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Abstract. The generating functionals of the grand canonical and canonical thermodynamic
equilibrium states of several models of free bosons with spin are calculated and the properties of the
states discussed. In particular the distribution of condensate over the degenerate ground state is
described, and it is shown that spinning bosons interacting with a magnetic field exhibit spontaneous
magnetization at sufficiently low temperatures.

§ 1. Introduction and Summary of Results

Cannon [1], Lewis and Pule [2] have rigorously studied the thermodynamic
limit of the canonical and grand canonical equilibrium states of the free boson
gas at arbitrary density and temperature. We extend their methods to three models
in which the free bosons have spin v. The aim is to prove the existence of Bose-
Einstein condensation, and to describe its nature. In particular we look at the
fluctuations in the density of condensate, comparing the canonical and grand
canonical ensembles, and we investigate a suggestion of Buckingham [4] and
Blatt [3] that a condensed gas of spinning bosons with a magnetic moment would
behave like a ferromagnet.

In § 2 we discuss the basic model of free spinning bosons in both the grand
canonical ensemble (g.c.e.) and the canonical ensemble (c.e.). It is similar to
the case v = 0. There is a critical density ρc, and for densities greater than this
critical value Bose-Einstein condensation occurs, the condensate being equally
distributed over the 2v -f-1 zero energy states. In both ensembles the density of
condensate in each of the condensed states fluctuates (more so in the g.c.e. than
in the c.e.), but only in the canonical ensemble do these fluctuations cancel out,
so that the total condensate density does not fluctuate [see Eqs. (2.13)—{2.17)].

The spin plays a very subsidiary role in this model. Essentially it provides a
means of achieving a degenerate ground state. We could have considered a
non-interacting system of 2v + 1 different species of particles with identical masses
(and so identical energy spectra) and arrived at the same answer; or, with only a
slight modification, we could have treated the case where the different species
have different masses. Qualitatively the result would be unchanged.

In the model considered in § 3 the spin plays a more significant role; the various
spin states (or, equivalently, the various species) have different properties. In this
model, in addition to demanding that the mean particle density is fixed at ρ,
we also require the mean spin density to take a prescribed value s. The condensation
is more complicated than in the model of § 2 and its nature depends on the value
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Fig. 1. The (ρ,s) plane. The line I is given parametrically by ρ = (2πβ) *{#*(!)+ Σj=-v0*(3;V j)},

H ΣvJgi(yv~~J)}; I' is its reflection *

of 5 as well as on ρ. In fact the (ρ, 5) plane splits, as in Fig. 1, into 3 regions labelled
(a), (b), and (c). For (ρ,s) in (a), there is no condensation; for (ρ,.s) in (b) there is
condensation into the state with zero energy and either spin v(s>0) or spin
— v(s<0). For (ρ,s) in (c), condensate occupies the 2v + l zero energy states and
it is distributed over them in such a way that the mean spin density of the condensate
is s. The mean spin density of the normal component of the gas is zero. In other
words the condensate is carrying all the spin (see Theorem 3).

In § 4 we consider a generalized canonical ensemble for this model in which
the particle density ρ and the spin density s are fixed. In § 5 we restrict our attention
to the case v = 1 in order to provide a more satisfactory comparison between the
grand canonical and the canonical ensembles. In particular we can compare the
distribution of condensate over the zero energy states for (ρ, s) in the region (c)
(see Fig. 2) and show that, as in the model of § 2, the density of condensate in each
zero energy state fluctuates in both ensembles but the total density of condensate
does not fluctuate in the canonical ensemble [see (5.4)—(5.9)].

In § 6 we study a model in which our spinning bosons interact with a constant
magnetic field h. This enables us to discuss the conjecture of Buckingham and
Blatt [3,4]. Their argument was that in the condensed phase a gas of spinning
bosons (with a magnetic moment associated with the spin) would exhibit spon-
taneous magnetization because even the slightest magnetic field would produce a
splitting of the ground state levels and all the condensed particles would go into
the lowest state.

We justify this rigorously by computing the magnetization nι*(h) and showing
that there is a critical temperature Tc such that for T>TC

lim m*{h) = 0,

whereas for T<TC

lim m*(/z) + 0.

