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Abstract. Uniqueness of KMS states is proved for one-dimensional quantum lattice system.
Sakai's theorem on uniqueness of KMS states is generalized to cases of non-commutative generators.

§ 1. Introduction

Uniqueness of equilibrium states for one-dimensional lattice system has been
proved by Ruelle [7] for classical interactions and by Araki [1] for quantum
interactions with a finite-range interaction. Simpler proofs have since been
given for these cases (for example, see [8]. Also see Theorem 2 in [5]). It amounts
to showing that any two states φί and φ2 satisfying the KMS condition are
majorized by each other: φί^λφ2^λ2φ1 for some λ>0.

We present here a proof of the uniqueness for one-dimensional quantum
lattice system with an interaction Φ, which satisfies the same type of condition as
known classical cases, namely surface energy has a bound independent of the
volume. The key argument in the proof is Lemma 2 which states roughly that
if the relative entropy of a state φί with respect to a state φ2 is finite, then the
associated representation πγ quasi-contains π 2 .

To state the result more precisely, we use the following notation: The C*-algebra
2Ϊ under investigation will have the following structure as usual: For each integer
v, 21 has a subalgebra 9IV mutually commuting for different v. For any subset /
of the set Z of all integers, 21(7) denotes the C*-subalgebra of 91 generated by
2ίv, v e /. We assume that each 9ίv is a type I finite factor and 2l(Z) = 2l. For each
finite subset A of Z, an interaction potential Φ(Λ) e 2ί(/L) is given such that

(0) Φ(0) = O,

(1)

where N(Λ) denotes the number of points in A and α > 0,
(2) the following element W(Λn) of 91 for an increasing sequence of finite

subsets An of Z is bounded in norm uniformly in n:

(1.1)

Here Ac denotes the complement of A in Z and CC denotes a finite subset.
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The assumption (0) and (1) are sufficient condition for the existence of the limit

α t(β)Ξlim eitu(Λ)Qe-ituu)^ ρ G 21, (1.2)
AA

which defines a one-parameter group at of automorphisms of 21.
The assumption (2) is the key condition for the uniqueness of equilibrium

states and is essentially the same as the classical cases [7].
Our main result:

Theorem 1. For any β real, 21 has one and only one oct-KMS state at the inverse
temperature β.

The proof will be given under more abstract setting, which leads to a gene-
ralization of Sakai's result [8]: Let 21 be a C*-algebra generated by an increasing
sequence of C*-subalgebras 2ίπ of 21, which are full matrix algebras. Let αf be a
one-parameter group of automorphisms of 21 such that αf(Q) is continuous in t
for each Q e 2Ϊ. Assume that there exists hn = h* e 21 for each n satisfying

(d/dt)at(Q)\t=o = ilK,Ql (1.4)

for all Q e 2IΠ. Let τ be the unique tracial state on 21 and hn e 2IW be the conditional
expectation of hn: τ{hnQ) = τ(hnQ), Q e 2In.

An abstract version of Theorem 1 is as follows:

Theorem 2. Assume that

sup\\hn-hn\\=λ<Gθ. (1.5)
n

Then 21 has at most one at-KMS state for each inverse temperature β.

Remark ί. If there exists hn e 2In satisfying

sup| |/z n -/i j |<oo, (1.6)
n

then the condition (1.5) is satisfied: hn — hn is the conditional expectation of
hn — hn, which implies

\\hn-hn\\S\\hn-hn\\-

Hence

Remark. 2. In the concrete case of Theorem 1, we may set 2Iπ =
hn=U(Λn)+W{Λn\hn=U(Λn). Then Theorem 2 and Remark 1 implies the
uniqueness part of Theorem 1. The existence is well-known. Thus it is sufficient
to prove Theorem 2.

§ 2. Quasi Containment

Two representations π1 and π 2 of a C*-algebra 21 is said to be quasiequivalent
if kernels oϊπ1 and π 2 coincide and the mapping πί(Q)-*π2{Q), Q e 21, extends to
a ^-isomorphism of weak closures. In the present case, 21 is simple and ker π x =
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ker π2 = 0. If a subrepresentation of π1 is quasi-equivalent to π 2 , then πλ is said
to quasi-contain π 2 .

Let φ1 and φ2 be states of 91. Let §,., π,- and ί27 be the space, representation
and cyclic vector associated with φp 7= 1, 2.

