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Abstract. The infinite coupling constant limit of the resolvent, the semigroup and the Gibbs state
is obtained for a certain class of perturbations.

As an example the infinite intrasite repulsion limit of the one-dimensional Hubbard model with
nearest neighbour hopping terms is treated. This system exhibits a phase transition in the thermo-
dynamic limit.

1. Introduction

In contrast to the usual perturbation theory [1] where the behaviour under
a "small" perturbation is studied it is the aim of this paper to investigate the
influence of "large" perturbations. To be more specific, we shall investigate the
behaviour of the resolvent, the semigroup and the Gibbs state associated with
κ~ιA + B as K tends to zero. The results are contained in Theorem 1 to 3 of
Section 2.

In Section 3 the results of Section 2 are applied to the one-dimensional
Hubbard model (nearest neighbour hopping) with infinite intrasite repulsion. It
is shown that this system may be described as a composition of a system of
spinless fermions with a spin system without interaction between the two sub-
systems. The thermodynamic limit is calculated explicitly exhibiting a phase
transition (nonanalyticity at zero chemical potential).

2. General Theory

Let A and B be operators on a Hubert space Jf with the properties

A = A*9 BCB*, D(B)DD(A). (1)

According to the closed graph theorem B is ,4-bounded, i.e. there exists a con-
stant α>0 such that

α||fltt| |^Mti|| + N | (2)

for all UED(A). The operator

Hκ = κ~1A + B (3)

is self-adjoint on D(A) for real κ:φθ with |κ |<α [1]. Let P=E({0}) where E is the
spectral measure associated with A, and d=dist (0, supρ£\{0}). As a prefix d
means norm (d>0) or strong (d = 0).
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Lemma 1. For Imz + O

d-\imB(z-κ-1A)~ί=-BP. (4)
κ^O Z

// A and K are positive (4) holds for z φ 1R+.

Proof. In |Imz|^ε|z| (^εRez for A positive), 0 < ε < l ,

d-\imz{z-Ay1=P
z-*0

holds. From (z-κ'ιA)~ι = z~\κz) (KZ - A)'1 it follows that (4) is valid for B = I.
The general case is obtained from the resolvent equation

B{z-κ-1Ay1=z{l-κ)B{z-A)-1(z-κ-1Ay1 + κB{z-Ay1 .

Let σ(Hκ) be the spectrum of Hκ and

J(z)=liminfdist(z,σ(ifκ)).
κ->0

Obviously, A(z)>0 for ImzφO and zl(z)>0 for z<£IR+ if A, B and K are positive.

Theorem 1. For Δ(z) >0 the resolvent (z — PBP)'1 exists in the subspace Pjf and

d-lim{z-Hκy
1={z-PBP)-1P. (5)

Proof Let A(zo)>0. Then

Urn sup IKzo-HJ" 1 ||
κ-*0

and the series

(z-HJ-^X^olzo-zHzo-iίJ-"-1 (6)

converges absolutely for all z with \z — zo\ <A(z0) and uniformly with respect to K
for sufficiently small K. If (5) holds for z = z0 this implies \\(zo-PBPy1\\^l/A(zo\
hence

for \z — zo\<A(zo). As limit and sum in (6) are interchangeable (5) holds for all z
with \z — zo\ <A(z0). It remains to prove (5) for two points in the upper and lower
half-plane, respectively.

For purely imaginary z it follows from (2) that

for |z|>l/α and \κ\ sufficiently small. According to Lemma 1 this implies
\\z~1BP\\<\ and hence

κ->0

Remark. For d>Oa stronger result may be obtained (see Appendix).
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Theorem 2. Let A and B be positive. Then for ί > 0

d-\ime-tH« = e-tPBPP. (7)

Proof. Apply Theorem 1 to

where the path Γ runs counterclockwise around IR+.

Remark. Theorem 2 has a trivial generalization to the case where B is bounded
below (shift Hκ and B by the lower bound of B).

From now on we assume J f to be separable.