It is interesting to compare the spontaneous magnetization exhibited by
this model with that shown by the usual model of a ferromagnetic system, the
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Fig. 2a and b. The distribution of condensate over the zero energy states in (a) grand canonical
ensemble, (b) canonical ensemble. ( spin 1, spin 0, spin — 1)

m*(h)

Fig. 3. Magnetization isotherms

Ising model [15]. The isotherms sketched in Fig. 3 are similar, but the cause of the
spontaneous magnetization is different. In the Ising model it is a cooperative
phenomenon caused by the interaction between the spins (which tends to make
them align themselves) overcoming the disordering effects of the temperature.
In our model this is not so, since there is no interaction between the spins. The
phase transition is caused by a splitting of the degenerate ground state, as suggested
by Blatt [3].

The method we use is to calculate the infinite volume limit of the generating
functional of the grand canonical state using the results of [2]. But Kac [5] noted
that the grand canonical state is an average of the canonical states at different
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densities with respect to a probability distribution. Specifically, there is a probabili-
ty density function K(ρ, ρ) such that if a(ρ) is the value of a quantity A in the grand
canonical state, and a(ρ) is its value in the canonical state, then

ά(ρ) = ίoK(ρ,ρ)a{ρ)dρ. (1.1)

We call K(ρ, ρ) the Kac density. It is evaluated as follows. In finite volume Λ,
take A = eiξN/\Λ\ (N is the number operator, \Λ\ is the volume of A) then a(ρ) = eiξβ

and so the finite volume Kac density KΛ(ρ, ρ) satisfies

<eiξNM>ξ.c.e=So KA(ρ,ρ)e»*'dρ = KA(ρ, ξ) (1.2)

where " denotes the Fourier transform. Thus, theoretically at least, KΛ(ρ, ξ)
can be evaluated and so we take as the Kac density the function K(ρ, ρ) whose
Fourier transform is the thermodynamic limit of KΛ(ρ9 ξ).

We then define the canonical state by means of the grand canonical state
and the Kac density, as in (1.1). Cannon [1] has shown that for the case of zero
spin, this is equivalent to the usual definition of the canonical state as the thermo-
dynamic limit of canonical Gibbs states. It seems likely that his proof will generalize
to the examples of non-zero spin that we consider.

Finally we note that it is not necessary to demand that v be an integer. The
only requirement is that 2v should be integral. Thus "bosons" with ^-integral
spin are covered by our analysis.

§ 2. Bosons with Spin

In order to study the thermodynamic limit of a system of bosons of spin v
we require a sequence of finite volumes {AL}L^1 in 1R3 which increase without
bound. It is well known [8, 9] that it is necessary to place restrictions on the
sequence; we follow [2] and take the following definition. Let A1 be a bounded
region in R 3 with unit volume, which contains the origin, and whose boundary
dA1 satisfies a regularity condition [2]. For L ^ l define

• ^ L = { x G R 3 : L - 1 x e > l 1 } . (2.1)

Let ΔL be the Laplacian on L2(AL) together with a boundary condition of the form
dφ/dn + aφ/L = 0 and let hL= — \ΔL + CL where the constant CL is chosen so that
the smallest eigenvalue of hL is zero. The eigenvalues {ηp}™=1 are ordered so that

It is a consequence of the definition (2.1) and the choice of boundary condition,
that the eigenvalues and corresponding eigenfunctions scale:

where ηp = ηx

p and φp = φρ.

Let MjL = L2(AL) for each j and let ML = (£)v_vMjL. The Fock space
can be decomposed in the following way

(2.2)



Free Boson Gas 111

and the Fock representation WF of the canonical commutation relation on ML can
be likewise decomposed

WF(h) = (g)]^vWjF(hJ) (2.3)

where h = (f) - v hj a n d WJF *S t n e Fock representation on &(MjL).
We take HL as the operator on ̂ (ML) induced by (J)-v hL on ML, and iVL

as the number operator on Fock space:

where n^p = ψj(φ^)ψj(φ^) is the number of particles with spin j in the p'th level,
and φ^ and φ j are canonical annihilation and creation operators defined from
WjF(hj) in the usual way (the algebraic background to this work is discussed in
[1,2,6]).

