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Abstract. The orbit space of the Lorentz group acting on the product of » real, or
complex, Minkowski spaces is stratified into subspaces isomorphic to certain products of
Grassmann manifolds and varieties of Gram matrices. The Lorentz orbits (of nonzero
dimension) are completely classified by the Stiefel manifolds of standard orthogonal bases
for the linear subspaces of the Minkowski space. Several representations of the spaces
of n-point Lorentz invariant distributions and differentiable, or analytic, functions onto
appropriate spaces of distributions and functions of Lorentz invariant variables are also
discussed.

1. Introduction

Considerable effort has been expended in many physical schemes
for the study of Lorentz invariant functions and distributions. Excepting
the case of the Lorentz invariant polynomials [1], the following problem
is not completely solved: find a space of distributions or functions of
Lorentz invariant variables isomorphic to a given space of n-point
Lorentz invariant distributions or differentiable (resp. analytic) Lorentz
invariant functions defined on a differentiable (resp. analytic) Lorentz
invariant submanifold of the product of n real (resp. complex) Min-
kowski spaces. This problem has been extensively studied by Hall,
Wightman, and Bargmann [2], Hepp [3], Stapp, Minkowski, Williams,
and Seiler [4] for Lorentz invariant functions on saturated domains
and by Methée [5] for Lorentz invariant one-point distributions. Here a
saturated domain is a domain which contains the closures of all Lorentz
orbits of its points. The origin of the difficulty in solving the above-
mentioned problem is that the product of n Minkowski spaces contains
non-saturated domains and the corresponding Lorentz orbit space
is not a Hausdorff one. In order to exhibit this difficulty in concrete
terms, the purpose of this work is to give a minimal decomposition of the
Lorentz orbit space corresponding to the product of n Minkowski
spaces into Lorentz orbit subspaces homeomorphic to certain products
of manifolds of Gram matrices and Grassmann manifolds. Some
algebraic and analytic properties of this decomposition and a complete
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classification of the considered Lorentz orbits using the Stiefel manifolds
of standard orthogonal bases for the linear subspaces of the Minkowski
space are also presented in the following.

2. Stiefel Manifolds for the Minkowski Space

In this section, we describe the geometric structure of certain families
of orthogonal bases for the Minkowski space and its linear subspaces
by analogy with the Stiefel manifolds used in the orthogonal geometry
of index zero [6]. It is convenient to review briefly some definitions,
notation, and the elementary technique of orthogonal geometry applied
to the Minkowski space (several details can be found in Refs.[2, 4]
and [7]).

Throughout this paper, k denotes either the field R of real numbers or
the field C of complex numbers. However, the subsequent algebraic
results are satisfied for certain large classes of fields which will be specified
later.

The Minkowski space M,(k) is the m-dimensional linear space
over k of all m-ples x=(x% x!, ..., x™ ') of numbers belonging to k,
endowed with the Euclidean topology and the Minkowski scalar
product [ie. the symmetric bilinear k-form defined by (x, y)—xy
=x%0 —xtyl —...—xm~1ym~1 for any x, y e M,,(k)].

Let F, (k) denote the set of all linear subspaces of M,,(k). The radical
rad N of N eF,(k) is the linear subspace of N consisting of all xe N
which satisfy the relation xy =0 for any y € N. The index s,,(k) of M,,(k)
is the greatest dimension of rad N for N e F,, (k). We recall that s;(R)=0,
Su(R)=1 for m> 1, and s,,(C) is equal to the integer part of m/2 (for the
last assertion see [7], Theorem (3.11)). Let N € F,,(k) with d=dim N >0.
Denote s=dimrad N. Then d+s=<m ([7], Theorem 3.8) and there
exists an orthogonal basis {e,,...,e;} for N such that {e,,...,e} is a
basis for rad N if s>0 ([7], Theorems 3.3 and 3.7). Moreover, if k=R
and there exists an index i € {s+ 1, ..., d} such that (e;)*> >0, then (e;)* <0
for any j=i.

