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Abstract. In time dependent scattering theory we know three important examples: the wave
equation around an obstacle, the Schrδdinger and the Dirac equation with a scattering potential. In
this paper another example from time dependent linear transport theory is added and considered in
full detail.

First the linear Boltzmann operator in certain Banach spaces is rigorously defined, and then the
existence of the Mθller operators is proved by use of the theorem of Cook-Jauch-Kuroda, that is
generalized to the case of a Banach space.

§ 1. The Abstract Cauchy Problem of Linear Transport Theory

In Statistical Mechanics transport phaenomena of neutrons and photons are
decribed by the linear Boltzmann equation ([1-4]). One has to start from the
formal Cauchy problem:

— = -vgmdxn + j ^/φc, υ', v)n(x, v'9 t)dv'-σ{x, v)n (1.1)

x and v are three dimensional vectors: x = (x l 5 x2, X3) and υ = (vί, v2, v3). w = (x,v)
is a six dimensional vector in the μ-space of Statistical Mechanics.

n(w, t) is a real valued function with άomn = R6 x R.
k(x, v', v) and σ(x, v) are non-negative, bounded and measurable functions with

domk = R9 and domσ = i^6. Both functions vanish for xeR3~D, where D is a
compact and convex subset of R3. In neutron transport theory D stands for
reactor and in radiation transfer theory for star. In transport theory sometimes
k(x, v'->υ) is preferred to fc(x, v', v). Physically k(x, v\ v) is the number of particles
with final velocity υ, that are generated after one particle with initial velocity v'
has suffered a collision in x. In neutron transport theory σ(x, v) has the meaning
of a reaction rate, it actually equals \v\-Σt(x, v), Σt(x, v) being the total macroscopic
cross section. σ(x, υ) has the dimension of an inverse time. Later we also need

σs(x, v): = JK3fc(x, v, υ')dυ'. (1.2)

Note that k(x,v,v') appears in (1.2), but that k(x,v',υ) appears in (1.1)!
The formal Cauchy problem can also be written in the following form:

— - - t;gradxw + χD(x) [JΛ3fc(^ V, v)n(x, v\ t)dvf-σ(x, υ)ή], (1.3)
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where χD(x) is the characteristic function of D. One is interested in the solution
of the initial value problem, i.e. a non-negative function n(x, v, t)9 that equals a
prescribed non-negative initial distribution f(x,v) at time ί = 0.

The structure of this paper is the following: First the abstract Cauchy problem
will be solved in case of the Banach space neX = L1(R6) and in case of the Hubert
space neX = L2(R6). It can be written in the following form:

h=-[T + A)n
(1.4)

n(t) is a vector valued function for teR into the Banach space X, ή(t) is the strong
derivative of n{t). One must define the collision free linear Boltzmann operator T
and the linear collision operator A by suitable extension of the formal operators:

vgradxn

— §Rik(x, v\ v)n(x, v')dv' + σ(x, v)n.

§ 2. The Collision Free Linear Boltzmann Operator in X= L\R6)

The physicist will say, that the Banach space X = L1(Rβ) is good for linear
transport processes, because the norm in 1} equals the total number of particles
in μ-space. First the minimal collision free linear Boltzmann Operator is defined:

Definition. Let X = L1(R% The operator To

is called minimal collision free linear Boltzmann operator. One gets at once:
D(K) = X and R(T0)QC%(R6) = D(T0).

The formal Cauchy problem

dn

Έ=-T°n

n(x9Ό90) = f(x,υ)eD(To)

has the solution n(x,v,t) = f(x — vt,v). This follows easily by substituting. This
form of the solution expressed the fact, that particles move on straight lines with
constant velocities. One introduces the following shift group:

Definition. Let neX and teR.

D(U(t)): = X.

Theorem.{U(t):teR} is an additive Abelian group of isomorphic transforma-
tions of B(X).

Proof First one has to prove, that U(t) is an additive Abelian group:

U(0)n = n VneX

[U{-t)[U{t)nJ] (x, v) = n{x, v) MneX, VίeΛ .
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U(t) is an isometry for all teR:

\\U(t)\\1=$R6\n(x-υt,υ)\dxdυ = $R6\n(x9v)\dxdv=\\n\\1 MneX.

Theorem.{U(t):teR} is strongly continuous in t.