The grand canonical equilibrium state at temperature T = β 1 and density
ρ of a system of free particles in ΛL is determined by the following density matrix
on

σL = exp{ - β(HL - yLNL)} /trace [exp{ - β(HL - yLNL)}-] (2.5)

where yL is a Lagrange multiplier (the chemical potential) determined by the
constraint

L- \NL} = L-HmcφLNL) = ρ . (2.6)

Since the particles do not interact, the density matrix can be decomposed as

σL = (X))=_ vσ j X (2.7)

where each σjL is the grand canonical density matrix of a system of free spinless
bosons with chemical potential yL. The state σL is completely determined by
its generating functional [11,12] which is defined on ML by

Using the decompositions (2.3) and (2.7) we can compute the generating functional
as in [2,6,10]:

μL, e(h) = ΓLV= - v trace j(σjLWJF(hj))

where μF(iί) = exp{-i| |/i| |2},

Qάh,i?)=Σ;= -v <hP zh{e^-zL)-%y (2.8)

and zL = expβγL. From the properties of generating functionals and from (2.8),
or by explicit calculation we have

<4P> = 2L(e' i ' ' "-zL)- 1 (2.9)

so that the constraint Eq. (2.6) becomes
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The generating functional of the thermodynamic limiting state is defined by

μβ)= lim μLιiβ)
L—> oo

provided the RHS exists for h in some dense subset of φ j = _v L
2(R3). To determine

μρ(/?) it is necessary to consider the asymptotic behaviour of the solution zL of
the constraint equation, and the asymptotic behaviour of the quadratic form
Qilhiti)- The notation required is as follows: For ze[0,1], the operator F(z)\
L1 nZ^OR3)-*!,1 nL2(IR3) and the function ga: [0,1]-*IR are defined by

(2.10)
R3

where

x>J>>z-- π _ ^ = l β π z (2.11)

Let

(2.12)

The following theorem is a straightforward extension of the case v = 0 [2].

Theorem 1. The quadratic form QL(h,h) converges pointwise for heQ)v-vC%
to Q(h, h) where

(a) ρ < ρc: Q(h, h) = Σj= - v <hj9 F(zjhj) ,

(b) ρ^ρc: Q(h9h) = ^

where z^ is the unique solution in [0, 1] of

(a) ρ<ρc: zL converges to z^ ,

(b) ρ^ρc: zL converges to 1 wiί/z (2v+l)L~ 3zL(l —

[/ί/0) is the Fourier transform ofhj9 evaluated at zero]. The pointwise convergence
is enough to ensure that the corresponding states converge operationally [13].
In a sense, this is a physical convergence.

To determine the canonical ensemble we must evaluate the Kac density and
then decompose the grand canonical ensemble with respect to it.

Lemma 1. The Kac density is given by

ρ > ρ c .

(a) ρSQc'

(b) ρ>ρc:K(ρ,ρ) =

( ρ - ρ c ) 2 v / 2 v + l \ 2 v + 1 f ( 2 v + i X ρ - ρ J

2v \ ρ - ρ c / 1 ρ-Qc
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To prove this lemma we recall (see § 1) that, by definition, the Fourier transform
K(ρ, ξ) of the Kac density is

K(ρ, ξ)= Urn KM ξ)= lim <cxp{iξNJL3}}gmC.e.

The grand canonical expectation value can readily be evaluated to give

1 — 2 e~βηp
, ξ) =

Comparison of this with the case v = 05 given by Cannon [1], enables us to deduce
the thermodynamic limit. It is

(a) QSQc'

(b)

The Fourier transform can be inverted to complete the proof of the lemma. We
can now compute the canonical generating functional.

Theorem 2. The generating functional of the canonical ensemble is given as
follows:

(a) ρ £ ρc: μQ{h) =

(b)

where

Proof, (a) is trivial, (b) is an application of a result in [14] (see also [6]).
From Theorem 1 we see that the mean density of particles in the lowest energy

states (p=l,j=—v,...,v) satisfies

But for all other energy states (i.e. p>ί)

for all values of the mean density ρ. Similarly there is macroscopic occupation
of the degenerate ground state in the canonical ensemble.

It is interesting to compute the fluctuations in these quantities for densities
larger than ρc. For example the fluctuation in ρjλ (the density of particles in the
ground state with spin j) in the grand canonical ensemble is

Δg,.(Qn)={<Qn>ίl.c~iQnylc.Ϋ=~~- (2.14)
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Similarly in the canonical ensemble

[(2.15) is obtained by decomposing (ρ j i )^ . and <^Ji>^.c. with respect to the Kac
density.] We see from these that the density of condensate in each of the spin
states fluctuates macroscopically in each ensemble. However this is not true of
the total density Qι=Σv-vQji of particles in the ground state:

i (2 16)

4 ( e i ) = o . (2.17)

Thus macroscopic fluctuations of this quantity occur in the grand ensemble but
not in the canonical one.

