= Co ZC:‘% 1¥cizco ni el o

écozcgcozce—mg(l—2s)c§e—mo(1—3e)co’ (319)

where ¢, =3|j°—1| or (d,—20). We have used the fact that me 2 has at most
¢o elements and that there are less than 2° sequences ¢; =1 such that ) ¢;=c. Note
that K may be replaced by K, in the above argument.
We now turn to the proof of Lemma 3.3 which follows the first part of Section 2.
Proof of Lemma 3.3. We express k, K using (2.5) and (2.11)

k(t, h)=A(1+AA,(t, )~ 'By(t, h)
K(t, h)= M1+ AA,(t, b))~ 1B,(t, h).

By Theorem 3 A,(t, h, x, y) is in DL* ie. decays exponentially in |x—y| and is
locally in L*. Thus the Neumann series for (1414,)”! converges for small A and

k(z, b, x, y)— CP(D(x)): (2, h)o(x— y)
is in DL*. This establishes the lemma for k. Since
“_[:‘ o(x;, y)< 1_[?3(D(J’i)p'5>([, h)dy

is in DL?, where a(x, y)=k(t, h, x, y) or 8(x— y), BY), A,, A% are in DL?. From the
identity

AZ(t, h’ X1seees X4)= 25B2(ts h> X15X25 Y3, )’4)S(t, h’ V3, X3)S(t, h’ Va, X4)dy

we see that A5(t, b, X1, X5, X3, X4) and A%(t, h, X, X,, X3, x3) are in DL?. Thus the
Neumann series for (1 +44,) ! converges as well and we see that the lemma holds
for K. A similar argument works for K.

Remark. The continuous function g(x;, ...x,) is introduced to control the ¢
function singularities which arise in the Bethe-Salpeter kernel. By choosing 4
sufficiently small we can bound (3.15) by an arbitrarily small constant times
1flw»19ll- This is not so for K, since we have already factored out the
coefficient A%,
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4. The Cluster Expansion

To obtain Theorem 3 we apply the cluster expansion (see [1]) in the parameters
s,- This section reviews the cluster expansion in a slightly different form.

Fix a region A whose boundary 04 is a union of lattice line segments. A serves
as a space cutoff. We define s=(s;,) for b e A, and we fix s,=0 for b e dA which
imposes Dirichlet boundary conditions on dA in the covariance C(s,t). See
Section 1 for notation. If I is a union of line segments [i.e. I' € U (A)] let I denote
the complementary set A, ~I". Since we shall expand about s=0 i.e. a decoupled
theory, it is convenient to introduce the notation

S(D)y=s,,bCI;s(I'),=0bCI*,0A.
Hence C(s(I'), t) has Dirichlet boundary conditions on I'* and the corresponding
Gaussian measure d®(s(I'), t) factors over the components X of A ~1T° so that
A~T=X0.. . uX,. (4.1)

Let X, be the closure of X;. Note that X, e U(A).
For each Y e U(A) and each n € (1) we define

FY(ta S(Y*), h)
= [T laer [ Tezs [L+R@0C(t, s(Y,)) - Agle™ " VQydd(t, s(Y,,) (42)
where Qy is the product of those fields of the monomial @ which are localized in Y.

Let A, CU(A) and I'C U (A4,). We define Y, to be the closure of the components
Of Al '"Fc.

Lemma 4.1. Let the family {Fy(s(X,))} be defined by (4.2). If I € U (A,) then

Fy(s)=]1: Fy(s(U'nYy) (4.3)
with Y, defined above.

Proof. Note that

0rC{t,s(IN)) - Age VIQy =0 4.4

unless both j; and j, are in Y;. Hence

(1 +6?Cj : Acb)e_V(Al)Q :Hi [(1 +5?Cj : A¢)3~V(Yi)QYi] .

The lemma now follows by taking a product over « and j by the factorization
property for the measure d®(s(I')).

We say that a family of functions {Fy(s(X,))} decouples at s=0 if (4.3) holds
for each 4, € U(A) and each I' e U (4,).