Theorem 3. Let A be positive and B bounded below. If Hκ,0<κ^λ^a, has
pure point spectrum and exp( — βHλ) belongs to the trace class for some β > 0 , then
exp( — βHκ) and P exp( — βPBP) belong to the trace class and

limtre-βHκ = trPe-βPBP. (8)

Proof Let X and Y be self-adjoint operators with pure point spectra. If / is
a convex function then

(«„, {f(X)-f(Y)-(X- Y)f'(Y)}un)^0 (9)

where {un} is an orthonormal base of eigenvectors of X or Y [2]. Applying (9)
to X = Hκ,Y = Hμ and/(ί) = exp(-j8ί) yields

K,/(lW^kJ(W + * " 1 - ^ 1 ) ( ^ Λf(Y)un). (10)

We choose now {un} to be an orthonormal base of eigenvectors of Y. Hence, we
have

Accordingly, we get from (10)

(unJ(Y)un)S(unJ(X)un)

for μ<κ, i.e. with f(X) also f{Y) is in the trace class. Together with (7) the state-
ments of the theorem follow.

Remark. Under the hypotheses of Theorem 3

with Z(β, κ) = tr exp( — βHκ) is a state (Gibbs state of inverse temperature β
associated with Hκ). If P=t=O then also

) = Z(β)-1Pe-βPBP

with Z(β) = tr P e x p ( - βPBP) is a state satisfying

) = d-limW(β,κ).
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3. The Hubbard Model

We consider the Fock representation of the CAR indexed by M x S where
M = {l,2,...,m}, m e N , and S={1, — 1}. Creation and annihilation operators will
be denoted by cfσ and ci<n respectively. Setting niσ = cfσciσ we introduce

niσ = Σl=okPk (11)

where Pk is the projector onto SFk = Pk3F (βF being the Fock space) and

Q = ΣA= iniΛnu-, =Σl=o B^JPkj (12)

with j_(k) = max{0, k-m}J+(k) = [fc/2].
The eigenspace associated with the eigenvalue j of QPk will be denoted by
^r

kJ = pkJ<^^ its dimension is given by

We now define the Hubbard Hamiltonian [3] by

(14)

The hopping term Hh is given by

Hh = Σ(U)eX ΣσesUjCfσCJσ (15)

with X = X8={(i,j)\\i-j\ = l} or X = Xr = Xsυ{(l,m)Λm, 1)}
The two cases are referred to as "segment" and "ring", respectively (the model

under consideration may be visualized as a system of spin 1/2 fermions on a one-
dimensional lattice with m sites forming a segment or a ring). The matrix (ίo ) is
assumed to be real symmetric.

The magnetic term Hm is given by

where h is an external magnetic field.
Finally, the intrasite repulsion term is given by

(17)

The thermodynamic properties of the system are derivable from the grand
partition function

ΞJβ, μ, h, K) = tr exp(- β(H -μ)) = Σl=oeβμkZm,k(β, h, K) (18)

with

Z«.*(ft K K) = tr exp( - βPkHPk) (19)

(jS is the inverse temperature, μ the chemical potential).
Denoting limits by omitting K we obtain from Theorems 2 and 3 and Eqs. (18),

(19) the infinite intrasite repulsion limit

Ξm(β, μ9 h) = Σl=oeβμkZm,k(β, h) (20)
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and

Zm,k(β, h) = tr Pj- exp { - β(Pk (Hh + Hm)Pk} (21)

with p-=PkJ{k).

To give a "physical" interpretation to this result we shall introduce a sub-
stitute system. This substitution will at the same time permit the actual com-
putation of (20), (21).

Let J^ 0 be the Fock space of the CAR representation indexed by M with
creation and annihilation operators df and db respectively. J*° = Pk3F (k = 0,...,m)
denotes the fe-particle subspace.

As Hamiltonian of the system we shall take

H° = ΣιιJ)sχtιμΐdj. (22)

Furthermore, we introduce JΊfn = J f Ί ® . . . ® J f l 5 the rc-fold tensor product of a
twodimensional Hubert space fflγ. Let {φσ,σ= ±1} be an orthonormal base of
JΊf1 and set Sj = I®...®5®...®/ with s, sφσ = σφσ, as j-th factor. As Hamil-
tonian in Jf n we take

Theorem 4. For k^m (i.e. j_(k)=O) there exists a unitary operator
such that

The system (J^°, H°) is a system of spinless fermions whose dynamics is described
by the hopping Hamiltonian H° whereas (Jf „, Hn) is a system of spins interacting
only with the external magnetic field h.