§ 3. Bosons with Fixed Mean Spin

As noted in the introduction, the spin played a secondary role in the model
of § 2. In this section a means of distinguishing between the spin states by their
properties is introduced. Let

JL is interpreted as the total z-component of spin. Its average in the state deter-
mined by (2.5) is zero since <^p> is independent of j (2.9). We consider now the
grand canonical equilibrium state in which, in addition to L~3(NL} being fixed,
we also demand that L~3<JL> takes a prescribed value s. This state has density
operator σ'L on #"(ML) given by

σ'L = exp{- β(HL- yLNL- aLJL)}/trace[exp{ - β(HL- yLNL- αLJL)}] . (3.2)

The Lagrange multipliers yL and αL are determined by the constraints

L~\NL) = Q, L-\JL)=S. (3.3)

As in § 2, standard Fock space techniques give the generating functional:

μL, eM = traceσlW^ft) = μF(/?)exp{ - &L(h9 ft)} (3.4)

where

From this we may deduce that

(jήpy = eβ(yL+J*ii/(eβnϊ _ eβ(yL+J«^ (3.5)

and the constraint Eqs. (3.3) become
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Since 0 ^ (jήp) < oo we must have — yL — v|αL| > 0. This is only possible if we insist
on the (physically very reasonable) condition that

The constraint Eqs. (3.6) determine the multipliers γL, αL. To show that there is a
solution (i.e. a pair yL, aL) and that it is unique we shall appeal to Theorem 1
of [7]. Let 01 = {(y, α) e 1R2 : — y — v|α| > 0} and for (y, α) e $ define the free energy
density function:

FL(y, a) = L- 3log trace[exp{ - β(HL - yNL - aJL)}] - βyρ-βas

βas. (3.7)

Then as in the case of the free boson gas [2, 7] it is easy to check that FL is twice
differentiable. Hence Theorem 1 of [7] is applicable, and proves that (yL, aL)
exists and is unique.

To determine the thermodynamic limiting state we must investigate the
behaviour of the sequence {(γL, αL)}. We do this using Theorem 2 of [7]. Let

S'L{s) = L-*Σ;=2e-^ (3.8)

and let T: $-*@ = {(x, y) e IR2 : 0<x, y< 1} be defined by

For (x, y)eΘ define

4(*>3θ = Σϊ=-vΣ£=i n-ίS'L(nβ)^^f^-vρ\ogxy-Slogxy-\ (3.9)

wL(x,y)= -L~3 Σv-vlog(l-xv+jyv-j). (3.10)

Then FL(γ, α) = \_{dL + wL) ° T](y, α). The functions dL and wL, and the region 3)
have the following properties:

(i) wL converges uniformly to zero on compact subsets of 2).
(ii) dL converges uniformly in & to

^ - ( v ρ - ^ ) l o g y . (3.11)

(iii) the boundary d^ = Q)\Θ can be decomposed into the disjoint sets

and d^ can be extended continuously to δ ® l 5 and it diverges to oo as (x, y)
approaches d^2-

(iv) d^ achieves its unique global minimum at (x^,)^) in 3)\jd3)γ.
(i), (ii), and (iii) can be deduced from the definitions and from the properties of

the function as used by [2] and [7] (see also [6]). (iv) is a consequence of the
convexity of the function D^γ, α) = (d00 ° T)(y, α) defined on 01.

We can now invoke Theorem 2 of [7] and deduce that {(xL, yL)} = {T(yL, aL)}
converges to (x^, yj.
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It remains to identify the location of (x^, y^), to consider the condensation
phenomena expected when ( x ^ j j e δ ® ! , and to determine the thermodynamic
limit of the generating functional (3.4).

The following lemma provides the solution to the first of these problems.
Its proof, which requires a close analysis of the dependence of d^ on ρ and s,
is omitted (see [6]).

Lemma 2. The point (x^, y^) depends on ρ and s in the following way:
(a) // ρ and s are such that there is a solution (x, y) in Si of

(3 1 2 )

then (x^, y^) is this solution.
(b) // there is no solution to (3.12) but there is a solution to

vρ- |s| = (2πjβΓ* Σ-v ( v - j ) ^ v " j ) (3.13)

1 _ o o , y J = (z, I){caseb')
(c) // v(ρ — ρc)>\s\ (or, equivalently, if no solution to either (3.12) or (3.13)

exists), then (xoo,yoo) = (l, 1).