In conformity with the above considerations, we shall introduce a
natural set E,(k) consisting of certain orthogonal bases for all nonzero
linear subspaces of M, (k). Let E, (k) [resp. E, . (R)] denote the set
of all ordered bases e={(ey, ..., ¢;) for the d-dimensional linear subspaces
of M,,(k) [resp. M,,(R)] with s-dimensional (resp. 0-dimensional) radicals,
which satisfy the orthogonality Conditions (2.1), [resp. (2.1)] given by

d
ee;j=— Y 6,0, (2.1)

h=s+1

eiej=25i15j1—5ij; i,j=1,...,d. (2.1,)
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We now introduce the following families of orthogonal bases:

m m—1 1
EuR)= (U Buse®)o (U U Enat®).
d=1 d=1 s=0
m min(d,m—d) (22)
Em(C) = U Emds(c) .
d=1 s=0
The sets E,,, . (R) and E,,; (k) from the right side of (2.2) are called
the Stiefel manifols for the Minkowski space.
Let 6,,:E, (k)—F,(k) be the mapping which carries every basis
e e E, (k) to the linear space over k spanned by the vectors of e. We write

Fmds(k) = Bm(Emds(k)) )
Fmd+ (R) = Om(Emd+ (R)) N

Clearly the space NeF,,(R) of nonzero dimension d belongs to F,, ;. (R)
[resp. F,,40(R), resp. F,,,;(R)] if and only if there exists x e N with (x)* >0
[resp. xe N, x+0, implies (x)? <0, resp. xe N implies (x)><0 and
there exists x'e N, x' =+ 0, such that (x')?>=0].

Now let F,,,(k) denote the Grassmann manifold of all d-dimensional
linear subspaces of M, (k) [6]. Then the following relations hold:

2.3)

Fm(k) = Om(Em(k))UFmO(k) ’
FyR)=F,;+(R)UF,;,oR)VUF,;;(R), 1=ds=m-1,

min(d,m—d)

Fmd(C)= U Fmds(C)’ 1§d§m
5=0

(2.4)

In order to describe the geometric structure of the Stiefel manifolds,
we need certain groups of isometries.

A mapping A from NeF,(k) into N'eF,(k) is an isometry if
(Ax)(Ay)=xy for any x,ye N. The full Lorentz group O(1,m—1;k)

consists of all isometries A of M,,(k) onto M,,(k), where every A is identified
m—1

to the mxm matrix (A4%), 0<pu, v=m—1, defined by (Ax)*= Z AbXY,
v=0

x € M,,(k). According to this identification, the proper Lorentz group and

the connected real Lorentz group are denoted by SO(1,m— 1; k) and

SO'(1,m— 1; R), respectively.

The full Lorentz group acts on E, (k) [resp. F,(k)] in the following
way: A(ey, ..., e;) =(Aey, ..., Aey) [resp. AN = {x|x= Ay, ye N}] for any
AeO(l,m—1;k) and (ey, ..., e,) € E, (k) [resp. N € F,,(k)].

It is clear that the Stiefel manifolds and their images under 6, are
Lorentz invariant. We will prove that these manifolds are homogeneous
spaces of certain open subgroups of O(1,m—1; k).
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Table 1
E G H
Emm+(R) 0(1ym_ 15R) {1}
Epm-1,1(R) o(t,m—1;R) {1}
m>1
Em,m—1,+(R) SO(1am_ 1’R) {1}
m>1
E,m-1,0(R) SOo(1,m—1;R) {1}
m>1
E,.+(R) SO(1,m—1;R) SO(m—d;R)
1<d<m-2
E..i(R) SO0(1,m—1;R) R" 4" 1'0SOm—d—1;R)
1<dsm-2
E,.io(R) SO'(1,m—1;R) SO'(1,m—d—1;R)
1£dsm-2
E,u(C) ot,m—1;C) {1} ifs<1
mi2<d<m Cs6=D2 s>
s=m—d
E,..5(0) So(1l,m—1;C) [C"=4=9OSO(m—d—s; C)]OQ C6~ V2
1€dsm—1