Proof. One has to prove, that lim|| [E/(f)- l/(s)]n||x =0 VneX.

For all ε>0 there exists a step function g(x, v) such, that \\n — g\\ 1 <ε.

|| [1/(0- t/(s)]n|| i ̂  || [/(ί)π- t/(ί)^|| i + II U(t)g-U(s)g\\ t

+ || U(s)g- U(s)n\\ ^

But one has \JJ{t)g— Ό(s)g~\(x, υ) = g(x — tv, υ) — g(x — sv, v). g(x,v) is a step func-
tion, so one can find a δ(ε) > 0 such, that

\\g(x-vt,v)-g(x-vs,v)\\ί<ε VteR \t-s\<δ.

i=0. D

Corollary. \\U{t)\\ = 1 VteR. One can use the theorem of Hίlle-Yosida (Yosida,
p. 237). The infinitesimal generator T of the group U(t) exists:

T is a closed operator with dense domain. Also the Hille-Yosida condition is satisfied
for T. T is an element of the operator class G(l, 0).

See Kato, p. 485 for the definition of the operator class G(M, β)!

Definition. The operator T is called collision free linear Boltzmann operator.
T is a closed extension of To, i.e. T is closable.

Definition. Let K be a subset of Rn. Let ρ be a positive real number

K(Q):=1){X':\X'-X\^Q}.
xeK

One sees at once that K(0) = K.

Definition. Mx:= {{x, v):υ =0}QR6

Mv:={(x,v):x = 0}QR6 .

One sees at once that Mx(ρ) = {(x, v):\v\^ρ}.

Definition. C£(R6):= {f{w):feC$(R% suppfnMx = 0}.

If the particle distribution function /eQf, then the velocities of the particles
in the cloud / are not too small.

Theorem.feC$(R6)ol)feC£(R6) and
2) 3voeR, vo>0 VueK3, \v\^v0 and VxeR3=>f(x, v) = 0.

Proof 1)=>
supp/ is compact, so there exists a closed sphere K in JR6 with center OeR6

such, that suppfQK.
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Let us assume: VneiV 3υneR \vn\^^ and 3xneR3 such, that f(xn,vn)
Because (xn, vn)esuppf, and because supp/ is closed, there exists a subsequence
(x'n9 υ'n) with lim (x'n, v'n) = (x, 0).

n —* oo

=> (x, 0)esupp/. This contradicts the fact supp fnMx = 0.
2) <=

Theorem. C^OR6) is dense in X = L\R6).

Proof. It is known, that C$(R6) is dense in LX(R6). Let feL^R6). First there
exists a compact subset KQR6 such, that | | / —#||i<fi, #(w) being defined in the
following way:

: = 0 wφK.

Then there exists a ρ(ε)>0 such, that ||^ —Λ||!<ε, h(w) being defined in the
following way:

h(w): = g(w) weKn~ Mx(ρ(ε))

: = 0 w ^ X n -

s\xpphQKnMx(ρ(ε)).

The function /z(w) is absolutely integrable, has compact support and

Let be ρ(w) the well known test function :

1

: = 0 H ^ l .

The constant c has to be chosen such that jR6φ(w)dw=l.
Due to a theorem ([11], Hormander, p. 3) the functions

hμ(w): = §R6h(w — μw')φ(w')dw' μeR,μ>0

are C£(R6) functions. The net (hμ) converges for μ-^0 in the norm of L1 to h(w).
There exists a μ0 such, that \\h — /2At0|li<ε.

^ll/-ΛJIi^ll/-ίlli + llί-Λ||1 + ||Λ-ΛJ|1<3e. D
Definition. Let PΛ be the projection from (x, t;)GJR

6-^xe^3. If feCo(R% then
there exist:

ρ: = sup{|x|:(x,ι;)esupp/}

i; 0 := inf{|ι;|:(x,ί;)esupp/}

F0:-sup{|ι;|:(x,ι;)GSupp/}

all numbers being positive.
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(,t;)esupp[t7(ί)/]=>-ρ + ι;o|ί|^|Λ;|^ρ + K0|ί| VteR.

Proof. (x,ϋ)esupp[C7(ί)/]

=>\x\t -\x-vt\ + \vt\^ -ρ + υo\t\. Π

This theorem can also be expressed in the form

This relation reminds the famous Huyghens principle of the wave equation:

supp[U(t)ng{x:xeR\-ρ + c\t\S\x\Sρ + c\t\}

and I shall call it in this paper Pseudo Huyghens principle.