[ρc = (2πjT*(2v+ 1)04(1) as in (2.12)] .

The three cases (a), (b), and (c) are interpreted diagrammatically in Fig. 1.

To investigate condensation phenomena we must use [7]:

8^(x^yJ=- lim ^ ( X L , 3 > L ) , ^ ( x o o , y j = - lim ^ ( x L , y L ) . (3.14)

From the definition

d

 ( ]

 ι y .

We then have

Theorem 3. For (ρ, s) m eαc/i of ί/ie cases (a), (b), (c) of Lemma 2 we have

(a) l im^ X£jyj-_j=O for each j , (3.15)

(b+) H m ^ - 4 ί r ^ = ̂ - ^ ( j J ) ? 5>0 ? (3.16)

2abv
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where a and b depend on ρ and "s and are determined by

The proofs of parts (a) and (b) are straightforward. To prove part (c) we note
that (3.14) is equivalent to

Q~QC—
 n m 2u-vXL yh \L~XL yL )
L->oo

l - x ^ H α " 1 and L3{l-y2

L

v)->b-1 then

xv

L

+jyΓj 2abv

^ C

Theorem 3 has the following interpretation. We fix s > 0 and assume it to be
small enough so that when ρ~s/v, the point (ρ,s) is in region (a). The bosons
then behave as a normal fluid. If ρ is increased, it reaches a first critical density Q1

which depends on 5 and is equal to ρι(y0) [Eq. (3.17)] with y0 determined by

This corresponds to the transition from region (a) to region (b), and for
condensation into the single state with zero energy and spin v occurs. As ρ is
increased further so the density of condensate increases. But not all the extra
particles go into the condensing state as is the case in the free boson gas. For a
fixed s, the point y^ appearing in theorem 3(b) is an increasing function of ρ
[see (3.13)]; the density of condensate is ρ — ρ^y^) and not Q — Qι(y0). The
remaining particles are added to the other spin states until they too become
critically occupied. This occurs at a density ρ 2

= : ρ c +s/v. The zero energy states,
non-degenerate in finite volume, can be thought of as asymptotically degenerate
for densities greater than ρ2. For ρ > ρ 2 , condensate occupies all the zero energy
states, its distribution over these states being such as to maintain the fixed value
of the spin density. Indeed, as can be seen from Theorem 3(c), the mean spin
density of the condensate is s, whereas the mean spin density of the normal
component of the fluid is zero. Thus if ρ is increased, the extra particles go into the
condensed states and are distributed over them so as to maintain the mean spin
density of the condensate.

Using the results of [2] on the case v = 0 we can write down the thermo-
dynamic limit of the grand canonical ensemble generating functional.

Theorem 4. The generating functional μρiS{h) is given by

where

(a) s/(h, h) = Σ_ v β %

(b + ) stf{h,h) = \km2\ΦM\Q-Qi(yJ) + Σ)=~v <hpF(yl-ήhj} , s>0,

(c) fi
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§ 4. Bosons with Fixed Spin

In the grand canonical ensemble of the previous chapter it was the mean
densities ρ and s of particles and spin that were fixed. In the generalized canonical
ensemble that we discuss now it is the densities ρ and s that take prescribed values.

The canonical state μQίS{h) is derived from the grand canonical state μSi^h)
by means of a generalized Kac density K(ρ, s; ρ, s). X( , •;•>•) is such that if α(ρ, s)
is the value of an operator in the canonical state, and a(ρ, s) its value in the grand
canonical state then

ά(ρ, s) = j K(ρ, s ρ, s)α(ρ, s)dρds .

As in § 1 we take the view that the canonical state is defined through the
medium of the Kac density, and that the Kac density is defined by the following
limiting process

K(ρ, s \ ξ , η ) = l i m X L ( ρ , s;ξ,η)
L-"oo

= l im<e i ^ / L V"^ / L 3 \ c .
L->oo

KL(ρ,~s; ξ, η) can be evaluated by the usual methods of Fock space:

ί l — χ y e p
, s;ξ,η) = [\jp j ^ _ χv + jyV-je-βηLeiξ/L*eij

As in [6], the thermodynamic limit of this can be deduced from the case v = 0 [1].

