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Abstract. The system of Lagrangian equations describing a spin one particle moving in an external
electromagnetic field with minimal, dipole and quadrupole interactions is shown to be equivalent
to a symmetric hyperbolic system of partial differential equations, to which a standard existence
theorem can be applied. The key hypothesis of the treatment is that the derivatives of the electro-
magnetic field must be sufficiently small. The results cover also the case of noncausal propagation of
signals.

1. Introduction

In a preceding paper [1] (from now on referred to as I) an existence theorem
for the system of equations describing a massive vector meson interacting with
an external tensor field was proved. The result was obtained by essentially reducing
the system of Lagrangian equations to a symmetric hyperbolic system of partial
differential equations (PDE) to which standard existence theorem could be
applied.

Here we propose to establish an analogous existence theorem for a massive
spin one particle in a suitable external electromagnetic field with minimal, dipole
and quadrupole couplings. The result is known for minimal interactions [2] and
for minimal and dipole interactions [3]. The novelty resides in the treatment of
the quadrupole coupling, which is a much less regular case because there can be
solutions propagating at a speed greater than the speed of light, that is outside
the light cone [4].

The Lagrangian we will start from is essentially that of Bludman and Young
[5], but to establish a connection with the Lagrangian used in Ref. [4], we have
to add an extra interaction term containing a symmetric external tensor field.
In this sense this paper is not only a continuation of I, but it embodies most of the
results of I.

The ideas developed here are the same as in I to which we refer both for a
description of the situation concerning in general existence theorems and for
details about the type of treatment here employed.

In Section 2. we will establish an equivalence theorem between the initial
Lagrangian equations and the new equations we will consider. Section 3. contains
the proof that, for suitably small external fields, the new system is equivalent to a
symmetric hyperbolic system, leading in this way to the existence theorem.
A computation of a characteristic determinant is performed in the Appendix.
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2. The Equivalent System

Let us consider a complex vector field Vμ(x) in four dimensional space-time
coupled to an external electromagnetic field through minimal, dipole and quadru-
pole interactions. To describe the above physical system we take the following
Lagrangian density:

+ γ(DμVv-DvVμ)
+QrVλ + ̂ Γ(DμVv-DvVμ)QΓVλ+ (2.1)

- \q\2 QΓ Vλ+ Qσμv V° + m2 Vμ

+ T»° VQ

where:

Dμ = dμ + ieAμ, Fμv = dμAv- 3vAμ, Qλμv = dλFμv, (2.2)

Aμ is an external electromagnetic potential and Tμv is an external symmetric
tensor field. Here e and μ are real constants and q is a complex constant measuring
respectively the strength of the electric charge, of the dipole moment and of the
quadrupole moment. The external fields are supposed to be C00 functions of the
space-time variables. The last term in the expression (2.1) represents a tensor
interaction. If this term is zero, Eq. (2.1) reproduces, in the second order formalism
the Lagrangian used in Ref. [5], while if:

T — O O ρ σ (21)

Equation (2.1) reproduces the Lagrangian used in Ref. [4].

Variation with respect to F + yields the following Lagrangian equations1:

£ v = 0 (2.4)

where

EQ = Dμ lD
μ VQ-DρVμ-q QλμQ Vλ~\ +rn2(VQ+ Tρσ Vσ)

( 2 5 )
1 v λ
z

The characteristic determinant [6] of the second order system of PDE (2.4) is
identically zero because of the presence of constraints. To analyze this system
we will show that it is equivalent to a new non degenerate system of PDE sup-
plemented by suitable initial conditions.

