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Abstract. This paper investigates the relationship between Killing Tensors and separable systems
for the geodesic Hamilton-Jacobi equation in Riemannian and Lorentzian manifolds: locally, a
separable system consists of the vector and covector associated with a separable coordinate. It is
shown that there are only two types of separable system, those associated with local symmetry groups
and those which can be obtained by a simple transformation from orthogonal systems. Some suf-
ficient conditions for existence are given and some global problems are enumerated. The results are
illustrated with a demonstration that the existence of separable systems in a certain class of {2,2}
space-times is a consequence of the algebraic properties of the Weyl tensor.

§ 1. Introduction

During the century or so following the work of Jacobi, much research in
Hamiltonian mechanics was directed towards understanding the separability con-
ditions for the Hamilton-Jacobi equation; this is not surprising since the Ha-
milton-Jacobi method was (and still is) one of the few analytical tools available.
But, with the shift in emphasis in classical mechanics from the local and quanti-
tative to the global and qualitative, interest in this line of research waned, only
recently to be revived, first, in general relativity, as a result of Carter's observation
that the Hamilton-Jacobi equation for the geodesies in the Kerr solution can be
solved by separating the variables [5] and of the subsequent exploitation of this
fact in astrophysical calculations (for example, by Bardeen [2]) and, secondly, in
quantum mechanics, through the investigation of its relationship to degeneracy
and dynamical symmetry in the context of intrinsic quantization (for example,
Onofri and Pauri [21]).

The classical research, initiated by Liouville [18] and Stackel [25] and cul-
minating in a paper by Iarov-Iarovoi [14] in 1964, was aimed, in part, at finding
the most general coordinate form of a metric and potential with a separable
Hamilton-Jacobi equation. Unfortunately, the use of local "arithmetical" meth-
ods did not lead to any real geometrical insights. For example, one feature of the
simpler classical and relativistic systems, which is still not properly understood,
is that the constants of the motion which arise from the local separation of the
Hamilton-Jacobi equation are well behaved in the large. It is likely that this is
related to other separability properties of these systems (for instance, to the
separability of the associated Schrodinger equations) since the separation of a
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wave equation is also an essentially global property (thus, the fact that Laplace's
equation is separable in Euclidean space in spherical polar coordinates depends
not only on the naϊve observation that the substitution of a particular form
for the wave function leads to consistent separated equations but also on the fact
that a certain complete subset of the solutions constructed in this way are well
behaved in the large). Recently, Onofri and Pauri have made some progress in
the understanding of global properties of Hamilton-Jacobi separable systems
through their research into the general problems of intrinsic quantization [21].
It is hoped that the present investigation, which is essentially orthogonal to theirs,
will result in greater geometrical insight into the role of separability in the specific
problem of finding particle orbits in Lorentzian and Riemannian manifolds and,
ultimately, to a understanding of the relationship between this and other separa-
bility properties.

The present paper deals only with the free particle (geodesic) case; subsequent
papers will deal with potentials and, it is hoped, with the wider questions.
Specifically, the bulk of this paper investigates, locally and, to some extent, glob-
ally, what are called separable systems for the geodesies in a Riemannian mani-
fold: locally, a separable system consists of the vector and covector associated
with a coordinate which can be separated in the Hamilton-Jacobi equation. By
concentrating on a single coordinate, I hoped to achieve a geometrical formalism
better suited to the investigation of global problems than the classical approach
of analysing entire separable coordinate systems. A fact which emerges clearly
from this approach, and which was not over-emphasized in the past, is that it is
not actually necessary to solve the Hamilton-Jacobi equation in order to find the
constants of the motion. For instance, if it is known that just one coordinate in
the Hamilton-Jacobi equation is separable it is possible to write down, by in-
specting the contravariant form of the metric, a number of linear or quadratic
constants of the motion for the geodesies1. In the case of the θ coordinate in the
Kerr solution, a complete set can be constructed in this way.

The Kerr solution has a number of special features; prominent among these
are the algebraic type of its Weyl tensor (through which the solution was dis-
covered in the first place [15]) and its separability properties: in addition to the
geodesic Hamilton-Jacobi equation, the spin-zero wave equation [5] and a cer-
tain decoupled part of the perturbed Bianchi identity (the Teukolsky equation
[30]) are both separable in the standard Boyer-Lindquist coordinate system [3].
An investigation into the puzzling relationship between these features has been
initiated by Walker, Penrose, Hughston and Sommers [13, 28, 29, 31]. This paper
fits into their line of research in that one of its applications is a proof that the
existence of the three independent Killing tensors, which can be inferred from the
algebraic classification of the Weyl tensor [13,31], implies the separability of
the Hamilton-Jacobi equation (the converse of this being the essential content
of Carter's work [5]). The motivation here is not simply mathematical curiosity;

1 Unfortunately, the more constants of the motion can be constructed in this way, the harder
it is to spot that the coordinate is, in fact, separable. However a procedure that might be practical is
this: by use of a little inspired guesswork, pick a likely candidate for a separable coordinate and wfite
down what would be the constants of the motion if the coordinate were separable and then check
that the corresponding tensors (see § 3) are in fact Killing tensors.
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there remain practical problems which are unlikely to be solved without a deeper
understanding of this relationship. For example, the completeness of the normal
modes of the Teukolsky equation (which is important in the investigation of the
stability of the solution [30]) has yet to be rigorously established [32].

Throughout, I shall use coordinate free methods. The notation of the first five
sections is explained below. In the sixth section, which should be regarded as an
appendix, I apply some of my results to type {2,2} spacetimes; here a slightly
different notation is used which is better suited to detailed spinor calculations
(the Battelle convention [22]).

A rough plan of the other sections is as follows: § 2 is a brief modern treatment
of Hamilton-Jacobi theory; this owes much to Hermann [12]. §3 discusses Kil-
ling tensors and some generalizations. § 4 investigates the local relationship be-
tween separability and Killing tensors, while § 5 discusses some of the problems
involved in globalizing the results.

Notation

All differentiable structures are smooth (class C00).
The ring of smooth real valued functions on a manifold M is denoted by

F(M); Sq(M) is the F(M) module of symmetric contravariant tensor fields of
valence q and S(M) is the union \Jq>0S

q{M). The intersection symbol n is used
to denote symmetrized tensor multiplication in S{M) (after Sommers [27]). The
module of exterior g-forms is represented by Aq(M) and, in particular, Λ0(M) =
S°(M) = F(M).

The cotangent bundle of M is written:

i7:T*M-+M (1.1)

and the tangent and cotangent spaces at meM are denoted by TmM and T^M
respectively.

A tensor field (or an exterior form) on a manifold plays a large number of dif-
ferent roles. For example, A e Sq{M) is a multilinear map from Λ t(M) x Λ X(M) x ...
Λ i(M) to F(M)9 a linear map from Λ X(M) to Sq~\Ml a real function on T*M,
a tensor over the real vector space TmM for each m e M, a cross-section of a vector
bundle over M and so on. In general, there is no need to use different symbols
for the same tensor when it is acting in different roles and this will not be done:
the role is obvious from the argument. However, in the interests of clarity, three
exceptions will be made:

1) For emphasis, the value of a tensor field T at some point rneM will occa-
sionally (but not always) be distinguished from T itself by use of the symbol T{m).

2) A 1-form on M is both an algebraic object (an element of the F(M) module
Λ i(M)) and a geometric object (a cross-section of T*M). The distinction between
these two objects (which is purely notational) will be emphasized by denoting
the geometric object by the same Greek letter as the algebraic object, but in
capital script. Thus if φeAx(M) then φ:S\M)->F(M) while Φ:M-+T*M,
Φ*: Λ ^M)-* Λ i(M) and so on.

3) Each tensor in S(M) defines a real function on T*M; this function will be
represented by the same Roman letter as the tensor, but in the lower case. Thus
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if A e Sq(M) then a e F(T*M) is given by:

a = AoΠ; q = 0, (1.2)

(1.3)

Both these last two conventions are consistent with the following usage:
tensors and vectors in S(M) are denoted by capital italic letters, real numbers
and real valued functions by lower case italic letters, exterior forms by lower case
Greek letters and maps of manifolds by capital Greek letters. Covariant vectors
and tensors will be printed in bold faced type.