The cluster expansion is derived as follows. By the fundamental theorem of
calculus for any C* function F(s) we have

F(S)=Zrev*(/1) ﬁ)m 6£F(a(l"))d0(F) > 4.5)

where 0L =], 0/00,. The integral does not appear when I'=#. Let X,CA.
If F decouples at s=0 then each term of (4.5) is a product of the X; defined via (4.1).
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Let W be the union of all X; which meet X,. We hold W and W[ fixed and resum
over all I'e U (A~ W). This yields

F 4(8)=Y x5x0 Qrixo Jo 0o Fx(a(D)do(D)) - F 4. x(s). (4.6)

Here X ranges over elements of U(A) and I' ranges over elements of U, (X)
(including I'=0) such that:

Each component of X ~I"° meets X, . 4.7

If no such I exists for a given X the term is defined to be zero. Note that (4.7)
implies each component of X must meet X .

Theorem 4. Suppose F is a C' function of s=(s,), (b€ A,) which satisfies the
following conditions

A. F(s) decouplesat s=0

B. [F(s(@)|=1/2.

C. sup |07 F y(s)| < ®WIXlg=KITT

Then for K sufficiently large (independent of A)

|F g~ x(S)F 4(s) 7181, (4.8)

Proof. Let by € A,, and define
OFx(s)=Fx(s(X,))— Fx(s(X,~by)); if b,CX

=Fy(s(X,)) otherwise.

It is easy to check that §F decouples at s=0. Note that

Fy(s(P (A~ X), )= Tacx FASOF 4 x(s(I' (A~ X),). (4.9)
We reexpress (4.6) in the form

OF (s(I) =Y xcp, cr(X)F AS(I' (A~ X)), (4.10)
where

crX)=[Tacx Fa* J§" L x 05 0F x(o(I")do(I").

Since Xo={b;}, (4.7) implies X is connected. If X is a single lattice square then
b, C0X and 6Fy=0. Thus we can assume |X|=2. To bound c¢(X) we note that
there are at most 22!*! choices of I' € U (X). Also since X ~ I is connected

IX|—1=2i1).
Combining the above observations with B and C we have
lep(X)| S e KUXI= D3 .11

for large K. Next we state an elementary combinatorial lemma. See Proposition
5.1 of [1] for the proof.
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Lemma 4.2. Let X, and |X| be given. The number of sets X € U(R?) such that
each component of X meets X, is bounded by

LOWIX]
We now establish (4.8) by induction on |I'|=n, and we set F=F ,. Assume that
SZIF(S(I~by) - F(s(ry)) '1=2
for |I';] <n. Consequently for I',CI'y, |I'{| <n we have
|F(S(I"5) - F(s(Ty)~ =2l (4.12)
By (4.10), (4.11), Lemma 4.2 and the induction hypothesis
[F(s(I") - F(S(I'~by)) ™' = 1| =[0F(s(I") - F(s(I'~by)) ™|
<D o, CHXIF(S(DN (A~ X) JF(s(I) ™|
éZXDln CF(X)22[X[ é Zr?_Z eO(I)r4re—K(r- 1)/3 é%

for K sufficiently large. Thus we have established (4.12). To complete the proof
of the theorem we use (4.9) with I'“=¢

IF a~x(OF 4(8) " =] Lacx Fa 'F 4(s(A~X),)F 4(5) ™|
§21X(22IX|:gIX| .

In the next section we show that if F is given by (4.2) there is a constant a such
that

0L Fx(t, s, )| S e KIlg* OWIXI. gmoxdesQpp(| ||, /5, degQ) (4.13)
for h belonging to (3.13). We now prove Theorem 3 assuming that (4.13) holds
for K sufficiently large. The proof follows the lines of ([1], Section 4).