0<s<min(d,m—d—1)

Table 2
F G H
Fom+(R) SO'(1,m—1;R) SO'({,m—1;R)
F,;+(R) SOt(1,m—1;R) SO(m—1;R)ifd=1
Fpm-a,0(R) [S0'(1,d—1; R)®SO(m—d; RJOO(1; R)
1<d<m-—1 fl<d<m—1
F,.1(R) SO'(1,m—1;R) R, ifd=1;m=2
Fm,m—d,l(R) [RM—ZQSO(m—Z,R)]®R+
1<d<m—1 ifd=1;,m>2
{[R*"'OS0d—-1;R)]
®[R" " 'OSOm—d—1; R} O[0(1; H®R.]
fl<d<m-—1
Frumo(C) SO(1,m-1;C) SO(,m—1;C)
F,;0(C) SO(i,m—1;C) SOm—1;C)ifd=1
Frm-a,0(C) [SOWd; C)®SO0(m—d; C)]©O0(1;C)
1<d<m—1 fi<d<m—1
F,.(C) SO(1,m—1;C) CEV2GL(s5;C)if s=d=m/2
Frm-a,5(C) {[C¢"PO80(d~s; C)JOLCE 17}
1<d<m—1 OGL(s;C)ifs=m—d, s<d

1 <s< min(d,m—d)

{[C“ 9080 —s;O)]
®[C" 4790 80(m—d—s; O)]}
OC* V2 O[0(1;C)®GL(s;C)]
if s < min(d, m — d)
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In order to avoid certain complications, we introduce Tables 1 and 2.
Some explanations are required. GL(n; k) denotes the group of all
invertible nxn matrices whose coefficients belong to k. The group
O(n; k) [resp. SO(n; k)] consists of all orthogonal (resp. proper orthogonal)
matrices of GL(n; k). By an abuse of notation, both the g-dimensional
Euclidean space over k and any Abelian Lie group isomorphic to the
translation group of this space are denoted by k% In Table 2, R, is the
multiplicative group of all strictly positive real numbers. The symbols
®0, and © are reserved for the central extensions direct and semidirect
products of groups, respectively. After these preparations, we prove an
announced assertion.

Proposition 1. Let E, G, H,F, G', H' be as in Tables 1 and 2. Then E
(resp. F) is analytically isomorphic to G/H (resp. G'/H’).

In Proposition 1 and throughout this paper, “analytic” means “real
analytic” if k =R and “complex analytic” if k =C.

Proof. With no loss of generality we may suppose that 6,,(E)=F.

1) We first establish that G (resp. G') acts transitively on E (resp. F).

Let e=(ey, ..., e;) € E,,(k). Denote N =0,,(¢) and s=dimradN.

A completion of ¢ is an ordered basis (e, ...,e,,) for M, (k) satisfying the
following properties:

a) if s>0, then ee,_ ;;=9;; for all i=1,..,m and j=1,..,s;

b) if m—d—s>0, then ee;,;=w;6;4.; for all i=1,...,m and
j=1,...,m—d—s, where: 1)o;=—1 for j>1;2)al=1; 3)a, =1 if and
only if e€ E,,;0(R).

We recall that there exists at least one completion of e ([ 7], Theorems
3.5 and 3.8).

Assume that (e, ..., e,) is a completion of ¢. Consider an arbitrary
basis ¢’ =(ef, ..., €)) € E having the completion (i, ..., e,,). It now follows
from the Properties a) and b) that e;e; = eje} for any i,j=1, ..., m. Then
the linear transformation A of M,,(k), defined by Ae;=¢foralli=1, ..., m,
is an isometry. Obviously ¢’ = Ae. Therefore O(1, m — 1; k) acts transitively
on E. The transitive action of O(1,m—1;k) on F is automatically
induced by 6,,.