For reference, and to fix sign conventions, I collect together some elementary
definitions and results; proofs may be found in Loomis and Sternberg [19] or in
Abraham [1]:

The canonical 1-form θe A X(T*M) is defined by:

θim,P)(X)=P(Π*(X)); (m,p)eT*M, XeT(m>p)T*M. (1.4)

The canonical 2-form is the exterior derivative ω = dθ; ω is a symplectic structure
on T*M. Each 1-form ae A^T^M) is associated with a vector α#G<S1(M)

given by:

α * J ω + α = 0 (1.5)

where the contraction _| is defined by:

(AJβ) = 2β(A,B); A,BeS\M), βeA2(M). (1.6)

The Poisson bracket of two functions on T*M is defined by:

la, b] = 2ω(da*, db*)e F(T*M) a, be F(T*M). (1.7)

The Poisson bracket gives F(T*M) the structure of an infinite dimensional Lie
algebra over 1R.

The Lie derivative [with respect to Te S1(M)] is written JS?τ; it is related to
the exterior derivative by:

and to the Poisson bracket by:

(d([α, b ] ) ) # = - Ida*, db*^ = - J?da*(db*) a,bs F{T*M). (1.9)

Also, if A,BeS1(M) and if a, fc:T*M-^lR are the corresponding functions in
F(T*M) then:

[α, fe] (m, p) = -p{SeAB) (m, p) e T*M . (1.10)

Finally, a vector X e TinitP)T*M, (m, p) e T*M, is said to be vertical ifΠ#(X) = 0;
if X, Ye TimtP)T*M are vertical then:

O, (1.11)

ω(X,Y) = 0. (1.12)
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§ 2. Hamilton-Jacobi Theory

A conservative Hamiltonian system consists of a configuration space M

(a smooth rc-dimensional manifold), a phase space T*M (the cotangent bundle
of M) and a Hamiltonian h: T*M->1R. The orbits of the system in Γ*M are the
integral curves of the vector field Xh = dh* defined by Hamilton's equation:

XhJω + dh = 0. (2.1)

A classical approach to the problem of finding an analytical description of the
orbits and their projections in configuration space is to look for constants of the
motion, that is for functions c: Γ*M-»1R which commute with h:

[c,h] = 0. (2.2)

Such functions are first integrals of the motion (their level surfaces are tangent
to Xh); together, they form a Lie subalgebra of F(T*M) since if cί and c2 commute
with h, then so do cί c29 [ c l 9 c 2 ] and r cί + c2 (where reR) . Locally, any Hamil-
tonian system admits 2n—l functionally independent constants of the motion
though, in general, these cannot be extended over the whole of T*M: in the large,
their level surfaces will not form invariant submanifolds of T*M [8] (that is
submanifolds made up of orbits of Xh).

According to the ancient technique, local constants of the motion can be
constructed from solutions of the Hamilton-Jacobi partial differential equation.
The way in which this works is as follows: let φe Λ X(M) be a 1-form (thought
of as an algebraic object) and let Φ:M^>T*M be the corresponding cross-section
of T*M (this notation is explained in § 1). With the observation that

is the identity, one may establish the basic lemmas:

2.1. Proposition.Φ*β = φ (θ is the canonical l-form).

Proof. If Xe TmM, me M, then Φ^X is a tangent vector to T*M at (m,φ(m))e
Φ(M) and:

(Φ*θ)(X) = θ(Φ1ItX) = φ(J7lit(Φ>lίX)) = φ(X). D (23)

2.2. Proposition. // X is a tangent vector to T*M at (m,p)eΦ(M) then
Φ^{Π^X)-X is vertical.

Proof. A direct calculation gives:

Π^(Φ^(Π^X)-X) = Π4ίX-Π:tίX = O. D (2.4)

2.3. Proposition. // X and Y are tangent vectors to T*M at some point
(m,jp)eΦ(M)cΓ*M then:

1) ω(Φ,(/7,X), Φ,(77,7)) ^
2) ω{Φ+(Π+X), Y) + ω(X,Φ:,{Π:i:Y)) = ω(X, Y) + dφ(Π\X,Π*

(here ω is the canonical 2-form).
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Proof. The first part follows from the observation:

ω(Φ*(Π,X), Φ,(i7,7)) = (Φ*ω)(i7,X, i7, Y) (2.5)

together with the corollary of Proposition 2.1:

Φ*ω = Φ*(dθ) = d(Φ*θ) = dφ. (2.6)

The second part follows by expanding:

ω{Φ*{Π*X)-X, Φ*(Π*Y)- Y) (2.7)

which is zero by Proposition 2.2 and Eq. (1.12). •

2.4. Proposition. // φ is closed and ifa,b: T*M —>1R are two functions such that:
a°Φ= const b°Φ= const

then [α, b] vanishes on Φ(M).

Proof Put X = da* and Y=db* and, using Proposition 2.3, evaluate ω(X, F) =
^[α, b] on Φ(M); the result is zero since dφ = 0 and, at points of Φ(M):

= 0

= ω(X,Φ,(Π,Y)). • (2.8)

A closed 1-form φ is said to be a solution of the Hamilton-Jacobi equation if
the corresponding cross-section Φ\M->T*M satisfies:

h°Φ= const. (2.9)

Locally, φ = ds for some real function seF(M) and, in coordinates {xα}, the
Hamilton-Jacobi equation assumes its familiar form:

h(x\ ^ ) = const. (2.10)

A local complete solution of the Hamilton-Jacobi equation is a local trivializa-
tion Ψ:UxVcMx R n ^ W C T*M of T*M such that, for each v e V, the restriction
ΨV:U-+T*M defines a closed 1-form ψve A X(M) which satisfies the Hamilton-
Jacobi equation (UCM, WCΠ~\U) and FcIR" are open sets). Essentially, a local
complete solution is an n-parameter family of solutions of the Hamilton-Jacobi
equation.

Putting b = h in Proposition 2.4, one obtains:

2.5. Proposition. // φ is a solution of the Hamilton-Jacobi equation then Xh is
tangent to Φ(M).

Proof On Φ{M\ X^a) = - [a, K] = 0 for any function aeF(T*M) such that
αlφ(M> is constant: this implies that Xh is tangent to Φ(M). •

The key result of Hamilton-Jacobi theory is that any function of the par-
ameters in a complete solution is a local constant of the motion; stated precisely:

2.1. Theorem (Hamilton-Jacobi theorem). LetΨ.Ux VcMxW^T^M be a
local complete solution of the Hamilton-Jacobi equation and let Π2 denote the
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projection:

Π2:UxV-^V.

If /c:F—>ΪR is any smooth function then:

is a local constant of the motion.

Proof The theorem is a corollary of Proposition 2.5 since if Xh is tangent to
ΨV(U)C T*M for each veV then it must also be tangent to c~\t) for each ίelR. D

Remarks. 1) If c1 and c2 are two constants of the motion constructed in this
way from a complete solution Ψ then [c1 ? c2]=0. This follows from Proposition
2.5 since cί and c2 are constant on each section Ψv(U)cT*M of T*M. Put an-
other way, Ψ defines a local foliation of T*M by Lagrangian submanifolds, that
is a local polarization of T*M [16].

2) A set {al9a2 ..am}CF(T*M) of functions on T*M will be said to be ver-
tically independent if no linear combination (over F(T*M)) of the vector fields
daf,da*,...da* is vertical (alternatively, if the restrictions of aua2...am to any
fibre of T*M are functionally independent). By the inverse function theorem, any
set of n vertically independent commuting constants of the motion {cί9 c2...cn}
defines a local complete solution [closure follows by putting X=dc*, Y—dcf,
z,7 = l,2...n, and using the first part of Proposition 2.3 together with the fact
that Π^dcflΠ^(dc2)...Π^(dc*) are linearly independent over F(M)]. The con-
verse of this remark is an immediate corollary of Theorem 2.1.

3) It is often interesting (or merely practical) to look for the orbits only on
a single energy surface in T*M. The Hamilton-Jacobi method has a simple gen-
eralization in this case: a complete local solution of the Hamilton-Jacobi equa-
tion for the energy surface N = h~1(t)cT*M is a local diffeomorphism Ψ.UxVC
Mχ]Rn~1-^Π~1(U)nNcT^M such that each restriction ΨV:U-*T*M defines
a (local) closed solution of the Hamilton-Jacobi equation (UcM and FcIR"" 1

are open sets). Functions of the form c = k ° Π2oψ~1^ where k: K->IR, are constants
of the motion for the orbits in N. A particular example is the problem of finding
the null geodesies in a pseudo-Riemannian manifold: a complete local solution
for the null energy surface will be called a complete null solution.