§ 3. The Collision Free Linear Boltzmann Operator in X=L2(R6)

One could use the same method to construct the collision free linear Boltz-
mann operator in the Hubert space X = L2(R% that has been used in §2 in the
case of the Banach space X = L2(R6). L2 has the advantage of being a Hubert
space, but it is not quite appropriate for the needs of Statistical Mechanics. The
L2 norm has no physical meaning here. Remember, that in Quantum Mechanics
L2 is the appropriate space!

The collision free linear Boltzmann operator is constructed in analogy to a
a method, that is used in Mathematical Physics of Quantum Mechanics to define
the Hamilton operator of a free particle (Kato, p. 300).

Definition. Let X = L2(R6). The transformation Fo

is called restricted Fourier transformation. One sees at once: R(F0)QS(R6) = D(F0).

Theorem. Fo is an isometry.

Proof. One uses the fact, that Fo with fixed veR3 is an isometry in L2(R3)
(Hewitt, Stromberg, p. 410).

\\Fon\\l=SR6\(Fon)(x,v)\2dxdΌ

$ t i \ \ n \ \ 2 . •
Theorem. Fo is bijektive from D(F0) = S(R6) onto itself.

Proof. The transformation F o with fixed veR3 is bijective from S(R3) onto
itself.
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Let n(x, v)eS(R6). =>n(x, v)eS(R3) with veR3 fixed. The inverse transformation
of Fo has the following form ([12], Hewitt, Stromberg, p. 409):

\R,e+ixkn{K v)dk .

For fixed veR3 this function is not only in S(R3), but also in S(R6). Π

Definition. Let X = L2(R6). Fo and FQ1 are densely defined in X. Both trans-
formation are isometrics. There exists a unique unitrary extension F of Fo. F is
called restricted Fourier-Plancherel transformation.

Definition. Let X = L2(#6). The operator To

t;): = ι;gradxn

S(£6)

is called minimal collision free linear Boltzmann operator.

T0) = X and R(T0)QS(R6) = D(T0).

T h e o r e m . ( F T o n ) ( x , v ) = i'V-x>(Fn)(x, υ).

= ίvx'(Fn)(x,v). Π

The reduced Fourier-Plancherel transformed operator of the operator To is a
multiplication operator by the non bounded function i v x. In analogy to the
procedure of defining the Hamilton operator of a free particle the collision free
linear Boltzmann operator is defined now:

Definition. The operator S

(Sή)(x,v): = v x-n(x, v)

D(S):={n:neL2(R% SneL2(R6)}

is the maximal multiplication operator by the real valued function v x, so it is
selfadjoint.

=>FTon = iS

=>Ton = iF

Definition. The operator T

is called collision free linear Boltzmann operator. Because S is selfadjoint, and
because T is unitarily equivalent fS, iT is selfadjoint. T itself is skew symmetric.
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The Hille-Yosida condition is satisfied by T. T is in the operator class G(l, 0).
Also in the case of the Hubert space X = L2(R% C£(R6) is dense in L2(R6).

§ 4. The Linear Collision Operator in X = L\R6) and X=L2(R6)

The linear collision operator A is a sum of two operators.

Definition.

{Aγn)(x, v)\ = - J/^/φc, v', v)n(x, v')dv'

(A2n)(x, v): = σ(x, v) w(x, ι;).

Theorem. // k(x, vf, v) is a non-negative, bounded and measurable function with
domk = R9, if /φc, υ\ υ) = 0 VxeR3~D and if

is a bounded function with domN = R6, then A1 is a bounded operator of the Banach
algebra B(L\R%

Note that JV(x, v') = σs(x, υ')!

Proof Letn(x,v)eL\R6).

/(x, υ): = §R3k(x, v', v)n(x, v')dvr

|/(x, v)\^R3k(x, υ\ v)\n(x, υ')\dv'

J lR*l\R*k{x9 υ\ v)dv-]\n(x, υ')\dυ'

x, v):(x, v)eD x R3} . Π

Theorem. // fe(x, v', v) is a non-negative, bounded and measurable function with
= R9, if k(x, υ\ v) = 0\/xeR3~D and if

M(x, v): = §R3/c(x, v\ v)dv'

N(x, v'): = \R?>k(v, v\ v)dv

with domM = domiV = D x R3 are bounded, then Aί is a bounded operator of the
Banach algebra B(L2(R6)).