Consider now the involutions A;e O(1,m— 1; k) defined by A,e;
=(1-2%;)e; for all i,j=1,...,m. Let L, ; be the subgroup of

O(1,m—1;k) generated by 4A,,...,4;, where {i,...,i,} C{1,...,m}.
Plainly L;, ;. e={e} (resp. L;, ; -N={N}) for any {iy,...,i,} C{d+1,
wym—d—s} (resp. {iy,..., i} C{1,...,m}). Then O(1,m—1;k) is iso-
morphic to SO(1, m—1; k)O L,,. Moreover, O(1, m— 1, R) is isomorphic
to SO"(1,m—1;R)O L, (resp. SO'(1,m—1;R)OL, 4., if e€E,;.(R)
UE,..1(R) (resp. e€ E, ;0(R), h=1 or h=m>d+1). On the other hand,
it is easy to see that if L is a normal subgroup of O(1, m — 1; k) such that



94 A. Gheorghe and El. Mihul

Le = {e} (resp. LN = {N}), then the group O(1, m — 1; k)/L acts transitively
on E (resp. F). These results imply immediately that SO(1,m—1; k)
acts transitively on E if d+s<m (and also on F). Moreover, if keR,
then SO'(1,m—1;R) acts transitively on E if e€E,  ;o(R), d<m—1
(and also on F).
2) We next compute the little group H, of e and the little group
H) of N defined by
Hy={A|AeO0(1,m—1;k), Ae=¢},
Hy={A|Ae0(1,m—1;k), AN=N}.
We shall prove that H=GnH, and H' = G'nH]. Consider A € H.

Define the m x m matrix A= (/1’) =i j<m, by Ade;= Z Ahe Simple

(2.5)

computatlons show that the conditions AN =N and (Ael) (de) = eze;,
where i,j=1, ..., m, are equivalent to the following relations:

B,y By, Bi; B4\ s

- 0 B,, 0 By, d—s

A= R 2.6
0 0 B33 B34 m—d—S ( )
0 0 0 B,,/ s
s d—s m—d—s s

B;Ahg(h)th =G> By,=— thg(h)Btlh(Bi 1) Y, h=123,

3
Bl4=“%(B+ Z Blhg(h)Bah)(Btu)—l, By =(Bi)™",
h=2

where B is a skew-symmetric sxs matrix whose coefficients belong
to k, the (d—s)x(d—s) [resp. (m—d—s)x(m—d—s)] matrix g,
(resp. g(3)) is defined by g(5);;=e,4;€54; for any i,j=1,..., d—s (resp.
93)ij=€a+i€q+; for any i,j=1,...,m—d—s). 0 denotes the zero matrix
and the symbol t denotes the matrix transpose. The 0 x g or g x 0 blocks
from (2.6) are omitted.

By (2.6), the coefficients of B4, h=1,2, 3, 4, are rational functions
of the coefficients of the other blocks. Write A | = (B3, B33, By3, B33, B
By ,). The the composition rule in Hj is A" =AA with

B;:h = thth P h= 1,2,3,

=B Bi,+B,B.,, h=23,
1h=D11D1p T BBy @2.7)

B"=B+B,B'Bj, + Z (Blhthg(h)BlhBll_BllBlhg(h)thBlh)

The parameter blocks generate the following groups: {B,,} =k*“"%,
{B22} =K, {Bi3}= ket , {Bs3}=K|, {B}= ke~ 1)/2> {B,1}=GL
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(s; k), where K (resp. K’) is the group of all matrices B,, € GL(d — s; k)
[resp. B33 € GL(m — d — s; k)] which satisfy the relation B} ,g,)B,, = g3
(resp. B3303yB33 = g3))- It follows from the definition of (e, ..., e,,) that
K is isomorphic to O(1,d— 1; R) [resp. O(d; R), resp. O(d— s; k)] and
K’ is isomorphic to O(m—d; R) [resp.O(1,m—d—1;R), resp.
O(m—d—s; k)] if e belongs to E, ;. (R) [resp. E, 0(R), resp. E, (k)
with either k=R and s=1or k=C].
By (2.7), the following isomorphism holds:

Hy~ {[(*“P0K)@KF " Y OK)OK™ 2} OGL(s; k). (2.8)

The group H, is a normal subgroup of Hy. If A € Hy, then it follows
from Ae=¢ that B;, and B,, are unit matrices and B;, =0. Then (2.8)
induces the following isomorphism:

Hy— (k™ 4"90QK)O kse~2, (2.9)

The assertion of this part of the proof follows straight-forward from
(2.8) and (2.9), and the foregoing results.