Lemma 1. // π1 does not quasi-contain π 2 , there exists a sequence of projections

^ e ( U A ) such that

(2.1)

(2-2)
m

Proo/. Consider the representation π = π1Q>π2 on § = δ i θ § 2 with vectors
Φ1 = Ω1®0 and Φ 2 = O 0 β 2 . Let 9W = π(2l)", 3 be the center of SOI and £, be the
3-suρport of Φp 7=1,2. A condition that πx quasi-contains π 2 is equivalent to
Eι^E2. Since this condition is not satisfied, there exists a non-zero central projec-
tion E such that EEX = 0 and E^E2 Since π(|JM?IΠ) is dense in SCR, there exists a
sequence am e 2ίn(m) (for some n(m)) satisfying

lim n(am) = E .
m

Let em be the spectral projection of am for an interval [1 — δ, 1 + δ~] where δ e (0,1)
is fixed. Then em e 9In(m) and

by a theorem of Kaplansky [6]. Since EEX=O9 EΦX =0. Since E<,E2 and £ φ θ ,
£ Φ 2 + 0. Hence (2.1) and (2.2) are satisfied with a= | | £ Φ 2 | | 2 > 0 .

§ 3. Relative Entropy

For two states φx and φ2 of a matrix algebra, the relative entropy is defined by

S(φi/φ2) = ΨiQog Qiϊ-ψiQog Qi) (3.1)

where Qj is the density matrix for ψy
For two faithful states of a von Neumann algebra 9Ji the definition has been

extended with a help of relative modular operators [2], [3]. In particular, for a
state φh obtained from a faithful state φ by a perturbation h = h* e 9JI, we have

S(φh/φ)=-φ(h), (3.2)

S(φ/φh) = φh(h). (3.3)

If N is a von Neumann subalgebra of SUi and φ1} denotes the restriction of ψj
to 9i, the monotonicity

0^S(φN

1/φ^S(φ1/φ2) (3.4)

has been proved for hyperfinite OT and 9t [2]. (For finite matrices, non-faithful
ψj are allowed.)
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If e e 9JΪ is a projection operator, the inequality (3.4) for 91 generated by e and
(ϊ — e) yield

S(φί/φ2)^φ2(e) log {φ2{e)/φ1(e)}

+ φ2(ί- e) log {φ2(i- e)/φi(ί - e)} . (3.5)

Lemma 2. Let φλ and φ2 be states of 21 and φ" denote the restriction of ψj
to SΆn. If

sapSiφl/φDsλ^ao, (3.6)
n

thenπγ quasi-contains π2 where π,- is the cyclic representation of *Ά associated with φ y

Proof. Assume that πx does not quasi-contain π 2 . By Lemma 1, there exists
a sequence of projections eme 8ϊw(m) such that φi(em)-*0 and φ2(em)^a>0. Then

while

φ2{em) log φ2(ej + φ2(ί -em) log φ2(ί -em)^-log 2,

These estimates contradicts with the bound (3.6) when φfm) and em are substituted
into ψj and β of the inequality (3.5).

§ 4. Gibbs Condition

Let WN denote the commutant of 2IN in 21. Then 2ί = 2IN®2Iίv. Let τN and τ'Ή
denote the restriction of the tracial state τ of 2ί to 2IN and 21^. Let

φG

N(Q) = τN(e-^Q)/τN(e-^). (4.1)

Let W(N) = hN—hN. A state φ of 21 is said to satisfy the Gibbs condition
atjSif

(i) The normal extension φ of φ to the weak closure 9JI = 7 (̂21)" of the associated
representation is faithful on 9JΪ and

(ii) for every JV, φβw(N) = φ^@φ'N for some linear positive functional φ'N on 2ί^.

Theorem 3. If φ satisfies the KMS condition at β, it satisfies the Gibbs condi-
tion at β.

Proof The condition (i) is known to follow from the KMS condition. Let

(4.2)

be a state on 21 obtained from φ by a perturbation βW(N) — {log φβW{N\ϊ)} i.
Let σf and σf be modular automorphisms of SDΪ for states φ and ψ (the normal

extensions of φ and t/; to 9JΪ). Then

t = o = i)8[πφ(^(iV)), x] (4.3)

for x G SCR. The KMS condition implies

β e 21. (4.4)
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By (1.4), (4.4) and (4.3), we obtain

(d/dt)σ?(πφ(Q))\t = 0= - iβπφ([_hN, β]) (4.5)

for β e 3IN. By the group property,

WtW(x) = σr{(d/ds)σΐ(x)\8 = o} - (4-6)

Let

^(Q) = eitJΪNQe-itJlN. (4.7)

Then

{d/dt)^{Q) = iίhN9o^{Q)]. (4.8)