Lemma 3. The Fourier transform K(ρ,Ίs; ξ, η) of the Kac density is

(a) K{ρ9s;ξ,η) = exp{i(ξρ + ήs)},

(b + ) K(ρ,5;ξ,ι?) = exp{i(ξρ1(3;J + ̂ 1(yJ)}/{l-i(ρ-ρc)(ξ + v̂ )} (4.1)

where

(c) K(ρ, s; ξ, η) = ^ ^

[The three cases (a), (b+), (c) correspond to (ρ,s) lying in the regions (a), (b+), (c)
of Fig. 1. Case (b~) is similar to case (b+).]

Inverting the Fourier transform gives

Lemma 4. The Kac density is

(a) K(ρ,s\ρ,s) = δ{ρ-ρ)δ{s~s),
e-(Q-Qi(yoo))/(ρ-ρ

(b) K(ρ,s;ρ,s)= = - —
QQ(yJ

= 0, ρ<ρ 1 (y 0 0 ) ,

(c) K(ρ,s\ρ,s) = 09 ρ<ρc

e ι v

+j

(ΠJ cJ)(2v)!(2v-l)! ^=w«-«

• (j(ρ — ρc) — s)2v~1 , ρ > ρ c ,

where [x] is ί/iβ smallest integer ^ x αnrf α απrf ί> are functions ofρ and s.
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We note that the (ρ, s)-plane can be decomposed as was the (ρ, s)-plane (Fig. 1)
and that, according to Lemma 4, K(ρ, s ρ, s) is non-zero only if (ρ,s) and (ρ, s)
lie in the same region of their respective planes. This considerably simplifies
evaluation of the canonical ensemble as it means that each region can be treated
independently. An essential step in the proof of this remark, and indeed in any
application of Lemma 4, is to understand the significance of the delta function
in case (b). ρ1(y00) and s^y^) depend on ρ and s since y^ is the solution of (3.13).
For (ρ, s) in region (b+), let y'^ be the solution of

vρ- S = (2πj8Γ* ΣJ= -v (v-JWf~J)

then the delta function restricts the integration to the line yO0=y'a0 in region (b+).
We can now prove

Theorem 5. The generating functional of the canonical ensemble is given by

(a)

(c)

where the Fourier transform of g(h f, s) satisfies

Proof. The remarks before the statement of the theorem reduce the proofs of
part (a) and (b) to an elementary calculation. For part (c) we note that the canonical
generating functional can clearly be written in this form and that the function
g(h; t,s) must satisfy

ί 0(δ;M)K(ρ,s;ρ c + ί , s)Λώ^^ .
IR2

Part (c) is just a restatement of this in terms of Fourier transforms. We have
expressed it in this way as it may be possible to solve the equation directly for

g(h;ξ,η).

The Kac density in Lemma 4(c) is, essentially, a product of two Laplace trans-

formation kernels: exp^ — - — [v(ρ — ρc) + s] \ and exp I — —— [v(ρ — ρc) — s~] >. Thus,

[ 2av J [ 2bv J
since the Laplace transform of J0(x*) is ρ~1e~ll4β, the term g(h;ρ — ρc,s) in
Theorem 5 (c) is, again essentially, a convolution of 2v + 1 zero order Bessel
functions. Its precise nature is too complicated to be worth recording here (but
see [6]); for the case v= 1, however, we give it explicitly in the next section. We
also postpone a quantitative discussion of condensation until then, when the
differences between the canonical and grand canonical states can be more clearly
displayed.

§ 5. Bosons with Spin 1

As an example of the convoluted arguments of the previous section we
consider the case v = l . The case v = ̂  is too simple to illustrate adequately the
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ideas. We shall only discuss region (c) as regions (a) and (b) are similar to the
free boson gas.

Let t = ρ — ρc, then from Lemma 4 the Kac density is

Let σ and τ be defined by σ = 2~1(s + ί), τ = 2~1(ί — s) and let the Jacobian of this
transformation be included in the transformed Kac density fc(ρ, s σ, τ):

e~σ/a -τ/b
2 '

aλbλ

To determine the canonical generating functional we must determine a function
/(σ, τ) such that for all a, b

^--a«h-^t«°e--b«2-i (5.1)

where α? HΦi(O)l2l^/O)l2 Then the function g(h;t,s) appearing in Theorem 5(c)
will be given by

/ 2 ' 2
(5.2)

m i n [ τ τ
Theorem 6. For (ρ, s) in region (c) and v = 1, the canonical generating functional

is

s > 0: μc(h) = μF(h) {^ f0 i o ( 2 % 1 ( σ -

5<0: μc(h) =

where σ = (ί + s)/2, τ = (ί — s)/2 and

Proof. We use the fact that the Laplace transform of J 0 ( χ ^) ^s ρ~1^
In (5.1) let x = l/a,y=ί/b, then the right hand side can be written as follows:

x + y
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where χ [ 0 τ ] is the characteristic function of [0, τ]. Together with (5.1) and (5.2)
this gives Theorem 6.