Proof of Theorem 3. Let X,=X3uX3 where X} is the localization of Q;.
We express {Q, ; 0, >° by introducing an independent copy of field @’ so that

20015020, 5, ) =<(Q1 = Q1NQ2— Q2(t, 5, h) ,

where the expectation on the right is the product expectation. Now let F be
defined by

Fy(t, s, )= Luex [ Leze (A +h()01C; - Ag) - (1 + ()07 C; - Ag)]
(01— 01)(Q,— Q)™ MOV AP(s, 1)dd(s, 1) (4.14)
and let the normalization Z(t, s, h) be defined as in (4.14) but with the Q’s absent.

F and Z are easily seen to satisfy (4.13) and decouple at s=0. Furthermore for
small A

1] =Ife” " dabis, 0> 24

hence Z satisfies the hypotheses of Theorem 4. By using the symmetry ¢—@’
we observe that Fy =0 if no component of X meets both X and X}. We expand F
via (4.6)

Q15020 8, h)ly=1 =
é/}iTrI{lz ZX|ZA~XZ; IHZHX jangdS(rﬂ .

. —1
1&12 |F4Z "
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By Theorem 4 the first factor is bounded by 8*I. To bound the second factor we
first observe that X has at most degQ components, hence 2|I'|=|X|—degQ
(see 5.1 of [1]). By (4.13) we can bound the second factor by

Me~K]X|eamodegQ )

Since at least one component of X meets X§ and X2 we may assume that
(X)=dist(X3, X3)=T. Now we have

IKQ1; Q)L h)| < Memodeey" o 81Xl = KIX]
< MefmodeeQp=T

Here again we have used Lemma (4.2) to control the sum over X.

5. Estimate of oI F

To complete the proof of Theorem 3 it suffices to establish (4.13) for K suffi-
ciently large and h belonging to (3.13). The proof of this bound relies heavily on
Sections 8-10 of [1]. The proof is identical except of course for the additional
factors

HBEBO(X) (1 +h(°‘)5‘tzcj “Ag),

where By(X)=m, X(Z*nX)* and B=(x,j). [We make a change in notation:
7 and Y are replaced by n, and X respectively in (4.2).] We expand the above
product in the form

ZBC Bo HﬁeB h()diC;- Ag -
To obtain (4.13) it suffices to show that for each BC B,

]afj[n/xss h(“)a‘fcj : Aq)]Qxe—V(X)dq)(t, )= DH[JEB e P2 > (5.1)
where
D=0 WIXlg=KillgamodegQyyy))  (2pdeg Q) 482 (5.2a)

and d(p) are constants to be defined such that

Ypenon € PP=0(1)X]. (5.2b)
Here we are using the fact that by (5.2b)

ZBOD B nﬁeB LS HBGBO (1+ e_d(ﬁ)/z) = n[ieBo eXP(e_d(m/z): O

We compute the left hand side of (5.1) as in (3.7)

Zrl +Iy=r 5[651 nBeB h(a)a(:cj‘ 44] [Zne P(I2) Hyen 01C - Agle” W(X)Qxdcp(t, s)
(5.3a)

and again by Leibnitz rule
0 ([ 1s0:C) =25y =1, [ 15 0%02C;. (5.3b)
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The sum ) zy;=TI", is over sequences of mutually disjoint subjects whose union
isy.

There are at most 2! terms in the sum (5.3a) over I'y, I',. If we fix I'y and T,
and substitute C=);_,+C; the sum in (5.3) ranges over

UAS ‘@(FZL {jy}yen {’y;i}zyl’j =TI

For each term in the sum (5.3) let T(x, {j}, {7;}) be the number of terms coming
from the differentiations 44. Let N(4) be the degree of a resulting monomial of @
in a lattice square 4 and let |B| be the number of elements in B. Since there are at
least g=max (0, 2|B|/p—degQ) differentiations of the exponent AP(®) each term
has a coefficient of | 1. By Corollary 9.6 of [1]each term resulting from differentia-
tion is bounded by

2011wl o™ g x NCA) MY (5.4)

for all my=1,0=|4| =4, and ReA1=0. Here w' is the w of Theorem 3 multiplied
by the kernels h(x)d}6;C; arising from (5.3) hence w' is of the form

W= ] lapen M@ G1C] Ler 1C; [ 19
where the integral is over the contracted variables in the § function. See Section 9
of [1].