In the remainder of this paper, I shall be concerned with the Hamiltonian:

h:{m, p)\-+$G(p, p) (2.11)

for the geodesies in a Riemannian or pseudo-Riemannian manifold (M,<JJ)
[GeS2{M) is the inverse contravariant metric]. A subsequent paper will deal
with potentials.

§ 3. Killing Tensors and Some Generalizations

The Lie bracket operation for vector fields on a manifold M extends naturally
to a skew product on the set S(M) of symmetric contravariant tensor fields on
M [20]. If AeSp(M) and BeSq{M) then the product, D4,B], is an element of
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Sp+q~1(M). In the simplest cases, p = q = O and p= 1, [A £] is given by:

(3.1)

[ i , β ] = ̂ β ; yleS^M), BeS{M). (3.2)

When p > 0 and 4̂ has a decomposition of the form:

y4 = Z 1 n X 2 n . . . n X p ; XisS'^M) (3.3)

the product is defined by:

r (3.4)

In the general case, [A, B] is constructed by writing:

A = Σ Λ (3-5)

where each At is decomposable as in Eq. (3.3), and putting:

ίA,B] = Σ,lA,,B]. (3.6)

It is not hard to see that this definition is independent of the precise way in which
A is decomposed and that the resulting product is skew symmetric. Also it can
be established by straightforward inductive arguments that the product obeys
the distributive law and the Leibnitz rule:

A,BeSp(M), CeSq(M), reIR, (3.7)

[AnB, C] = [A, C^nB + AnlB, C] A,B,CeS{M), (3.8)

that it satisfies the Jacobi identity:

IA, [B, C]] + [£, [C, AJ] + [C, IA, B-]-] = 0 (3.9)

and that, in local coordinates, it has components:

l n ) l i ~ h V ι A ' ~ f)); AeSp(M), BeSq(M) (3.10)

where V is any torsion free linear connexion on M.
Looked at in another way, the skew product on S(M) is essentially the same

as the Poisson bracket on F(T*M). Explicitly, each tensor A e S(M) is associated
with a real function α:T*M->lR as in Eqs. (1.2) and (1.3). In the following, the
function in F(T*M) corresponding to a tensor in S(M) will be denoted by the
same letter as the tensor, but in the lower case; with this convention:

3.1. Proposition. Let A,Be S{M). If C = \_A,B] then c = -[α,b].

The proof is either by induction [the proposition reduces to Eq. (1.10) when
A,BeS1(M)'] or by direct computation, using Eq. (3.10). •

In fact, S(M) can be identified with a certain Lie subalgebra of F(T*M). To
be precise, let S(M) denote the real vector subspace of @P^OSP(M) made up of
finite formal sums:

(3.11)
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and let F(T*M) be the subspace of F(T*M) consisting of functions on T*M which
are polynomial in p. The skew product defined by Eqs. (3.1)—(3.5) extends to give
S(M) the structure of an infinite dimensional Lie algebra over 1R and the map
i:S(M)-+F(T*M) given by:

ί(A0+Ax+ ... +Aq) = aQ+ax+ ... +aqeF(T*M) (3.12)

defines a Lie algebra isomorphism between S(M) and F(T*M).
The symmetric tensor product n also extends to S(M\ so that S(M) has one

further structure: with respect to n and + , S(M) forms a ring (and, in fact, an
algebra over 1R); it is simply a polynomial ring of F(M). The relationship between
these two algebraic structures on S(M) can be clarified by remarking that the
adjoint representation of its Lie algebra structure embeds S(M) in the Lie al-
gebra of derivations [26] of (S(M\ n, +).

Let g be a Riemannian or pseudo-Riemannian metric on M. A Killing tensor
[24] on (M, g) is a tensor field K e S(M) which satisfies:

[K,G] = 0 (3.13)

where G e S2(M) is the inverse contravariant metric. In local coordinates, this
equation can be written in either of the two forms:

qKt{a-'-bdtG^-2GtiadtK
b---V = 0; KeSq(M), (3.13')

pioxb...f) = 0. (3.13")

Here d is the coordinate partial derivative and V is the metric connexion. Note
that the only Killing tensors of valence zero are constants.

If Kγ and K2 are Killing tensors then so are cK1-\-K2 (ceIR), K1nK2 and
[K1,K2~]l this last follows from the Jacobi identity [Eq. (3.9)]. The Killing
tensors thus form both a subring and a Lie subalgebra of S(M) [9,27] [a con-
ventional, but useful, abuse of language: it is S(M), not S(M) which has the struc-
ture of a Lie algebra].

The Hamiltonian h: T*M-^ 1R for the geodesies in (M, g) is the function asso-
ciated with the tensor H = jGe S2(M\ so an immediate corollary of Proposition
3.1 is that KeS(M) is a Killing tensor if, and only if, the associated function
k: T*M-^IR is a constant of the motion for the geodesies in M.

In a general Riemannian manifold Killing's equation [Eq. (3.13)] has no non-
trivial solutions. Equation (3.13/;) can be manipulated so as to express all the
partial derivatives of the components of K in terms of the partial derivatives of
order q or less together with the partial derivatives of the components of the
Riemann tensor, R. These expressions, in turn, imply relations between the deriv-
atives of the components of JR which are not usually satisfied [20,28]. The existence
of solutions of non-zero valence is equivalent to the existence of non trivial con-
stants of the motion which, when restricted to any fibre of T*M, are analytic on
the zero cross-section [20]. Any such function, α, can be expanded as a power
series:



18 N. M. J. Woodhouse

where, for each i, a(. T*M->1R is the function associated with a tensor At e S\M).
Clearly, if a is a constant of the motion then each At must be a Killing tensor
[to see this, take the Poisson bracket of Eq. (3.14) with h and, using Proposi-
tion 3.1, equate the terms of each degree in p to zero]. The existence of non-trivial
constants of the motion of this form severely restricts the behaviour of the geodesic
spray Xh near its singularity on the zero cross-section of T*M.

More general than a constant of the motion which is analytic (in p on the
zero cross-section) is one that is rational (in p)\ a Killing pair (A, B) is an ordered
pair of tensors in S(M) which satisfy the equation:

AnlB,G]=BnlA,G], (3.15)

If A, B e S(M) and if a, b: T*M->1R are the corresponding functions on T*M then,
by Proposition 3.1, (A, B) is a Killing pair if, and only if, a/b is a constant of the
motion. The set of Killing pairs can thus be identified with a subalgebra of the
algebra of constants of the motion (up to the abuse of language mentioned above);
the Lie bracket is given by:

[(A, B), (C, D)] = {BnDn[A9 C] + AnCn[A, D] - AnDn[B, C]

-BnCn[A,D'], BnBnDnD). (3.16)

This subalgebra extends the algebra of Killing tensors: each Killing tensor K can
be identified with the Killing pair (K, 1) where 1 e S°(M) is the unit constant
function. Looked at in another way, the Killing pairs form a field under the
obvious extensions of + and n . The second example below illustrates that this
field can be strictly larger than the quotient field of the ring of Killing tensors.

Examples. 1) If A, B e S(M) are Killing tensors and C e S(M) is any other sym-
metric contravariant tensor then (AnC, BnC) is a Killing pair: strictly speaking,
this pair should be identified with (A, B).

2) Let M be a three dimensional manifold with local coordinates (x, y, z) and
let /, m, and n be arbitrary functions of z. If the inverse metric G has components:

y m(z)

m(z) n(z)_

then the two vectors A = — and B = — form a Killing pair. In fact, A and B are
ox oy

projective Killing tensors2 of valence 1 (which is not to say that they are pro-
jective collineations) in that they satisfy the equations (in components):

where V is the metric connexion and Xa = (|, \, 0). If Γgc is the metric Christoffel
symbol, then Aa and Ba satisfy the covariant Killing equations:

V{aAb)=V{aBb) = 0

An unpublished concept due to A. Schild and P. Sommers.
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in the projectively related connexion with Christoffel symbol:

Except for special choices of /, m and n, Xh is not exact, A and B are not parallel
to Killing vectors and V is not a metric connexion.