Proof Leln{x,u)eL2{R6)nL\R6).

/(x, v): = Jκ3/c(x, vf, v)n(x, v')dv'

f{x, υ).{M{x, υ))-' - JΛ3fc(x, v\ v)(M(x, v))~ xn{x, v')dv'.

Because for the non-negative function fc(x, v', v)(M(x, v))'1 one has
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the right hand of the last equation is a weighted mean of the function n(x, v') with
respect to v'eR3.

[/(*, u) (Λί(x, t?))-1]2^JΛ3fc(x, υ\ υ)(M(x, υ))'1^, v')\2dv'

\f(x, v)\2^M(x, v)$Rsk(x, ι/, ϋ)|π(x, vψdv'

, ι;')|2A/

jKi : = sup{M(x, v):(x, v)eD x £ 3 }

K2:=sup{N(x, v):(x, v)eD x JR3} . Π

The conditions for the function k are physically meaningful, especially the
boundedness of N(x, v'). It expresses the fact, that the total number of neutrons
generated by scattering and fission processes in X from one neutron with initial
velocity v' is bounded.

Theorem. If σ(x, v) is a non-negative, bounded and measurable function with
άomσ = R6, then Λ2 is a bounded operator in both Banach algebras B^iR6)) and
B(L2(R%

Proof Let n{x,v)eL\R6)nL2(R6).

/(x, v): = σ(x, υ) n(x, v)

K: = sup{σ(x,v):(x,v)eDxR3}. Q

If

JΛ3fe(x, υ\ v)dv = σ(x, υ') V(x, v') e R 6 ,

then no absorptions and no fission processes occour, only scattering processes.
In this case one has:

2ή] (x, vjdxdv

= j#3[ — §RΛ{x, v\ v)n(x, v')dv' + σ(x, v) n(x, υ)~]dv = 0 .

Note also that the operator norm of Aγ +A2 does not vanish!

§ 5. The Linear Boltzmann Operator

The linear Boltzmann operator T + A is a generalized partial differential
operator, that is additively perturbed by the linear collision operator. So the
problem should be solved within the frame work of perturbation theory of linear
operator [5].

In both cases X = L\R6) and X = L2(R6) T is in the operator class G(l,0),
teR and generates an additive group of bounded operators {e~Tt:teR}.
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The abstract Cauchy problem

ή=-Tn

n(0) = feD(T)

has a unique solution n{t) = e~τtfsiteR. {e~Tt:teR} is the shift group.

Theorem. The linear Boltzmann operator is in the operator class G(l, \\A\\).

Proof. One can use a theorem of Phillips (Kato, p. 495). If TeG(M, β) and if
ΛEB(X\ then T±AeG{M,β + M\\A\\). In this case one has TeG(l,0), and so
T + AeG(l,\\A\\).

The abstract Cauchy problem

has a unique solution n(ή = e~{T+A)tfi The group {e~(T+A)t:teR} has the following
series expansion (Kato, p. 495):

Un+ί(t):=-jt

0U(t-s)AUn(s)ds n = 0 , l , 2 , . . . .

This series is ordered with respect to powers of the collision operator A. U^t) is
the contribution to the neutron density at time t from all neutrons, that have
suffered exactly one collision during the time interval [0, £].

Definition. Let X be a Banach space. A subset KQX is called convex cone, iff
1) VxeM Vαe#, α>0=>αxeM and
2) Vx,yeM VαeR, 0 ^ α ^ l = ^ α x + ( l-α)^GM.
L1 +(R6):= {f(w):feL1(R% f(w) is real valued and non-negative} is a convex

1 6

LX=L1+ -L1

Definition, k, σ is called a scattering system, iff
1) \/neL1+(Re)=>e~{T+A)neL1+(R6) VteR, ί^O and

2) VneL1 + ( Λ 6 ) H k ~ < τ + Λ ) t n | l i = N l i Vίei^, ί^O.
The trivial transport system fe = 0, σ = 0 is a scattering system.

Theorem.In a scattering system \\e~(T+A)t\\ = l VίeK, £^0.

Proof. Let / be a real valued function in L 1 ^ 6 ) . / can be written in the form
/ = /+-/-,/+(w):=max(0,/(w))and/" 1(w):=max(0, -/(w))./+ and/" are
elements of the convex cone L 1 +, \f\=f++f~.