1 Our conventions are # μ v = diag(l, —1, —1, —1), β o l 2 3 = l, ε 1 2 3 = l, latin indices run from
1 to 3, greek indices run from 0 to 3.
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Let us define the expressions:

(2.6)

Si=m2{D°Vi-DίV°-qQλ0iVλ-G0ί)

where Gμv is an antisymmetric complex tensor field,

HQλ=^ερλμvGμv (2.7)

and
pβQ* = lεQλ<"QHστ. (2.8)

If we take:
Qμv = DμVv_ Dv yμ _ QQλμv y^ β.9)

and if Vμ is a solution of the system of PDE (2.4), it is easy to check that the Vμ

and the Gμ v are solutions of the following equations:

F 0
(2.10)

L = 0

There is a converse to this observation, expressed by the following:

Theorem 1. If the Vμ and the Gμv are solutions of the system (2.10) and if at a
specific time the following expressions

Sij = Gij - (D1 Vj - Dj V1) + qQλίj Vλ (2.11)

and

j 0 2 ° 0

 ρ+-CγQ0ρσGρσ (2.12)

are set equal to zero, then the Vμ are solutions of the system (2.4) and the quantities
(2.11) and (2.12) will remain zero at all times.
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Proof. The proof is based on two identities which contain the time derivatives
of the constraints (2.11) and (2.12) [the expressions (2.11) and (2.12) are called
constraints because they do not have the time derivatives of the unknown functions
Vμ and Gμvl The first is:

D0Sij=-εijkF
k + m-2(DJSi-DiSj) (2.13)

which is quite easy to check by looking at the explicit expressions for Sip Fk,
and St. On the other hand, because of the definitions (2.6) and (2.11), the following
intermediate identity holds:

(2.14)

As a consequence we can deduce the second identity:

4 * 0 σ ]

(2.15)

= L-DjN
j~iμm~2SiF

i0-^SijF
ίj.

Since by hypothesis the Vμ and Gμ v satisfy the system of PDE (2.10), the identities
(2.13) and (2.15) become the following differential equations for the constraints
(2.11) and (2.12):

DoSij = 0 (2.16)
and

™". (2.17)

It is then clear, from Eqs. (2.16) and (2.17), that, if the expression (2.11) and (2.12)
are zero in the whole space at a fixed time, they will remain zero at all times.
Moreover, since

Eι = Nι + m~2D0S
i - DjSji (2.18)

and

\ ^ Δ D j S J 0 (2.19)

it follows that also the initial Lagrangian equations are satisfied. QED

From now on we will analyze the system of Eq. (2.10), which represents
10 equations in 10 unknown functions. We rewrite it in a synthetic form as:

Γμdμu + Du = 0 (2.20)
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where

u = (G°\ G02, G03, H°\ H02, H°\ V°, V\ K2, V3) (2.21)

and the equations in the expression (2.20) are written in the same order as the
Eq. (2.10). The explicit form of the 10 x 10 matrices Γμ and D can be read directly
from Eq. (2.10). The matrices Γμ are not hermitian and therefore the system (2.20)
is not symmetric hyperbolic.

The usual definition of symmetric hyperbolicity refers to real systems of PDE
(Ref. [6], p. 593, Ref. [7], p. 16). We will employ the same terminology and the
same existence theorems also for the complex case, where the obvious substitute
for the notion of symmetricity is the notion of hermiticity. The justification for
this extensive use is that we can go from a complex to a real system of PDE by
splitting equations and unknown functions into real and imaginary parts. Then
an N dimensional hermitian matrix coefficient of the complex system becomes
a 2 JV dimensional symmetric matrix coefficient of the corresponding real system,
and in this passage the positivity property of a matrix is preserved.

Coming back to the system (2.20), what we have gained by the reduction
expressed by Theorem 1 is the elimination of the degeneracy of the initial system
(2.4). In fact, as will be shown in the next Section and in the Appendix, the charac-
teristic determinant of the new system (2.20) is not identically zero.

3. The Existence Theorem

It is possible to symmetrize the system (2.10) by taking suitable linear combina-
tions of the initial equations, that is of the expressions (2.6). We have the following:

Theorem 2. Provided the matrix C = (cik) with

cik = m2(δίk - Tik) + \q\2 QίOjQk

Oj (3.1)

is invertϊble, the system (2.10) is equivalent to the new system:

Fi-qm'2Pj

0ίSj = 0

(3.2)
L-q*QOOίN

ι-TOiS
ι = 0

where:

bik = δik-Tik. (3.3)

Moreover if we rewrite the new system (3.2) in the form:

+ Ru = 0 (3.4)
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with u given by the expression (2.21), then the 10 x 10 matrices Aμ can be explicitly
computed and turn out to be hermitian.