A second generalization extends the algebra of Killing tensors to include the
conformal Killing tensors [31]: C e SP(M) is a conformal Killing tensor if there
exists BeSp~1(M) such that:

lC,G] = GnB. (3.17)

If G is pseudo-Riemannian then C e S(M) is a conformal Killing tensor if and
only if c e F(T*M) is a constant of the motion for the null geodesies in M, for if
[c, h]=0 on the zero energy surface, then G must be a factor of [C, G], that is
[C,G~]=Bc\G for some B. The conformal Killing tensors also form both a subring
and a Lie subalgebra of S(M). This subalgebra may be further extended to include
conformal Killing pairs, that is ordered pairs (A, B\ A e SP(M\ B e Sq(M\ satis-
fying the equation:

v4n[£, G] - Bn[_A, G] - GnD (3.18)

for some D e Sp + q~2(M). Conformal Killing pairs define rational constants of the
motion for null geodesies.

A Killing vector X on M (that is, a Killing tensor of valence 1) defines a sym-
metry in the sense that the associated local 1-parameter groups of diffeomorphisms
are in fact groups of local isometries since:

JZ^G = [* ,G] = O. (3.19)

In various generalizations of this notion, the associated local diffeomorphism
groups are required to preserve weaker structures than the metric (for example,
the projective or affine structures). Two particular cases will arise in § 4:

1) The vector field X is a conformal Killing vector, that is the associated local
diffeomorphism groups are groups of conformal isometries. A conformal Killing
vector is characterized by the equation:

&xG = wG; UEF(M) (3.20)

and is, in fact (as the terminology suggests), the same thing as a conformal Killing
tensor of valence 1.

2) The vector field X is rigid, that is it satisfies the equation :

&xG = u-XnX; ueF{M). (3.21)

If Δ:UcM-+M is a local diffeomorphism generated by X then (Δ*)~x defines an
isometry between the orthogonal complement of X in T*M and the orthogonal
complement of X in T£{m)M, for each me U. Note that Eq. (3.21) is not quite the
Born rigidity condition: if X were a Born rigid motion then Δ^ would define an
isometry between the orthogonal complement of X in TmM and the orthogonal
complement of X in 7^(m)M [23]. A conformally rigid vector field is characterized
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by the equation:

G; u,υeF(M). (3.22)

The geometrical interpretation is similar.
A conformally rigid vector field can also be characterized by the linear de-

pendence of 5έXG, XnX and G over F(M). This observation suggests the fol-
lowing definitions: the degree of symmetry of a vector field X is the smallest
integer s > 0 such that:

are linearly dependent over F(M). The degree of symmetry of a Killing vector
is 1. The degree of conformal symmetry, the degree of rigidity and the degree of
conformal rigidity are, respectively, the smallest positive integers c, r and k such
that:

and

XnX,G,£exG,...&xG

are linearly dependent over F(M): these integers are finite for any vector field.
A somewhat contrived geometrical interpretation can be assigned to, say, a vector
field with symmetry degree 5, but this is not particularly instructive; informally,
s measures how near a vector field is to being a Killing vector.

I end this section with some lemmas which will be needed later:

3.2. Proposition. Let A, Be S2(M). If oceΛ^M) and if A(μ, a) and £(α, α) are
constant on M then:

[A, β ] (α, α, α) = - Ua{A{a\ fl(α)). (3.23)

Proof. First consider two vector fields X, YeS1(M):

[XnX, 7 n 7 ] ( α , α, α) = 4α(X) α(7) α([X, 7])

= 4α(X) α(7) {-2da{X, 7) + X(α(7))- 7(α(X))}

= - 8dα(XnX(α), Yn 7(α) + 2XnX(α, d(Yn 7(α, α)))

- 2 7 n 7(α, J(XnX(α, α))). (3.24)

A and β can be written:

( 1 2 5 )

so the assertion follows from the linearity of the operations in Eq. (3.24) [using

•
3.3. Proposition. Let A,Be S2(M). If α e Λ ^ M ) is closed then:

3IA, B] (α) = lA(a), B] + [4, B(α)] e 5 2(M).
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Proof. Again, first consider two vector fields X, Ye S1(M):

, YnY](a)=l2{Xn[X, Y]nY)(α)

= 4(oc(X) Yn[X, Y] + α([X, Y]) I n Y + α(Y) Xn[X, Y])

= tXnX(oc), YnY~] + [XnX, YnY(α)] + 4dα(X, Y). (3.26)

As in Proposition 3.2, the assertion now follows by linearity (and the closure
ofα). Π

An eigenform of a tensor Ae S2(M) is a 1-form α such that the vectors 4(α)
and G(α) are parallel at each point of M. If M is rc-dimensional then each tensor
in S2(M) has at most n independent eigenforms.

3.4. Proposition. // α is a closed eigenform of the Killing tensor K e S2(M) and
if Te S^-ζM) is the vector field defined by:

α(Γ)=l

then:

1) &τ(w/u'K-G) = 0,

2) T(u/w) = 0.

Proof First note that, since α(T)=l, i f Γ α = 0. The tensors X and G may be
decomposed:

^ r τ } (3.27)

where:

χ( α ) = 0 = G(α), (3.28)

[G,u](α) = 0=[£,w](α), (3.29)

[X, G] (α) = 0 (by Proposition 3.3), (3.30)

[Γ, G] (α) = jS?ΓG(α) = 0=[Γ, X] (α). (3.31)

Expanding:

O = 3[X,G](α) = 3[X + w ΓnT,G + w ΓnΓ](α) (3.32)

and collecting the non-zero terms:

0 = 2u [T, G] + 2w [K, T] + 2([u, G] + [X, w])nT + 6(M T(w)

-w T(u))TnT. (3.33)

Contracting Eq. (3.33) with a gives:

u T(v)-W'T(u) = 0, (3.34)

w ^ Γ G - w ^ r X = 0, (3.35)
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whence:

J5fΓ(G- w/u K) = &τ(G-w/u K) = 0 . D (3.36)

§ 4. Separable Systems

This section deals with local questions: all closed forms are exact and each
solution of the Hamilton-Jacobi equation is defined over the whole of the base
manifold.

Let (M, g) be a Riemannian or Lorentzian manifold (that is g is either positive
definite or it has signature +, —, —, — , . . . ) ; let /ι:T*M->lR be the Hamiltonian
for the geodesies in M. The associated Hamilton-Jacobi equation has a large
number of solutions: any suitably parameterized hypersurface orthogonal con-
gruence of geodesies defines a particular solution and any rc-parameter family of
such congruences defines a complete solution. In the following, I shall restrict my
attention to solutions for which h ̂  0; the only place where this plays an important
role is in the lemma needed to prove Proposition 4.1.

Let α e Λ X(M) be a closed 1-form and let Te S1(M) be a vector field normalized
so that α(T)=l . If X e S\M) and φe Λ^M) then the projections IX and Iφ
relative to (T, α) are defined by:

= φ-φ(T) oc J

Note that α(±X) = 0 = (±φ)(T), that φ(±X) = {±φ)(X), that 1 extends naturally
to tensor fields and that it commutes with JS?Γ.

A closed solution φe AX(M) of the Hamilton-Jacobi equation is said to
separate with respect to (T, α) if:

O. (4.2)

If local coordinates {xa} are chosen so that T = —Ί- and (x = dx1 then φ may be

written:

φa = das; SGF(M) (4.3)

and the separability condition assumes its more familiar form:

s(xα) = s1(x1) + s2(x2, x 3 . . .xn). (4.4)

The separation is said to be trivial if:

(4.5)

Equation (4.5) implies Eq. (4.2) since ££Ύ and J_ commute.
The pair (T, α) (α(T)= l,dα = 0, G(α, α)φθ) will be called a separable system

if there exists a complete solution Ψ:Mx VcM x lR"^T*M such that ψv sepa-
rates with respect to (T, α) for each ve V (in the Lorentz case, each ψυ must also
be non-spacelike); (Γ, α) is a ίrii ίαZ separable system if the separation is trivial for
each v. It is an orthogonal separable system if T is parallel to G(α). Two separable
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systems are compatible if there exists a complete solution which separates with
respect to both systems. In the Lorentz case, (T, α) is said to be a separable system
for the null energy surface if there exists a complete null solution Ψ:M x VcM x
W~1-*NC Γ*M such that ψυ separates with respect to (T, α) for each v (N is the
null energy surface). By an obvious extension, one can also talk about compatible
separable systems for the null energy surface and so on.

It is immediately clear that if (T, α) is a trivial separable system then T must
be a Killing vector. To see this, choose a complete solution Ψ:M xVcMxIR"->
T*M which separates trivially with respect to (T, α), so that:

&τΨΌ = 0; veV. (4.6)

For each v, G(ψv, ψv) is constant, hence:

φv) , veV. (4.7)

As (m,v)eMxV varies, Ψ(m, v) fills out an open set in T*M, so it follows from
Eq. (4.7) that i ? τ G = 0. If (T, α) is only a separable system for the null energy
surface then T need only be a conformal Killing vector (this can be established
by a similar argument).