The substitution mentioned above may now be formulated by the following
theorem.

(24)

_fc. ( 2 5 )

Remark. Theorem 4 says that in the infinite intrasite repulsion limit the
Hubbard system may be described (in each subspace <Fk separately) as a com-
position of a system of spinless fermions with a spin system. The Hamiltonian
of the composite system [given by the r.h.s. of Eqs. (24) and (25), respectively]
contains no interaction between the two subsystems, i.e. translational and spin
degrees of freedom are completely decoupled.

Proof. For fe^m define Uk as the extension by linearity of

whereas for k>m (i.e. j_(k) = k — m) there exists a unitary operator
l - k such that

(φσ = φσi®φσ2®...®φσ]) with I^r1<r2<...<rk^m and arbitrary σu...,σk.
Verification of (25) is left to the reader as well as the case k>m.
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It follows from (21), (24), and (25) that

ZmΛ(β, h) = Z°m,k(β)Zk(β, ft), kίm (26)

and

Zm,k(β,h) = Z°m,k-m(β)Z2m-k(β,h), k>m (27)

where

Z°mJ(β) = tτexp(-βP°Hoη) (28)

and

Zn(β,h) = tΐeχp(-βHn). (29)

From (23) we obtain

Zn(β,h)=(2coshβhT. (30)

Introducing N° = Σdfdi and

Z°m(β, v) = treχp(-β(Ho-vNo)) = Σ7=oeβviZ°mj(β) (31)

the grand partition function for the system of spinless fermions, we obtain col-
lecting all results

Ξm(β, μ, h) = e^^{Ξ°Jβ, μ- y) + Ξ°m(β, μ + y ) e ^ ^ - 1} (32)

(33)

with
The Hamiltonian H° is easily diagonalized and (31) yields

where λj (/=l,...,m) are the eigenvalues of the matrix (i0).
As we are interested in the thermodynamic limit (i.e. m-> oo) we assume from

now on translational invariance.
As tij = t, (ίJ)eX, this leads to

^ , 7=l, . . . ,m (34)

in the case of the segment and

j j lj j , j=l,...,m (35)

in the case of the ring.
For the "pressure" p°(β, v) = l i m m " 1 l o g Ξ ^ , v) we obtain from (33) and (34)

or (35)

p°(β,v)=-$dxlog(l + e-β(2tcosχ-v)). (36)

The density ρ°{β, v) = β~1p? v{β, v) is given by

o(8 ) J g ( c O 8 χ - v ) + l ) " 1 . (37)
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Finally, the "pressure" p(β, v, h) and the density ρ(β, μ, h) for the Hubbard model
in the infinite repulsion limit are obtainable from (32). This leads to

M-y) (38)

and

ρ(β,v,h)=l+sign(μ)p°(β,\μ\-y). (39)

Obviously, p and ρ as functions of μ are real analytic in the complement of μ = 0
but not at μ = 0. The density ρ has a jump at μ = 0 given by Aρ(β, h) = 2ρ°(β, —γ).

It follows from (37) that zlρ(0, A) = 2/3 and

i.e. for h + 0 the jump vanishes as the temperature approaches zero whereas for
h = 0 it remains finite.

As ρ°(β, v) increases monotonically from 0 to 1 as v varies from — oo to oo it
follows that ρ(β,μ,h) increases from 0 to l — ρ°(β, — y) and from l + ρ°(β, —y)
to 2 as μ varies from — oo to 0 and from 0 to oo, respectively.

The magnetic properties of the system are displayed by the magnetization

m(β, v, h)=-β ^p(β, μ, Λ) = (l - \ρ(β, μ9 h)- l|)tanhj8Λ

and the susceptibility

χ(β, μ)=^m(j8, μ, Λ)Λ = 0 = (1 ~ W> μ, 0 ) - I|)j8 ,

i.e. the typical behaviour of a system of noninteracting spins in an external field.