Next we turn to estimates on 0;0;C;. Let

d(j, y)=max,, {dist(j;, b) +dist(j,, b)} , (5.5a)
d(p)=d(. @) =max {d(i. /). lis—Jal} (5.5b)
d(y, )= min,, dist(b, [; ) , (5.5¢)
where i(«) is the least integer in . With this definition of i=i(«) we define
X =limnX]
to be the length of /;,,nX. Note that (5.2b) holds because
Spenm e PP=Y; e UM LY, 01X, SO(1)X]. (5.6)

Also recall the definition of d(x) given by (3.12).

Lemma 5.1. Let 1<g< 0, >0, and K, be given. For mgy(e, K ,, q) sufficiently
large there are constants M ,(y, ), p € B and M5 such that a0

10207Cll1., = M y(y, B)e~4@mott ~e = Kallg=dhm) (5.7)
where for I' |, I'; € U, (X) we have

Zz;fn [Tpen Moy, By e a0 (5.8a)
For a=0 (5.7) holds with d(j, y) replacing d(j, «) and where

Yreown | Len Ma() S M. (5.8b)

Remark. The lemma also holds where the kernel 0207 C (x, y) above is regarded
as a function of a single variable 0707 C/(x, x). The single variable kernels do not
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occur when the Wick order of the interaction is always defined to agree with the
covariance of the Gaussian measure.

The proof of Lemma 5.1 is as in Section 8 of [1]. (See [11], Section 5 for a
correction). The case a =0 is exactly as in Section 8, hence we suppose a==0. We
combine two estimates. It is easy to show as in [11] and [1] that

1070:C;l1 1, "< NG5 Clly, P S e Hemolt =29 = 24020 (5.9)
By Proposition 8.1 of [1] we have
1010:C 1P S N90CS 15, S M y(y)e ™ Kalrlemmondlios3 (5.10)
where M,(y)= K§(y) defined in (8.5) of [1]. Multiplying (5.9) by (5.10) we have
10105C |, < e~ demott = 20~ Kaltlg=dU.d NI (y)e~ i) =40
Let
M(y, B)=M(y)e 40 e 400
To establish (5.8a) assume
Yseviin Ma(le " £0(1). (5.11)
Then
ZZVZFH [Tses Mo, BY=T Tpen Xyeviin Ma(y)e™ @07 e™ 40

éHﬂGB O(I)e_d(j’a)él—[aeno eO(l)lXa[ §6M3[X| .

In the last line we have used (5.6) and the fact that for fixed « there are at most
O(1)|X,| choices of j (or of e B) such that d(j, )< const.
From [1], p. 230 we can bound the left side of (5.11) by

—d(j,y) - £1/3 . —d(j, )
Z)’EU*(X) MZe Uy éz;eg(x*) e emol¢|/ e G .

Here / ranges over linear orderings of a subset of X, and /=) dist(bj.,, bj).
By (8.11) of [1] the number of / € £(X ) with |/|<r and d(j, /)< a is less than

O(1)a?e2r
because there are O(1)a® choices of b;. Hence for large m,

Yoevin Ma(e VLY, O(1)a*e? Ve ol B < 0(1) .

ByLemma 5.1 and Lemma 9.2 of [1] we have

W | o < W] ase ™ KITT grmoderle=KIBI

lpene™ Moy, B) - [ [yen e "M, () (5.12)

for |4 ge‘g("w”l We have used the fact that

2] [ pep hye ™o~ < grmodesq— IBIK

for hin (3.13) and |} S e~2 ™o+ K),
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To bound the left side of (5.1) or (5.3) we combine (5.4) and (5.12) and use (5.8)
to estimate the sum over {y;}, ne 2(I',). This yields the bound

[Tpen €™ 20/2e0MIXlg= KA I+ 1B) grmodeQ

Tlpen e 0, T len e Lacx NA)!