Note that if (T, α) is a trivial separable system then so is (T, β) for any closed
1-form β such that β(T)=l, so it makes sense to refer to T alone as a trivial
separable system.

One final definition: T*M+ denotes the subset of T*M on which h>0.
The first aim of this section is to establish that essentially all separable systems

are either trivial or orthogonal. A few preliminary lemmas are needed:

4.1. Proposition. // X is a Killing vector then:
1) X is a trivial separable system.
2) If (T, α) is any separable system such that [X, T] = 0 and oc(X) = O then (T, α)

and X are compatible.

Proof. LetΨ.MxVcMx Rn-> T*M+ be a (local) complete solution. Restrict-
ing, if necessary, the domain of definition Ψ, one may distinguish two possible
cases:

a) AXv\,(*))*0; veV, (4.8)

b) X(ψv(X)) = 0; veV. (4.9)

In either case, it is possible to construct from Ψ a new complete solution Φ which
separates trivially with respect to X. Further, if the original solution Ψ separates
with respect to (7̂  α) then so does this new solution Φ. The following lemma
establishes that if Eq. (4.9) holds then ψυ{X) must be constant for each v.

Lemma. Let ψe Λ X(M) be a closed solution of the Hamilton-Jacobi equation
(timelike or null in the Lorentz case). If X is a Killing vector and y = ψ{X) then
either X(y) Φ 0 or y is constant.

Proof Suppose that X(y) = 0. Since ψ is closed:

(4.10)
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But G(ψ, ψ) is constant, so:

0 = &x(G(ψ, ψ)) = 2G(ψ, J?xψ) = 2G(ψ, dy). (4.11)

Operating again with «5fx gives G(dy,dy) = Q, since Jίfχdy = d(X(y)) = Q. If G is
Riemannian then dy=0 and y is constant. If G is Lorentzian then dy is null and
orthogonal to ψ. But ψ is non-spacelike; ψ must, therefore, be parallel to dy,
giving ψ(X) = 0 that is y = 0. •

It follows that, whichever of Eqs. (4.8) and (4.9) holds, it is possible to find, for
each ve V, a hypersurface SvcM which is transversal to X and on which ψv(X)
is constant (this may not be true globally). Each Sv may be chosen so as to pass
through some fixed point m0 e M. Further, if T and α are as in the second part
of the proposition and if Ψ separates with respect to (T, α) then each Sv may also
be assumed to be tangent to T, since:

T(ψv(X)=T((±ψv)(X))

Here 1 is the projection relative to (7̂  α). Now, for each ve V, define the 1-form
φ,by:

φΌ = ψυ on Sυ, (4.13)

0- (4.14)

This is a good definition (at least near Sv) since X is transversal to Sv. Since S£XG — 0,
G(φv,φv) = G(ψv,ψv) is constant. To see that φ y is also closed, choose any two
vector fields Y,ZeS1(M) which are tangent to Sv and which satisfy:

[x,y] = [x,z] = [y,z]=o. (4.15)

Computing:

-2dφv(X, Y)=- Y{φΌ(X)) + X(φΰ(Y))

= 0 (4.16)

and, on Sv:

,(7, Z)=

= 2dψΌ(Y,Z) = 0. (4.17)

Thus dφv = 0 on ^ but J£xdφv = dJ£xφv = 0 so dφv = 0 everywhere.
Hence Φ:Mx KcMxIR"-^Γ*M:Φ:(m, t;)i->(m, φυ(m)) is a complete solution

of the Hamilton-Jacobi equation which separates trivially with respect to X (the
completeness follows from the fact that Φ\moXV

= ^Ίmoχκ)
Suppose, now, that the original solution Ψ was chosen so as to separate with

respect to (7̂  α). All that remains to complete the proof is to show that each φv
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also separates with respect to (T, α): For each v e V, T is tangent to Sv and so, on Sv\

^τ{Lφυ) = ̂ τ(Lxpυ) = 0. (4.18)

Also:

= Q (4.19)

so that i f Γ(_Lφv) = 0 everywhere. Π
Proposition 4.1 has three corollaries; the first is the standard result:

1. Corollary. If {Xt; i= 1, 2...} is a commuting set of Killing vectors then there
exists a complete solution Φ:M x VCM xIR"—>T*M which separates trivially with
respect to each Xt.

2. Corollary. Let (T, a) be a separable system and let X be a Killing vector such
that α(X) = 0 and [X, T] = 0. // fc:M->IR is any function such that db is parallel
to a then (T + b X,oc) is a separable system.

Proof Let 1 be the projection relative to (T,cή and let 1! be the projection
relative to (T + b X, α); thus:

βe Λ ^ M ) , (4.20)

(4.21)

Let Φ:Mx VCMxW^T*M be a complete solution which separates with re-
spect to ( 7 » and also, trivially, with respect to X. A direct calculation gives:

Ό-b. (lφΰ) (X) α) + 6 £>τ(φv-φv(T+ b X) α)

b; veV

= 0. Π (4.22)

3. Corollary. Let {Xt; i= 1, 2 ...} be a commuting set of Killing vectors. If the
functions b^.M-^lR and the 1-form α satisfy:

1) dbi is parallel to a for each i,
2) α ( T ) = l ; T = b1 Xt + b2 X 2 + ...,
3) dα = 0,

ί/ien (7^ α) is a separable system.

Proof. Let Φ:Mx VcMxlRn-+T*M be a complete solution which separates
trivially with respect to each X{ and let J_ be the projection relative to (7^α).
A direct calculation gives:

Seτ(LφΌ) = ^τ(φv) - (Seτ(φυ)) (T) • a veV

= Σiiψv(Xi) db-{φv{XΪ dbd (T) α}

- 0 (4.23)

since dbi = T(bf) α for each i. Π

The direction of the argument can now be defined more precisely: it will be
shown in the following that the only possible separable systems are those which
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can be obtained from orthogonal separable systems by transformations of the
type arising in Corollary 2 and those which can be constructed from abelian
Lie algebras of Killing vectors as in Corollary 3.

Let (T,a) be a separable system, let Φ:Mx VCMxlRπ->T*M be a complete
solution which separates with respect to (7^ α) and let S be an integral surface
of α (S certainly exists locally since α is closed). Define k: F->R by:

k(v) = φv(T)\s; veV. (4.24)

\_ψv{T) is constant on S for each v e V by separability and the closure of </>„.] Put:
k = ko π2 o Φ'1: T*M->1R (4.25)

where Π2.Mx V-^V is the projection map. By Theorem 2.1, k is a (local) con-
stant of the motion. An explicit form for k may be found as follows: define the
function u e S°(M) and the tensor fields C e S2{M\ D e S\M) by:

w = G(α,α) on S; T(u) = 0, (4.26)

C = 1 G on S; JSfΓC = O, (4.27)

D = lG(α) on 5; ^ T D = 0. (4.28)

[Here _1_ is the projection relative to (7̂  α).] These are good definitions, at least
locally, since T is transversal to S. At points on S, the Hamilton-Jacobi equation
takes the form:

(u P(υ) + 2k(υ) D{±φΌ) + C(±φϋ9 lφv))\s = 2Ev (4.29)

where Ev e JR. is the energy of φv [that is, the value of ft on the surface ΦV(M)C T*M~\.
For fixed veV, every quantity in Eq. (4.29) is Lie propagated by T, so the equation
must be true without the restriction to S. Substituting:

G(φv,φv) = 2Ev (4.30)

gives:

P(υ) + k(v) B(φv) + A(φΌ, φΌ) = 0 (4.31)

where3:

A = —(C-G)e S2(M), (4.32)
u

B= — DeS1(M). (4.33)

u

Allowing v to vary over V, deduce that k is a root of the quadratic equation:

k2 + k b + a = 0 (4.34)

where a,b: T*M->IR are the functions on T*M defined by A and B. Taking the
Poisson bracket of Eq. (4.34) with the Hamiltonian ft:

]=0. (4.35)

It is assumed that α is not null.
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There are now three possibilities:

1) [b, H] = \a, h] = 0: in this case, both roots of Eq. (4.34) are constants of the
motion, B is a Killing vector and A is a Killing tensor (Proposition 3.1). In par-
ticular, this case arises whenever (T,a) is an orthogonal system (b = 0).