The proof given here can be extended to the more general case (i.e. other than
v=l), and so we see how the convolution of Bessel functions mentioned at the
end of § 4 arises.

The series expansion for J0{x*) is uniformly convergent so can be integrated
term by term to give

(5.3)

We use this to evaluate single spin correlations. Let K~ι denote the operation
of taking the inverse with respect to the Kac density, i.e. evaluating a canonical
average by decomposing the corresponding grand canonical one. Then (5.3)
shows that

ατ ατ

s<0:

Together with the analogous expressions for K~ι(e~a°Co12) and K~\e~*2-ιhl2)
these give:

[All are, of course, zero for \s\ > t.] It is interesting to compare these with their
values in the grand canonical ensemble. Solving the equations for a and b in
Theorem 3(c) gives

(5.5)

where F— ρ — ρc. The comparison is best appreciated diagrammatically (see
Fig. 2).

The variation is these quantities can also be evaluated. It is found that in
both ensembles they fluctuate macroscopically. For example

) , (5.6)

(5.7)
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However, when the total condensate is considered [this involves calculating terms

such as K'1 [a -I it is found that
\ a + b)\

(5.8)

(5.9)

So, as mentioned in the introduction, the total density of condensate fluctuates
macroscopically in the grand canonical ensemble but not in the canonical
ensemble.

§ 6. Spinning Bosons in a Magnetic Field

We now consider a model in which our spinning bosons interact with a
constant magnetic field. We assume that the field has strength h, that it interacts
with the z-component of the spin, and that the coupling constant is unity. The
Hamiltonian of the system in ΛL is

HL-hJL = ΣjP (rjL

P-Jh)a%ajp (6.1)

so that the finite volume density matrix is

σ'i = exp{ - β(HL- yLNL - hJL)}/trace[exp{ - β(HL- γLNL- hJL)}] . (6.2)

The Lagrange multiplier γL is determined from the usual constraint

This model is clearly very similar mathematically to those discussed in the earlier
sections and so we just quote the main results. Let zL — eβyL.

Theorem 7. For fixed magnetic field h>0 there is a critical density
ρs(h) = (2πβ)~^ ^ g^(e~{v~j)βh) and the ther mo dynamic properties of the equilibrium
states are

(i) Fugacity: (a) ρ<ρs(h): zL converges to z^, the unique solution in [0, e~vβh~]

ΣjΦ
(b) ρ>ρs(h):zL converges to e vβh and L 3zLevβh{l-zLevβh) x converges to

Q-QM

(ii) Grand canonical generating functional

(a)

(b)

(iii) Kac density: (a) K(ρ ρ) = δ(ρ — ρ)

= 0,
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Fig. 4. The critical density as a function of the magnetic field

(iv) Canonical generating functional

(a) μQ(h) = μF©exp{ - \ ]>\ <hp F ^

(b) μρ(h) = μF(h)

j = QXp{ — (v

We define magnetization of the system by

m*(ft)=lim L~ 3 <J L >.
L-»c»

Lemma 6. For h > 0 the magnetization is given by

(a)

o>)
We say that spontaneous magnetization exists if

lim

(6.3)

Since m*(— ft)= — m*(/i) this is clearly equivalent to

lim m*(h) φ lim m*(h).

LemmaT. Spontaneous magnetization exists for ρ>ρc but not for ρ<ρc.
Specifically, for ρ > ρc, m*(0+) = (ρ — ρc)v.

Proof. Note that, as in Fig. 4, as ft->0 so ρs(h) increases to ρc. Thus for ρ<ρc,
we can always choose h small enough so that ρ<ρs(h). The result then follows
by letting h tend to zero in Lemma 6.

We can reinterpret this in terms of a critical temperature Tc = β~1 defined at
density ρ by

Then for T<TC there is spontaneous magnetization but for T > Tc there is not.
A few magnetization isotherms are sketched in Fig. 3.
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