Let n=degQ, k=|I'|+|B| and define M(4)=M(4, B, {j,},.,) be the number of
derivatives §/0¢ localized in 4 in (5.3) i.e.

M(d)=card. {f e Bj4;=4,i=1 or 2, B=(aj;,j5)}
+card. {yen|d; =4,i=1 or 2}.

The proof of (5.1) now follows from the following two lemmas and the inequality
e Mk < n".

Lemma 5.2. Both T and [ [, N(4)! are bounded by
([ TaM(A) 1) 2npk)p*? .

Lemma 5.3. There is a constant M ,(q) independent of my, me P(I',), I, € U (X)
and BC By(X) such that

[Tses e_d(m/ZZuy)m [Lexe LM< eMIXT, (5.13)

The proof of these lemmas follows Section 10 of [1].
Proof of Lemma 5.2. Let N (4) be deg. of Q in 4. The number of terms resulting
from M(4) differentiations in 4 is bounded by

(No(d)+ p)N o(4) +2p)...(N o(4) + M(4)p) = (N o(4) + pM(4))!
Since

(a+b)!<(a+b)b! and (ab)!<a®(b!)
we see that

T <[ [4(No(4)+ pM(A)NLpr™MO (M () )P .

Furthermore N(4)<N(4)+pM(4) hence the above bound holds for [[N(4)!.
The lemma now follows from the bounds

2aNo(d)=degQ=n; Y, M(A)=2(I|+|B|)=2k.

Proof of Lemma 5.3. We first estimate the sum over j,

Yiin I yen €92 < T, en (X, €~ 20n012
<[l 0= M.
Here we have used the fact that there are at most 2|X| elements in we 2(I',).
Hence it suffices to show there is a constant M’ such that
max HBeB e—d(ﬁ)/Znyen e—d(jv.y)/ZnA (M(4, B, {jy})!q)éewm )

ﬂ:{jv)v en, B

Fix a lattice square 4. There are at most O(1)a* choices of y e such that
d(j,y)<aand 4; =4, i=1or 2. Also there are at most O(1)a® choices of f=(a, j)e B
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such that d(f)<a and 4; =4, i=1 or 2 because there are less than O(1)a? choices
of j and ra choices of «. Thus there are less than M(A4)/2 choices of 3, y such that

3(d(B)+d(j,, )= M(4) e

for ¢ sufficiently small so that there are least M(4)/2 choices of 8, y such that
Hd(B)+ G, y) Z eM(4)'7 .

We can now bound (5.14) by
[ Lacx e #MO"(M(4) 1 < OOX

since |(x !)%e e < 0D,

References

1. Glimm,J., Jaffe, A., Spencer, T.: In: Velo, G., Wightman, A. (Eds.): Constructive quantum field
theory. Lecture Notes in Physics, Vol. 25. Berlin-Heidelberg-New York: Springer 1973

. Eckmann, J.-P., Magnen, J., Seneor, R.: Commun. math. Phys. 39, 251 (1975)

. Glimm,J., Jaffe, A., Spencer, T.: Ann. Math. 100, 585—632 (1974)

. Minlos, R., Sinai, Ja.: Theor. Math. Phys. 2, 67 (1970)

. Nelson,E.: In: Constructive quantum field theory. Lecture Notes in Physics, Vol. 25. Berlin-
Heidelberg-New York: Springer 1973

. Guerra, F., Rosen, L., Simon, B.: Ann. Math. 101, 111 (1975)

. Frohlich,J.: Helv. Phys. Acta 47, 265 (1974)

. Dimock,J., Glimm,J.: Adv. Math. 12, 58 (1974)

. Glimm,J., Jaffe,A.: Two and three body equations in quantum field models. Preprint

. Duneau, M., Iagolnitzer, D., Souillard, B.: Commun. math. Phys. 35, 307—320 (1974)

. Spencer, T.: Commun. math. Phys. 39, 63 (1974)

w W

— O 0 003

—

Communicated by A. S. Wightman