Remark. The infinite intrasite repulsion limit has been treated before by
several authors [4—6]. Their results are in qualitative agreement with ours, the
difference lies in the rigour of the mathematical methods used to obtain them.
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Appendix

We shall prove a theorem which essentially says that (z — Hκ)~ι is a real
analytic function of K in a neighbourhood of κ = 0 if d>0 (notation and assump-
tions as in Section 2).

Theorem 5. Let d>0. Then to each zeρ'(PBP) (the resolvent set of PBP con-
sidered as operator in PJί?) there exists κ: 1>0 such that the relation

{z-HK)~l= R{z) + κE{z)F(κ, z)G(z) (Al)

holds for —κ1<κ<κί where

) = Σ " = o ( κ W (A2)
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is absolutely convergent and R(z), E(z\ F(z\ G{z) are given by

P, (A3)

) = S + R(z)BS, (A4)

) = (z-B)E(z)9 (A5)

G(z) = (z-B)R(z)-I, (A6)

with

S = n-\im(z-A)-ί(P-I). (A7)
z^O

Proof. As d>0 (A7) makes sense and the norm of S satisfies d| |S| | = 1. Fur-
thermore, we have S3ί?CD(A). This is seen as follows: Let fejf and g(z) =
(z-A)~1{P-I)f By definition we have

(A8)

and from Ag(z) = (I-P)f + zg(z) it follows that

limAg(z) = (I-P)f. (A9)
>0>0

As A is closed Eqs. (A8) and (A9) imply SfeD{A) and ASf = (I-P)f, i.e.

AS=I-P. (A10)

The counterpart to (A 10) is

SA = {I-P)\D{A) (All)

which follows from

and from n — limz(z — A)'1 =P.

By the closed graph theorem BS and BP are bounded. Hence, by (A4)-(A6), also
E(z)9 F(z) and G(z) are bounded.

The series (A2) is absolutely convergent for \κ\<κ2 where 7c2||F(z)|| = 1. Using
(A10), (All) and PS = PF(z) = PG{z) = 0 we obtain

(z - Hκ) {R(z) + κE{z)F{κ, z)G(z)} =1 (A 12)

and

{R(z) + κE(z)F(κ, z)G(z)}(z-Hκ) = I\D(A). (A13)

For — κ1 <κ<κί with /q =min(α, κ:2) (Al) follows from (A12) and (A13).

Remark 1. For 5 = 0 (Al) reduces to

(Z-K-MΓ^-KS^OOCZS)". (A14)

As ρ'(PβP)=C\{0} Theorem 5 says that to z + 0 there exists κx>0 such that
(A14) holds for — κ1<κ<κ1 (we may choose κ:1||zS|| = 1). For κ=\ and \\zS\\ < 1
(A14) is identical to the standard Laurent expansion of (z — A)'1.
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Remark 2. If 0 is in the resolvent set of A then P=0 and (Al) reduces to

(z-Hκ)-1=-κA~1Σ^o(φ-B)A-1r (A15)

which is the Neumann series of

(z-Hκy
1=-{(I-κ(z-B)A-ί)κ-ίA}-1.

As P=0 we have Q'(PBP) = <E, i.e. to ze<£ there exists κί > 0 such that (A 15) holds
for — κ1<κ<κί.

References

1. Kato,T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966
2. Ruelle,D.: Statistical mechanics. New York: Benjamin 1969
3. HubbardJ. : Proc. Roy. Soc. A276, 238—257 (1963); A277, 237—259 (1964)
4. Beni,G., Holstein,T., Pincus,P.: Phys. Rev. B8, 312—316 (1973)
5. Klein, D.J.: Phys. Rev. B8, 3452—3458 (1973)
6. SokoloffJ.B.: Phys. Rev. B2, 779—781 (1970)

Communicated by W. Hunziker W. R. Schneider
Brown Boveri Research Center
CH-5401 Baden, Switzerland