Now let / be a complex valued function in Lι(R6). f can be written in the form
f=g + ih9 g(w): = Re/(w) and /ι(w)
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The identity

a,beR

can be proved easily. Define U: = e <τ + / 1"!

|| l % + i7i)|| 1 : = JJl.

Remark. The last part of this proof was suggested to me by B. Simon during
the Symposium on Scattering Theory in Oberwolfach, West Germany, August
1974.

Remark. In a scattering system the linear Boltzmann operator T+A is in the
operator class G(l,0) for ί^O. For all teR T+AGG(1, \\A\\), but for negative t,
T+A is in general not in the operator class G(l,0). Such a counterexample was
communicated to me by B. Simon during this Symposion.

The reason for this stem from the fact, that {e~iτ+Λ)t:t^.O} is positivity pre-
serving, but {e~iT+A)t:t^O} is in general not.

§ 6. The Moller Operators of the Linear Boltzmann Operator

In quantum mechanical scattering theory the solutions of the unperturbed
and the perturbed abstract Cauchy problems are compared:

ή=-Tn ή=-{

n(0) = feD(T) n(O)

T=ίA, T+A = ί(A + V). T and T+A are skew symmetric operators in a Hubert
space, so the conditions of the Hille-Yosida theorem are satisfied. The solutions
of both abstract Cauchy problems are unitary transformation groups {e~τt:teR}
and {e~{T+A)t:teR}. The Moller operators are defined the strong limits

W+(T + A, T):=s-lime(T+A)te-τt,
~ ί-> ±oo

if these limits exist.
Cook ([7-10], Kato, p. 533) has proved a theorem, that gives a sufficient con-

dition for the existence of the Moller operators.
This theorem has been proved for quantum mechanical scattering theory in

the case of a Hubert space, but it can be generalized without any difficulty to the
case of a Banach space.
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Theorem. Let X be a Banach space, let D0QD(T) be a dense linear sub space of

If for all ue D o, there exists a seR such, that Ae~τtu is continuous for all t^
and \\Ae~Ttu\\ is (—oo,s) integrable, then W_(T + A, T) exists.

Proof Let ueD0.

h(t):=e{T+Λ)tAe-τt

()Λ h<t2

So one gets, that (h(t)) is a Cauchy net for t-> — oo. •

Theorem. LetT be the collision free linear Boltzmann operator. If T+AeG(M,ϋ),
ί^O, then W-(T + A,T) exists.

Proof D0: = CQ(R6) is a dense linear subspace of X with D0QD(T). Let
ueD0Άe~τtu is continuous for all teR, because A is a bounded operator and
e~Γί is strongly continuous. Because of the Pseudo Huyghens principle there
exists a SER such, that Pxs\xpp(e~Ttu)nD = 0 Vί^5.

=>Ae~τtu = 0

=>\\Ae~Ttu\\ =0 and (-00,5) integrable. •

Remark. For a scattering system T + AeG(l,0) ί^O, so PF_(Γ + ̂ , T) exists.
Because {e~{T+A)t:t^0} is in general not uniformly bounded so one cannot prove
existence of W+(T + A, T) by Cook's theorem.

Theorem. Let T be the collision free linear Boltzmann operator. IfT+Ae G(M,0)
ί^O, and if 3oceR, α > 0 such, that VίeΛ, ί > 0 and WeD0

then W+{T9 T + A) exists.

Proof One has to show, that Ae~{T+A)tu satisfies the theorem of Cook. Let
ueD0Άe~{T+A)}tu is continuous for all teR, because A is a bounded operator
and e~iT+Λ)tu is strongly continuous.

i.e. Ae~{T+A)tu is (0, 00) integrable. Π

Remark. Physically the last condition means exponential leakage of the
particles out of the set D. It would be very interesting to learn something about
sufficient conditions for this behavior.

Remark. This paper was presented during the Seminar on Spectral and Scat-
tering Theory in Oberwolfach, BRD, August 1974. B. Simon, who attended this
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Seminar too, gave many suggestions to me concerning minor errors, and he
himself used my ideas to write a paper on the Existence of the Scattering Matrix
for the Linearized Boltzmann Equation, that has already been published in
Commun. math. Phys. 41, 99 (1975).
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