3) Finally, we consider that E is canonically embedded in k™
(i.e. every eeE is identified to the point (€%, ei,...,er " ')e k™). F is a
subset of F,,,(k). The Grassmann manifold F,, (k) is an analytic manifold
of dimension d(m — d) [6]. The rest of the proof is standard. H (resp. H')
is a Lie subgroup of G (resp. G') and the homogeneous space G/H (resp.
G'/H’) is an analytic manifold. The orbit E= Ge (resp. F=GN) of G
is an analytic submanifold of k™ [resp. F, (k)] isomorphic to G/H
(resp. G'/H’) with respect to the natural map ge—gH (resp. gN —»gH),
ge G ([8], Part.1I, Chapter IV, §5, Theorems 1, 3,4, and their Con-
sequence).

The following remarks improve Proposition 1:

Remark {. The manifolds E, o (R), 1<d<m—2, and E,,(C),
1<d<m—1, 0Zs<min (d,m—d—1), are connected. Consider E
asin Table 1. Let SE be the set of all e € E with det (e/) > 0, where (e, ..., e,,)
is a completion of eand i=1, ..., m; u=0,1, ...,m— 1. Write I[E = E\SE.
If k = R, then E" denotes the set of all e € E with e? > 0. Denote E‘=E\E",
SE'=SENE'",SE'=SEnE', IE'=1ENE"', and IE‘*=1ENnE*. The
manifold Ee€{E,,+(R), E, ,_;(R)} has four connected components:
SE', SE', IE', and IE*. The manifold E€{E,, ,_1 +(R), E,, ,,—1,0(R),
E,i+(R), E,;1(R)}, 1<d<m—2, has two connected components: E'
and E'. The manifold E€ {E, ;(C)}, m2<d=<m, s=m—d, has two
connected components SE and IE.

Consider now E and e € E as in the proof of Proposition 1. Since the
vectors ey, ..., e; are linearly independent, there exists a permutation
{t1s sy ..os i} of {0, 1, ..., m— 1} such that all determinants det (ef/); <; j<u;
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h <d, are not zero in a neighbourhood V(e) of e in E. A straightforward
calculation show that {e{’},ie {1,...,d}; u;€ {0, 1, ...,m— IIN{tgy ooy i}
is a system consisting of md—d(d+1)/2 local coordinates in V(e).
This result gives a concrete analytic structure of the manifold E of
codimension d(d+1)/2 in k*". Moreover, E is a d(2m—d—1)/2-
dimensional algebraic subvariety of k™. Here the symbol ~~" is used
for the closure of sets. If s=0, then E is closed. If s >0, then E is dense
and open in E and the boundary of E can be decomposed into a disjoint
union of manifolds isomorphic to the union of the manifolds E,,, . (k)
withd <dand s'=d +s—d.

Remark 2. All manifolds F from Table2 are connected. Consider,
F, e, and N as in Remark 1 and the proof of Proposition 1. Define a basis
{f1, .., fy} for N such that f; =4_, a;;e;, (a;;) € GL(d; k), where f* =4,
Lj=1,....,d, and (u4,...,4,) is a permutation of (0,...,m—1). Then
{f#}, i=1,...,d; j=d+1,...,m, is a system of local coordinates in a
neighbourhood of N in F, (k). Introduce the Gram matrix P=(f;f}),
1<i,j<d. Itis easy to see that dim rad N =s if and only if rank P=d —s.
The set of all symmetric d xd matrices of rank d—s is an analytic
manifold of codimension s(s+ 1)/2 in the manifold of all symmetric
d x d matrices. Then F is an analytic submanifold of F,, (k) of dimension
d(m— d)— s(s + 1)/2. Since the mapping 6,, is open (i.e. 6,, carries open
sets onto open sets) the boundary properties from Remark 1 persist if E and
E are replaced by F and F, respectively.