Proof. Since one passes from the system (2.10) to the system (3.2) by a linear
transformation, it is obvious that there is a 10 x 10 matrix M such that

Aμ = MΓμ R = MD. (3.5)

Its explicit form can be easily seen from the structure of the system (3.2):

q
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q
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0
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01
3

3°2

03
3

01

0 2

0 3

33

.3

13

53

(3.6)

The determinant of M can now be computed in the following way. If we denote
by mjk the matrix elements of M, the new matrix obtained from M by leaving
unchanged the first 7 rows and by substituting for mΊ + kJ(k = 1,2, 3; j= 1,2,..., 10)
mΊ+kj + q*ΣliQkOimiJ, has the same determinant of M. The last three rows of
the new matrix are:

0 0 0 0 0 0 0

0 0 0 0 0 0 0 m

0 0 0 0 0 0 0

- 2
c

By developing now the new matrix along the 7th column we see that:

= m ~ 6 d e t C . (3.7)

The characteristic matrix of the system (3.4) Aμnμ can be, with some patience,
calculated (nμ is a four-vector). If we denote by aij = aij(n) its matrix elements, it
results that

α lV(n*)* = αi/ί(n) (3.8)
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and therefore that the Aμ are hermitian matrices. The explicit expression for the
atj is the following:

aij = no<>ij ΐ = l , 2 , 3 ; j =1,2,3

noδij i = 4,5,6; 7 = 4,5,6

8ij-3ikn
k i = l , 2 , 3 ; 7 = 4,5,6

qnoQj-Ί,
Oi i= 1,2,3; 7 = 8,9,10

qnkPj_7

Ki-3 i = 4,5,6; 7 = 8,9,10

7 y-7 i = 8,9,10; ; = 8,9,10
(3.9)

aΊi=-q*nj&Oi i = 1, 2, 3

i.ί-3) Ϊ = 4, 5, 6

.Γ O ί ] i = 7

m2njbJti-7 ί = 8 , 9 , 1 0 .

The matrix elements not explicitly contained in (3.9) can be recovered via the
equality (3.8). Q.E.D.

With the explicit expression for the matrix Aμnμ we can compute its deter-
minant which is called characteristic determinant. The calculation is performed
in the Appendix and yields the following result:

m2{n2)2 + \q\2(nμnρQ
μn(nτnλQ

τλ

σ)

mm

(

Concerning the existence of solutions we are now in a position to prove the
following:

Theorem 3. Let the matrix C be positive and bounded away from zero uniformly
in space-time, let the quantity

m2(ί + T00)-\q\2Σ(Q0ii)2

be positive and bounded away from zero uniformly in space-time, let the external
fields be infinitely differ entiable functions of the space-time variables. Then the
system (3.4) is a symmetric hyperbolic system and it has for infinitely differ entiable
initial data a unique infinitely differ entiable solution.

Proof. The existence result follows by a standard theorem once it is proved
that under the stated conditions the system (3.4) is symmetric hyperbolic (Ref. [6],
p. 669, Ref. [7], p. 89). To establish the symmetric hyperbolicity the only point
which remains to be checked is the positivity of A0. From the explicit expression
for Aμnμ in (3.9) one finds that:

(u, A0u) = \GOi + q Qj0iVj\2 + \HOi + qPo

Oi V°\2
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By relation (2.8) it follows that:

Zi(Pooi)2= Σ(Q0ίj)2' (3 1 2 )

Therefore, by the hypothesis of the theorem, Λ° is uniformly bounded from below
in the whole space-time by a positive number. Q.E.D.