2) Only one root of Eq. (4.34) is a constant of the motion and ([A, G], [B, G])
is a Killing pair, but it is trivial in the sense that:

[A,G]=-tB,G]nX (4.36)

for some XeS1(M). In this case, X is a Killing vector and k = x. In particular,
this case arises whenever (7^ α) is a trivial separable system (see the example below).

3) ([-4, G], [£, G]) is a non-trivial Killing pair.

Case 3 cannot occur. One way to see this is to eliminate k between Eqs. (4.34)
and (4.35). This yields the tensor identity:

[A, G]nlA, G]-[A, G~\n[β, G~]ΓΛB + [B, G~]Γ\[B, G]nA = 0 . (4.37)

Call UeS(M) a factor of VeS{M) whenever there exists WeS(M) such that
V = Un W and note that the unique factorization theorem holds in the polynomial
ring S(M). Rearranging Eq. (4.37):

[A, G]n[A-±BnB, G] = - [£, G~]n[B, G]nA . (4.38)

Any common factor of [B, G] and [A — ^BnB, G] must also be a factor of \_A, G].
It follows that either [JB, G] is a factor of [A, G] or [J5, G] = 0.

Example (Separation of an ignorable coordinate). Suppose that X is a Killing
vector and that α is any closed 1-form such that α(X)=l. By Proposition 4.1

(X, α) is a separable system. If Y = — G(α) e S1(M) then, whatever the choice of S:

B = 2Y-2X; IB, G] = 2[^G], (4.39)

A=-Xn(2Y-X); [A, G]= -2Xn[7, G] . (4.40)

In this case, the two roots of Eq. (4.34) are k1=x and k2 = x — 2y. For a general
choice of α, only fex is a constant of the motion. It is clear from Eqs. (4.39) and
(4.40) that IB, G], is a factor of [A, G] and thus that this example is covered by
Case 2.

Historical Note. A separable coordinate system {xa} on M is characterized by

the fact that I—-,dxa\ is a compatible separable system for each a; such co-
\dxa

ordinate systems were studied extensively during the late nineteenth and early
twentieth centuries first by Liouville [18] and later by Stackel [28], Levi-Civita
[17], DalΓAcqua [6], Burgatti [4], and others. Their most powerful tool was the
integrability condition first formulated by Levi-Civita and explained by him in
a letter to Stackel (1904) [17]. Stackel knew that orthogonal separability gives
rise to quadratic constants of the motion and it is implicit in the work of DalΓAcqua
(1912) [6] that, for a general separable coordinate system, the constants of the
motion are made up of Killing vectors and valence two Killing tensors. It is
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impossible to be certain as to how much of the following was known to these
researchers, though Theorem 4.1 would have come as no surprise to anyone who
had spent any time working out examples of separable coordinate systems from
Levi-Civita's integrability condition.

The method developed here is more general than Levi-Civita's: his integra-
bility condition depends in an essential way on the assumption that each of the
coordinates is separable. Cases 1 and 2 above correspond to what Levi-Civita
calls indices of the first and second kind.

In the construction described above for the constant of the motion k: Γ*M-> IR
a particular integral surface S of α was chosen arbitrarily as an initial surface. In
general, a different choice S' will give rise to a different constant of the motion k!'.
A maximum of n (the dimension of M) vertically independent constants of the
motion can be constructed in this way; these will commute with each other
(Theorem 2.1). I continue with a separate examination of the two possible cases:

Case (1). For each choice of S, A is a Killing tensor and B is a Killing vector.

Call one particular integral surface of α So and measure the parameter t on
the integral curves of T from So (thus dt = ot, locally). Each integral surface St

of α, and each of the quantities Λt, Bt etc. defined as in Eqs. (4.26)-(4.33) by taking
St as initial surface in place of S, will be labelled by the appropriate value of t.

It is clear from Eqs. (4.28) and (4.33) that, if P, is the orthogonal projection of T
into St, then:

1) OnSt:Bt=-2Pt; ίelR. (4.41)

2) lT,Bt-] = 0; ίe lR. (4.42)

3) <x(Bt) = 0; ί e R . (4.43)

Also, operating on the defining relation:

BS=^'D, (4.43')

with <£Bt gives:

(4.44)

since Bt(us) = 0 and [Bt, DJ =0 [using Eqs. (4.42) and (4.43) together with the fact
that Bt is a Killing vector]. Now, only a finite number of the B/s can be linearly
independent over 1R so each Bt must be a linear combination (with coefficients
in 1R) of some basis set of commuting Killing vectors {B1,B2...Br}, say. Thus,
using Eq. (4.41),

T = b1-B1+b2-B2+...+br Br+T (4.45)

where f is a vector field orthogonal to each St and the functions ί?t :M->ΪR can
be expressed as functions of t alone. Application r times of the second corollary
to Proposition 4.1 reduces (T, α) to the orthogonal separable system (f, α). The
first case, therefore, is essentially the orthogonal case.

How many constants of the motion can be constructed from a separable
system of this type? Consider, first, the case where (T, α) itself is orthogonal; then
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Bt = 0 and each tensor Ct is constructed by projecting the contravariant metric G
into St and Lie propagating along T (_L is now simply the orthogonal projection
relative to T). Suppose that it is possible to find a maximum of q values of t such
that the corresponding Killing tensors Λt and the metric G are linearly inde-
pendent over F(M). By a straightforward exercise in analysis, it is possible to
check that ^ — 1 is precisely the maximum integer m such that:

JS??(±G), &%~1(±G)...£'T(±G)9 G and TnT

are linearly independent over F(M), that is that q is precisely the conformal
rigidity of T. Thus:

4.2. Proposition. If(T, a) is an orthogonal separable system and if the degree of
conformal rigidity of T is q then {At, G; t elR} generate a submodule of the F(M)
module S2(M) of rank q + 1', each element of this submodule admits a as a closed
eigenform.

The last part of the proposition follows from Eqs. (4.32) and (4.27). •

Example. If α is a closed 1-form such that T = G(α)/G(α, α) is a Killing vector
then, by Proposition 4.1, (T,a) is an orthogonal separable system. Regardless of
the choice of S, A = TnT. The conformal rigidity of T is 1 [since J£TG = O and
0, G and TnT are trivially linearly dependent over F(M)]; A and G span a
rank 2 submodule of S2(M).

Roughly speaking, Proposition 4.2 states that the less symmetry (M, g) has
with respect to % the more constants of the motion can be constructed from (7^ α).

When (7^ α) is not orthogonal, the rank of the submodule generated by
{At, G; t G 1R} can exceed the conformal rigidity of T by ^r(r+ 1): this submodule
contains, in addition to the Killing tensors constructed from the orthogonal
system (7̂  α), the linear span of {BiΠBy, ij=l,2...r}.

Remark. Though the number of vertically independent constants of the motion
which can be constructed from a single complete solution of the Hamilton-
Jacobi equation cannot exceed n (the dimension of M) it is possible that more
than n linearly independent [over F{M)~\ Killing tensors can be constructed from
a single orthogonal separable system (an example is provided by the Kerr metric
in general relativity, see § 6). However it is the number of vertically independent
constants rather than the number of linearly independent Killing tensors which
is of practical interest. This number is also related to the conformal rigidity, but
in a more complicated way. To give an example: suppose that n = 5 and that only
two vertically independent constants of the motion can be constructed from the
orthogonal separable system (7^ α). If A,B,Ce S2(M) are Killing tensors and if
the corresponding functions a,b,ce F(T*M) are vertically dependent then, in
local coordinates:

A{^B\C^ = 0. (4.46)

Denote by 3Γ the submodule of S2(M) generated by G and the Killing tensors
constructed from (T, α). If Eq. (4.46) is satisfied for each A, B, C e ?Γ then, for
certain, the rank of 3~ cannot exceed 3 and so the conformal rigidity of T cannot
exceed 2.
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One other remark is worth stating as a separate proposition:

4.3. Proposition.// (M, </) admits no Killing vectors then all separable systems
in M are orthogonal.

Turning now to the second case:

Case (2). For each choice of S9 [£, G] φO is a factor of [A, G].

Using the integral surface St of α as initial surface in place of S the construction
yields a Killing vector Xt given by (in the same notation as case 1):

G]=0; ίe lR. (4.47)

It follows from Eq. (4.24) that T = Xt on St and from Theorem 2.1 that [Xv XJ = 0
for each 5, t e 1R. Again, not more than a finite number (r, say) of the Xt's can be
linearly independent over 1R, so each must be a linear combination (with coef-
ficients inlR) of some commuting basis set {Xu X2 >. Xr} of Killing vectors. Hence:

T = b 1 - X 1 + b 2 . X 2 + ... + br-Xr (4.48)

where each bf:M->lR can be expressed as a function of t alone: the separable
system (7^ α) is of precisely the type described in the third corollary to Proposi-
tion 4.1. This second case is, then, essentially the trivial case.