3. The Variety of Scalar Products

In this section we discuss the connection between the product of »n
Minkowski spaces and its image on the variety of scalar products.
We begin with some notation and conventions.

Let M, (k) denote the topological product of n Minkowski spaces
M, (k). M;,(k) consists of all points (x),=(xy, ..., X,), Where x; e M,,(k),
i=1,...,n For any (x),e Mj(k), let [x], be the nxm matrix whose
coefficients are x¥(i=1,...,n; u=0,1,...,m—1). The Lorentz group
acts on M(k) by A(x),=(Axy,...,Ax,) for any (x),e M(k) and
Ae0(l,m—1;k).

We now present some geometric properties of the mapping 7 which
carries each point of M (k) to its Gram matrix. Many remarkable
properties of this mapping have been established in Refs. [2, 3] and [9].

Let S,(k) denote the set of all symmetric nxn matrices whose
coefficients belong to k. S,(k) is identified with k"™*/? carrying each
matrix Z e S,(k) into the point of coordinates Z;;(1 <i=<j=<n), where

Z;;, 1 =1, j=n, are the coefficients of Z.
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It is convenient to define the following minors of Z € S, (k):
GltnZ)=det(Z;));=,,

i T T3 j=Jjtse-sjn? (31)
Gi,...,(2) =G (2,

where h, iy, ..., 1, j1, .- jn € {1, ..., n}. For any Z € S,(R) denote
&, .nZ)=sgn(=1)'""' G, ,(2), (3.2

where sgna =1 if >0, sgna=0 if « =0, and sgna = —1 if « <0 for any
aeR.

The mapping © from Mj(k) into S,(k) is defined by Z ==n((x),) with
Z;;=x;x; for any (x),e My(k) and i,j=1,...,n. The set n(M,(k)) is
called the variety of scalar products.

S,»(k) denotes the set of all matrices Z € n(M;i(k)) with rank Z=r.
Let S,, . (R) [resp. S,,_(R)] be the set of all matrices belonging to S,,(R)
with only one positive eigenvalue (resp. only negative eigenvalues).

We shall now give a constructive proof of the following proposition:

Proposition 2. a) Let 1 <r<min(m, n). There exist a finite open
covering {S,,,(k)},.r,. of the analytic manifold S,,(k) and a holomorphic
mapping @,,., from S,, (k) into My, (k) with ng,,,=1 for any yer,,.

b) The following relations hold:

min(m,n)

n(M,,(k)) = QO Sar(k)

Snm(R) = Snm+ (R) > n gm s (33)
S(R)=S,,.(R)US,,_(R), 1=r=min(m—1,n),

(M (C)) is the algebraic variety of all matrices Z € S,(C) such that
rank Z < min(m, n). n(M;,(R)) is the semi-algebraic variety of all matrices
Z € S,(R) such that:

1) rank Z<min(m,n):2)¢;, ; (Z)=20 if rank Z=m and {i;, ..., 1}
c{1,...,n}; 3)the relation

&, i Z)> ¢ Z) (3.4

1»~-ih+1(
implies G;, . _;, . (Z)=0 for h, iy, ...,i,+1€{1,...n}. Moreover Z€ S,,_(R)
if and only if ZeS,,(R), 1 <r<min (m—1,n), and ¢; ;,(Z)<0 for any
hyig,...i,e{l,...,n}

Proof. a) Suppose that 1 <r<min(m,n). Let S,,,(k) denote the set
of all ZeS,,(k) such that G, ,(Z)=%0 for any he {1, ...,r}
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We shall construct a finite set I, of orthogonal n x n matrices such
that S,,(k) is spanned by y* Zy, where Z € S, (k) and y € I',,,. In order to do
this, we introduce some notations.