We suppose from now on that the hypothesis of Theorem 3 are satisfied. The
space-like surfaces of the hyperbolic system (3.4) are defined by the condition that
Aμσμ>0, where σμ is the normal to the surface and σ° is taken to be positive.
We will say that (n°, ή) is, for n fixed, the largest solution to Eq. (3.10) if (n°9 ή) is
the solution to Eq. (3.10) with the largest n° for a given n. Then it is easy to see
that (σ°, σ) is normal to a space-like surface if and only if σ° > n° where (n°, ή) is

n°
the largest solution to Eq. (3.10) with n = σ. Moreover the quotients ——, where

\n\
(n°,ή) belongs to the family of the largest solutions to Eq. (3.10), represent the
maximal speed of propagation of signals in the theory. It is easy to have situations
in which such a speed is greater than the speed of light in vacuum [4].

Finally the existence theorem extends through Theorems 1 and 2 to the
initial system (2.4), provided we impose that at the initial time the expressions
(2.11) and (2.12) are set equal to zero. These restrictions on the initial data can be
easily satisfied. In fact, because of the hypothesis of Theorem 3, the quantities Gιj

and V° can be immediately expressed as linear functions of the GOί and Vj and of
their space derivatives.

Appendix

Here we want to compute the determinant of the matrix A =Aμnμ, where the
matrix elements atj are given by Eqs. (3.8) and (3.9).

Let us consider the new matrix A1 in which the elements of the first six rows
are the same as those of A and in which the remaining ones are obtained in the
following way. The elements of the 7th row are:

1 n0

and those of the (7 + /c)th rows (k = 1, 2, 3) are:

3

j j a J i ' ( A 2 )
1

Obviously Aγ has the same determinant as A. Let us perform now on the transpose
of the matrix A1 the same operations we performed on A. We leave unchanged the
first six rows of A\ while we change the 7th, 8th, 9th and 10th according to the
rules (A.I) and (A.2), where the atj are replaced by the matrix elements of Af,
while the coefficients of the linear combinations remain the same. The resulting
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matrix, which has the same determinant as A, is the following:

0»0

0

0

0

n
0

0

0

0

n2

0 - j

n
3

0

-n,

0

-n
2

n
γ

0

0

0

0

0

α
1

0

0

0

0

0

0

0

0

0

0

0

0

- H i

0

0

0

0

0

0
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0

0

α

n
0

0

0

0

a
z

n
0

0

0

0

α
J

n
0

0

0

0

d

«o
0

0

0

0 0 0

0 0 0

0 0 0

n0C

(A3)

Here

= m2(z + n T ή),

(A.4)

(A.5)

(A.6)

and C is the 3 x 3 matrix (3.1).
To further simplify the computation of the determinant, we perform on the

matrix (A.3) the following operations. We add to the 4th row the 2nd multiplied by

—— and the 3rd multiplied by —, to the 5th row the 1st multiplied by —
no n n° n n°

and the 3rd multiplied by — , to the 6th row the 1st multiplied by — and the
n

 no no
2nd multiplied by . The only changes in the matrix involve the first 6 rows

n0

and columns, that we are going to rewrite:

n
0

0

0

0

0

n
0

0

0

0

0

n
0

0

0 -n2

0 0 0

0 0 0

n
0

n
γ
n

2

n
0
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3

n
0

z + nl
n

0

n
2
n

3

n
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n
2
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3

n
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(A.7)
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Therefore the determinant of the matrix (A.3) becomes:

«§(detC)det

z + nf n1n2

n1n1n2
n3n3n3

n2n3

d

(A.8)

α α α

The 4 x 4 determinant contained in (A.8) can be directly computed. The result is:

z\άznl - α* an2

0 + (α w)*(α n)] . (A.9)

By the definitions (A.4)-(A.6), it follows that the determinant of Λμnμ is:

1 {n2m2(n2 + n'T-n) + \q\2(nρnρP
μρσ)(nτnλP

τλ

σ)} (dεtC). (A.10)

The final expression (3.10) is obtained by the expression (A. 10) using the definition
(2.8).
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