From (4.5), (4.6) and (4.8), we obtain

(d/dt)σ?(πφ{aN

βt(Q)}) = 0 (4.9)

for β e 21^. This implies

σΐ{πφ(Q)} = πφ{a»βt(Q)}> Q e 21* (4-10)

In particular

(4.11)

where the centralizer 93ΪV is the set of x e $R invariant under σf. If we set VΊ =
then (4.11) implies

QeSΆ, (4.12)

and

<rΓ(β)= ^π < p ( / ί ] v )^(x)e " ^ π ^ ( ^ } (4.13)

for x G SOΐ. The last equation together with (4.10) imply

π φ ( S y 6 3WVl. (4.14)

If β i , Qi e Sίiv and β' e 31^, then

Vi(βi(β2β')) = ψAQiQΊQi) (by (4.14))

= Vl(fi2βlβ')
which implies

ψAQuQ2~\Q') = V (4.15)

Since 91^ is a full matrix algebra, any element Q e 91^ can be written as

G = t J Ϊ(β)/ + L [ β j i . β y 2 ] (4-16)

for some Qji,Qj2 e 9IN. Hence (4.15) implies

β/) (4.17)

for Q E ̂ ίjy, β' G 9ίίv. Namely tp± = τN®τ/;/

1 where φ^ is the restriction of ψ1 to 91^.
Because of (4.12), we obtain (ii) of the Gibbs condition.
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Remark. What we need in the subsequent application is a part of the Gibbs
condition, which says that the restriction of φβW(N^ to 21^ is the Gibbs state φ%
up to a normalization constant φβW{N\ί). This much is deduced immediately
from (4.10) by the uniqueness of KMS states for full matrix algebra.

§ 5. Proof of Theorem 2

Let φ^ be any one of the accumulation points of the sequence of states φ^®τ'n
at n= oo. Let φ be an arbitrary extremal α Γ KMS state at β. By a known general
result, φ is primary.

Let p be a fixed positive integer. Since 2Ip is of finite dimension and φ^ is a
weak accumulation point of φ^®τ'n, there exists an integer N(ε) for any given
ε > 0 such that N(ε)^p and

p"(^oo)pll<β (5.1)

where (φ)p denotes the restriction of φ to 2 ί r Note that (<PJV)P = (<PJV®TN)P for iV^p.
By (3.4), we have

p p (5.2)

where ψN denotes the state ψ given by (4.2). By (3.3), we have the following estimate:

S(φ/ψN) = ψN(βW(N))- log φβw^\i)

SψN(βW(N))-φ(βW(N))

S2\β\λ (5.3)

where we have used (1.5) and the following Peierls-Bogolubov inequality [4]

logφβW(N\ϊ)^φ(βW(N))

which follows from S(ψN/φ) ^ 0 for example.

By the Gibbs condition, (ψn)p = {φ^)p for N^p. Hence (5.2) and (5.3) imply

0^S((φ)p/(φG

N)p)S2\β\λ. (5.4)

The function tr(ρlogρ) of the density matrices ρ for a finite dimensional
case is bounded and continuous. If σ is strictly positive, tr (ρlogσ) is also bounded
and continuous as a function of ρ. Hence

S((φ)p/(φJp) = Um S((φ)pf(φ%{ε))p)

due to (5.1). By (5.4), we obtain

(5.5)

Since p is any positive integer, Lemma 2 implies that the cyclic representation π
associated with φ quasi-contains the cyclic representation π^ associated with φ^
Since π is primary, this implies that π and π ^ are quasiequivalent. Since φ^ is
fixed, any primary KMS states are mutually quasiequivalent. The proof of
Theorem 2 is then completed by the following Lemma.
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Lemma 3. // two extremal KMS-states φ and φ' of a C*-algebra 91 at the same β

have quasi-equivalent associated cyclic representations, then φ = φr.

Proof. Let §, π and Ω be canonically associated with φ and 9Jί = π(2X)".

Since φ is a KMS-state, Ω is separating (and cyclic by definition). By quasi-equi-

valence, there exists Ωe VΩ

1/4 such that the associated vector states is φf, where

VΩ

/4 denotes the natural positive cone (see [3], for example). Since φr is a KMS-

state, Ω' is separating for SOΐ and hence is also cyclic (see [3], for example). Let the

unitary cocycle (the intertwining operator for modular automorphisms) be

denoted by

Since the KMS condition characterizes the modular automorphisms, we have

σf = σ?( = τyχ_/, fπ~1 on π^(2ί)) and hence

ufφ' e WlnW.

Since φ is an extremal KMS state, the center WlnW is trivial and hence ufψ> = eict

for some real c. By analytic continuation, we have

Hence φ = φ'.
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