Let IT, denote the image of the group of all permutations of (1, ..., n)
under its isomorphism which carries each permutation (i, ...,i,) of
(1,...,n) into the nxn matrix T=(t;;) with t;;=6;;; j, j/=1,...,n
Iti 1s 0bv1ous that (t1Z1);;=Z;,, for any Ze§ (k)

I1,, (resp. II,, with pe {2 ., }) denotes the subset of II, consisting
of all matrices corresponding to all permutations (iy, ..., 1,) of (1,...n)
with i, <1y, if h 7 (resp. with: 1)i, <i,, ; ifh < p —3;2)eitheri,_, <i,_,
or i,_{<iy; 3) iy="hif h>p).

Define the n xn matrix w,=(w,;; by

(I)pij=5- +2_1/2(5ip 15- —5 6,}[) 1)

(3.5)
+( T )(61p61p+51p 15117 1)
where i, j=1, ..., n for any fixed pe {2, ..., r}.
Let I',, denote the set of all orthogonal matrices
Y =0P1,0%13...07 1,7, (3.6)

where teH,,,, 1,=II,,, p=2,...,1, and o, =0, 1(w) is the unit nxn
matrix and co = a) )

LetZe S,,,(k) We prove that there exists y € I',, such thatyZy’eS,,, , (k).
Consider y as in (3.6).

Define Z,_; = w» prrp(co"‘P)’ and Z,=1Z1", where p=2,.

Since Z € S, (k), there exists a nonzero diagonal minor G r(Z)
with i; <---<i, (see, for example, Ref. [6] from [2]). Choose ‘EGH,,,.
corresponding to the permutation (iy, ..., i,) of (1, ..., n) with i, ; <---<i,.
Then G, ,(Z,)*0.

Consider now the following inductive hypothesis:

L:Gy 4(Z,)*0 for h=p,...,r

It is obvious that I, holds. Let pe{2,...,r} and suppose that I,
holds. Then there are only two cases:

Case A. There exists a nonzero diagonal minor G;, ip-1(Z,) with
J1<<Jj,-1Zp

Cqse B Case A is not satisfied, but there exists a non-zero minor
Giiipin (2 with jy <---<j,_, <p and j,_; <j, =p.

Choose t,€e I, corresponding to the permutation (jy,...,j,—1,Jj,

p+1,...,n). Using in Case B the identity

ZGI...p—l(prIwL)=Gl..‘p—1(z/)
+ Gy p-2,(Z)+2G1: 02307 Y(2Z)

p—2p

3.7)
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for Z'=1,Z,1, it follows that G, ,_;(Z,-;)*0. Clearly this result
is also satisfied in Case A. Choosing a,= 0 in Case A and o, =1 in Case B,
I,_, holds. By induction on p, I, holds. Hence Z, =yZy'eS,, (k) for
some y€l,,.

We now construct the complex analytic structure of S,,(k). Fix
erl,, and set S,,,(k)=7'S,,1(k)y. Let Z,€S,,,(k) and set Z;=yZ,y".
Since Z; € S,,1(k), there exists a neighbourhood V CS,(k) of Z, such
that G, ,(yZy)+0forany ZeVand h=1,..,r
We can define the following coordinate system of V:

Mii=0Zy), Mau=Gln0Zy), (3.8)

where 1 <i<j<n, i<r, r<k=I1<n, and Ze V. Indeed, the Jacobian
of the transformation of Coordinates (3.8) is non-vanishing on ¥ because
it is equal to (G, ,(yZy"))"~""=r* D2 Moreover, since the rank of any
matrix belonging ot V is not smaller than r, the set VnS,,(k) consists
of all ZeV with #,,(Z)=0 for any k,le {r,,...,n}, k<1 Then S,,(k)
is a complex analytic submanifold of S,(k) of codimension (n—r)
-(m—r+1)/2.
Define the holomorphic mapping ¢,,,,: S,,(k) — M,,(k) by c,,,(Z)=(x),
with
xM=Zy(uZy )", x=0,