The number of vertically independent constants of the motion which can be
constructed from a separable system of this type is equal to the dimension of the
abelian Lie algebra generated by {Xl9 X2 ... Xr) since a set of commuting Killing
vectors is linearly independent [either over 1R or over F(M)] if and only if the
corresponding constants of the motion are independent.

A separable system of the type described in the third corollary to Proposi-
tion 4.1 will be called a type II separable system; a type I separable system is one
which can be obtained from an orthogonal system by a finite number of trans-
formations of the type described in the second corollary to Proposition 4.1.
Collecting together the above results:

Theorem 4.1. All separable systems in (M, g) are either of type I or of type II.

Proposition 4.1 provides necessary and sufficient conditions for there to exist
type II separable systems, namely the existence of an abelian isometry group of
the appropriate dimension (at least locally). It is also of interest to inquire whether
there exist sufficient conditions for the existence of type I separable systems. The
following generalizes a theorem due to Eisenhart [7]: it is the converse of Propo-
sition 4.2 in the maximal case where n vertically independent constants of the
motion are generated by an orthogonal separable system:

4.2. Theorem. If M is n dimensional and if(M, g) admits n—ί valence-2 Killing
tensors K1,K2...Kn_1 such that:

1) fcl5 k2 .. kn_ u ft: T*M->IR are vertically independent in some neighbourhood
C/CT*M+.

2) [ K i , K J = 0 ; U = l , 2 . . . n - l .
3) K1,K2...Kn_1 have a common closed eigenform α e Λ X(M)

then (T, α) is an orthogonal separable system, where T — G(α)/G(α, α).
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Proof. Write Kn=G. Since the functions fcbfc2..ineF(T*M) are vertically
independent in U, it is possible to define a local trivialization Φ:Mx FcMxIR"—•
ί/CT*M + by:

(ki°Φ)(m,v) = vi; v = (υl9v2...vn)eV9 rneM (4.49)

(M may have to be restricted here). By Proposition 3.2:

0 = lKi9Kj](φυ9φΌ9φυ)

= -Mφv(Ki{φυ\Kj{φv)) y = l , 2 . . . n , i e F . (4.50)

The fef's are vertically independent so, for each veV, the vector fields Ki(φv) are
linearly independent over F(M): Eq. (4.50), therefore, implies that each φυ is
closed (note that the section {(m, α ( m ))}cT*M must avoid 1/ since the vector fields
K^ot) are linearly dependent and, in fact, proportional). Thus Φ is a local complete
solution of the Hamilton-Jacobi equation. If, for each Kb ui and wt are defined
as in Proposition 3.4 then:

^ ( G - K J K ^ O ; i = l , 2 . . . w . (4.51)

For each veV, the n-1 vector, fields (G — (wί/M.) K^φ^ are independent over
F(M) so all the solutions βe Λ X(M) of the equation:

(G-(w ί / t t i).K i)(φ ι ;)(i8) = 0 (4.52)

are proportional (for fixed υ); α is one solution and, by Eq. (4.51), J£τ(φυ) is an-
other. Hence £?τ{φv) is proportional to α, that is:

= 0; t e K (4.53)

where 1 is the projection relative to (7̂  α). Π
For completeness, I add a simplified proof of Eisenhart's theorem:

Corollary (Eisenhart's theorem [7]). // (M,g) admits n—ί valence-2 Killing
tensors K1,K2-..Kn-ι such that:

1) Kι,K2...Kn-1,G are linearly independent over F(M).
2) Kί,K2...Kn-ί have n orthogonal closed common eigenforms

ocl9cc2...otne

then α l J α 2 . . . α l l define (locally) an orthogonal separable coordinate system on M.

Proof. Put Kn = G and T—G^/G^^). It is not hard to see that the func-
tions kuk2...kn must be vertically independent. Define a local trivialization
Φ.Mx F c M x I R " - > T * M + as above and deduce that:

JSfΓi(J_ίφι,) = O; veV; i=l,2...n (4.54)

where _Lf is the projection relative to (Tb αf). The proof can be completed by
noting that the closure of each φv follows directly from Eq. (4.54). •

With the exception of Proposition 4.3 and Theorem 4.1, all these results still
hold true with the substitutions: "separable system for the null energy surface"
for "separable system", "conformal Killing vector" for "Killing vector", "con-
formal Killing tensor" for "Killing tensor" etc. The argument breaks down at the
point where case 3 (([A, G], [#, G]) is a non-trivial Killing pair) is excluded. In
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place of Eq. (4.38), one obtains the tensor identity:

[A, G^}n[A-±BnB, G] + [£, G]n[B, G]nA = GnF (4.55)

for some F e S4(M). I can see no immediate way of deducing that A and B must
be conformal Killing tensors or that [J3, G] is a factor of \_A, G] and I must leave
open the question of whether or not there exist separable systems for the null
energy surface which give rise to non-trivial conformal Killing pairs.

§ 5. Some Naive Remarks on Global Problems

The simplest way to define a global separable system (7̂  α) would be to require
that there existed a complete global solution of the Hamilton-Jacobi equation
which separated everywhere with respect to (7^ α) in the sense of Eq. (4.2). However,
as was remarked in § 4, a solution of the Hamilton-Jacobi equation is, in effect,
a hypersurface orthogonal congruence of geodesies and, in general, such con-
gruences are not well behaved globally (they encounter caustics) so complete
global solutions cannot be assumed to exist. Instead, I shall call (7̂  α) a (global)
separable system if it is everywhere a (local) separable system in the sense of § 4.
The question, which I pose but make no real attempt to answer, is this: given a
separable system (7^ α), the method of the previous section can be used to construct
local Killing tensor and vector fields; under what circumstances will these local
fields extend to global fields and define proper invariant submanifolds of T*M?
It is conjectured that this question is closely related to the global problem of
separating the wave equations on M. The following illustrates possible ways in
which the local considerations of the previous section can break down in the large.

Examples. 1) Consider the flat Mδbius band obtained by identifying the lines:

x1+x2=±l (5.1)

in IR2 (with a reversal of orientation). Define the vector field T and the closed
1-form α according to:

χι = JL^χ2 = JL {52)

a = dx1+dx2 (5.3)

where u is any real function such that du is parallel to α and u = \ on the line of
identification [for example, u= — ^cos^x1 + x2))']. By the third corollary to
Proposition 4.1, (7^ α) is everywhere a local separable system of type II. However
the local Killing vectors generated by (T,oc) are linear combinations (over IR) of
Xί and X2\ except for special choices of the initial surface, these do not extend
to global Killing vector fields (Xί and X2 are interchanged on the line of identi-
fication).

In this example the local constants of the motion do, in fact, define invariant
submanifolds of the cotangent bundle since the corresponding local Killing
vector fields are simply double valued in the large. This is not a feature which
could be expected in general.
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2) Consider the metric on IR" with contra variant components:

33

Gah= —

v 0 0 ... 0

0 w22vv23...w2r

0 w32xv33...w3r

0 wn2wn3...wnnJ

where:

κ = κ1(x1) + w2(x2,...x f l),

v = v(x1),

w ti = wn(x2,... xn) ί, j = 2, 3 ... n,

are functions such that:

Gab = δah

outside the neighbourhood:

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

of the origin. The Riemannian manifold (M, g) is constructed by identifying the
planes x1 = ± 1 according to:

(1, x2... xπ) = ( - 1, x2 + r, x 3 . . .x n ) r e R . (5.9)

Put T = -τ-j and oc = dxί. Clearly (7Jα) is everywhere a local type I separable

system. Taking as initial surface:

S = {(0,x2,x3...x")} (5.10)

the construction described in § 4 yields a Killing tensor A defined in some neigh-
bourhood U of S. However, it is not possible to extend A to a global Killing
tensor field by Lie propagating along the integral curves of T. For example, the
integral curve through the origin intersects S at the points (0, mr, 0,... 0),
m= ... —1,0,1,2..., and at each of these points A has a different value (in the
naϊve coordinate dependent sense).

For a type II separable system there does exist one clear sufficient condition
for the constants of the motion to be well behaved globally, that is that the Lie
algebras of local Killing vectors from which the system is constructed should
generate a group of (global) isometries. In the first example above the two Killing
vectors Xx and X2 do not generate isometries. The separation properties of a
Riemannian manifold with an abelian isometry group are well understood.

For type I orthogonal separable systems one can also give one obvious global
criterion, that is that oc = dx should be exact and that x should have no critical
points. In fact, provided that T is sufficiently well behaved near the critical sets
of x and provided these sets are not too large, the Killing tensors At will be well
behaved globally. For instance, this will certainly be the case if x:M-^lR has a
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local coordinate form:

x = x{0)±(x1)2±(x2)2±...±(xm)2; m^2 (5.11)

near its critical points. The proof is based on a simple geometrical argument which
hinges on the constancy of the functions at: T*M-»IR along the geodesies near the
critical points of x.

All that can really be concluded from these remarks is that a full answer to
the question will depend on details of the relationship between T, α, and the
global structure of the base manifold.

§ 6. Type {2,2} Space-Times

In this section, I shall illustrate some of my work by applying it to a certain
class of algebraically special vacuum solutions of Einstein's equations; no new
results will be obtained, but some old ones may be illuminated. For computa-
tional efficiency, I shall adopt the Battelle convention according to which spinor
and tensor fields are labelled by abstract indices appropriate to their valences [22].

Summarizing some results of Hughston, Penrose, Sommers and Walker [13,
31]: in any type {2,2} vacuum space-time (M, gab) with principal spinors oA and
ιA (normalized so that oAι

A= 1) there exist complex valued functions α,ψ:M-* (\_
such that:

1) ΨABCD = ΨO(AOBWD) i s t h e W e y ! spinor.

2) XAB = Ψ~1/3°(A1B) satisfies the twistor equation:

V$XBQ = 0. (6.1)

3) ΦAB = Ψ2/3°(A1B) satisfies Maxwell's equation:

VAφAB = 0. (6.2)

4) ΨABCD = ^ABCD satisfies the Einstein-Maxwell-Bianchi identity:

If Za is any Killing vector then :

0 ~ ^ZV^abcd) ~ \°£Z\*A

where Cabcd is the Weyl tensor (the Lie derivative of a spinor with respect to a
Killing vector has been defined by Geroch; the operation commutes with complex
conjugation, raising and lowering of indices, contraction and covariant differen-
tiation and it reduces to the normal Lie derivative on tensors [10, 27]). Equation
(6.4) and the symmetry of ΨABCD g i γ e :

0 (6.5)
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Hence:

Z f l F»=0, (6.6)

^z(o(AιB)) = 0, (6.7)

&Z(XΛB) = 0, (6-8)

J?z(φAB) = 0. (6.9)

It has been shown by Hughston and Sommers [13] that the complex vector:

Xa=KXBA = ΦΛB^ψ'1 (6-10)

satisfies the Killing equation:

F(flX6) = 0. (6.11)

Also, by virtue of Eq. (6.1), Pab
 = ^AB^AB' *s a trace-free conformal Killing tensor.

The condition that Pab be the trace-free part of a Killing tensor Cab is that there
should exist a real function keF(M) such that:

W ) ) o (6 1 2 )
that is, such that:

= -Uψ-1Vaa = ψ-ίVaδί). (6.13)

When the integrability condition for this equation is satisfied (as it is in the Kerr
metric) a is a function only of ψ and ψ and so, for any Killing vector Za:

ZaVaa = 0 = ZaVaa; ZaVak = 0. (6.14)

In the following, I shall assume that the integrability condition is satisfied, so
that there does exist a Killing tensor Cab (with trace free part Pab).

Combining Eqs. (6.14) and (6.8), one obtains J£z(Cab) = 0 for any Killing
vector Za. Further, from Eqs. (6.8) and (6.10), £?

z(Xa) = 0. Now, both the real and
imaginary parts of Xa must be Killing vectors so, except in the degenerate case
when Xa and Xa are dependent, M admits three distinct Killing tensors:

Kf = Ca\ (6.15)

(6.16)

Kf = (Xia-X(a)(Xb)-Xb)). (6.17)

These can be shown to be independent [31]. In the degenerate case, a third
Killing tensor is defined by:

Kab=Y(aγb) ( 6 1 7 > )

where Ya is the Killing vector:

Ya = Ca\Xb + Xb). (6.18)

In both cases, Kf, Ka

2\ and Kf commute.
Now, from Eqs. (6.1) and (6.12):

Cab = u.L{aNb) + υ M{aMb) (6.19)
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Na=ιΛΊA\ a = oAΊΛ\

(6.20)

(6.21)

Also, from Eqs. (6.6) and (6.14), ZaVau = 0 for any Killing vector Zα, while trans-
vecting the Killing equation for Cab with LaLbNc and with NaNbLc gives:

LaVau = 0 = NaVau. (6.22)

Thus the exact 1-form Vau is a common eigenform of K"b, Kf and Kf. By applying
Theorem 4.2, (Tα, Fαw) can be seen to be an orthogonal separable system, where:

Ta=Vau/(Vbu)(Vbu). (6.23)

The canonical example of a type {2, 2} vacuum space-time for which Eq. (6.13)
is integrable is the Kerr solution. In the standard Boyer-Lindquist coordinates
{t, r, θ, φ}, the metric has the form [3]:

1 -
2mr

o
0

2mar sin2θ

0

-R2

R2

r2 - 2mr + a2

0

0

0

0

-R2

0 -ήn2ί

2mar sm2θ

R2

0

0

2ma2r'Sin2θ

(6.24)

where R2 = r2 + a2 cos2θ. In an alternative coordinate system (used by Walker
and Penrose [31]) the metric components are:

2mr'

tf72"

- 1

0

2mr'α sin2θ'

- 1

0

0

a - sm
2/1/

0

0
-R2

0

2mar' sin2^'

R'2

a • sin2

0

the two systems being related by:

dt = dt'-{r2 +a2-2mry1 (r2

— sm

drf

2ma2r :

Έ*

(6.25)

(6.26)
dθ = dθ'

dφ = dφ' — a(r2 + a2 — 2mr) dr .

Borrowing from the calculations of Walker and Penrose [31] (and the corrections
of Hughston, Penrose, Sommers, and Walker [13]):

ψ = 6rn(r-ίa-cosθ)~3, (6.27)

k=- (6m)" 2 / 3(r 2 - a2cos2θ), (6.28)



Killing Tensors and the Separation of the Hamilton-Jacobi Equation 37

so that, for this solution, u = (6m)~2/3 a2 cos20: the θ coordinate is thus seen to
be separable. This result was, of course, established some time ago by Carter [5]
however, one advantage of the present somewhat circuitous proof is that the
global nature of the separation is a little more transparent.

The ignorable coordinates, t and φ9 are trivially separable, so it is a corollary
of Proposition 4.1 that the Boyer-Lindquist coordinate system is separable.
Explicitly, a complete separable solution:

Ψ:(t, r, 0, φ, vl9 v2, ϋ3, v^iu r, 0, φ, ψl9 ψ2, V>3> Ψ*)e T*M (6.29)

is given by [2, 5]:

ψi = vί

ψ2 = {r(r(r2 + a2) + 2a2m) v\ — Aamr -vγ-υ2 — (r2 — 2mr) v\

-(r2 + a2-2mr)(r2 . v3 + v2)}1/2 ( r 2 + α 2 - 2 m r ) " 1 (6.30)

^3 = {v2 + a

2(v2

1 - υ\) - c o s 2 0 - υ\ • cot 2 0} 1 / 2

The constants of the motion constructed from the functions:

(6.31)

(as in Theorem 2.1) are those associated with, respectively, the Killing vector

—, the Killing tensor Cab (otherwise known as Carter's fourth constant), the
dt

metric and the Killing vector —-.
oφ

The conformal rigidities of — and — are seen from Eq. (6.24) to be 3 and 4
oθ or

respectively, while from Eq. (6.30) it is clear that the numbers of linearly inde-
pendent [over F(M)~] Killing tensors generated by the orthogonal separable

systems \-^,dθ\ and I — ,dr) are, respectively, 4 and 5; in each case the metric
\dθ' ) \dr'

is included. This is in agreement with Proposition 4.2.
Finally, the coordinates (t\ r', θ\ φ') are also separable. The (non-orthogonal)

separable system — , dr is obtained from from the orthogonal separable system
\dx'

{ — ,dr\ by two transformations of the type described in the second corollary to

Proposition 4.1.
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