. 3.9

X = G121 Z) DGy - 1a-1(Z2) G W(Z)] 712, ()
where ZeS,, k), Z'=yZy',[x],=y'[x],,h=2,...,r,and j=r+1,...,m.
Here y; =1, ,=—11if k=C and x, =¢,(Z"), yu=¢,. 4p-1(Z) &, W(Z')
if k=R. (uy, ..., 1,) 18 a permutation of (0, 1, ...,m— 1) which satisfies
the following conditions: 1) u,=h—1if k=C;2) if k=R and y, =0, then
either h=r+1 or ¢ ,_1(Z)e, ,(2Z2)=—1 with the convention
& . p-1(Z)y=—1forh=1;3)if k=R, h<k, and y,, p, £ 0, then u, < p,.
The above choice of (uy,...,u,) is permitted according to Jacobi's
theorem ([10], Chapter X, Theorem 2):if Z' € S, . (R) [resp. Z' € S,,,_(R)]
and Gy ,(Z)*0,h=1,...,r, then &, ,_1(Z)e, (Z)=1 for r—1
indices he {1, ...,r} (resp. for any h=1, ..., ).

Indeed, it suffices to prove the last Relation (3.3). If Z’ e n(MZ(k)),
then there exists (y),€ Mpi(k) such that [y],(@).[y],=Z, where
Gomy = Gimyuvh 0=, v <m— 1, is a diagonal m x m matrix with g, 0 =1
and g,,,= —1 for u>0. Then rank Z’ <rank[y], < min(m, n), More-
over, in the case k=R, since (g), has only one positive eigenvalue,
it follows from Silvester’s law of inertia that Z’ has at most one positive
eigenvalue (if rank Z'=m, then Z’' has only one positive eigenvalue).
Thus (3.3) holds.
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The branches of the square roots from (3.9) are taken to have non-
negative real parts.

Straightforward computations starting from (3.9) show that
[x], 9m[x],=Z (see, for example, the Gauss algorithm from [10],
Chapter II, § 4). Therefore n(c,,,(Z))=Z for any ZeS,,,(k) and a) is
proved.

b) According to the proof of a), (3.3) holds. Let A(k) [resp. B(k)]
denote the set of all matrices Z e n(M;(k)) [resp. Z € S,(k) with 1] rank
Z<min(m,n); 2) &, ,(Z)Se; 4, (2) i k=R, iy, .0y, €{1,...,n},
h<rankZ; 3)e;,  ; (Z)=Z0 if k=R, iy,...,i,e{l,...,n}, rank Z=m)
such that G, ;,(Z)*0ifi,,...,i,e{l,...,n}, i, <---<i, and h<rank Z.
Let B,,_(R) be the set of all Z € B(R) such thatrank Z=rand¢;, ;(Z)<0
foranyiy, ..., i€ {1, ..., n}. It follows from the proof of a) that A(k) = B(k)
and A(R)NS,,_(R)=B,,_(R). Since A(k) is dense in n(M;.(k)), we have
n(M"(k))=B(k), S,,_-(R)=B,,_(R\n{Z|ZeS,(R),rank Z=r} and b)
holds. We recall that a semialgebraic variety can be realized as a subset
of a real Euclidean space locally defined by a system of poliynomial
equations and inequalities (see, for example, [11], Chapter L, § 3).

Properties 2) and 3) from Proposition 2b) give the polynomial
inequalities for n(M!(R)), but the polynomial equations are given by
Property 1) [i.e. by the vanishing of all Gram minors of order greater
than min (m, n)].

Remark 3. The manifolds S,, . (R), S,,._ and S,,(C) with 1 <r <min(m,n)
and 1 <7 £ min (m — 1, n) are nonvoid and connected. Indeed, Z € S,, . (R)
[resp. Z€S,, _(R), resp. ZeS,,(C)] if and only if Z=0DO', where
0eSO(n;R) [resp. 0 e SO(n; R), resp. 0eSU(n; C)] and D=(d;)) is a
diagonal n x n matrix with d;; € R (resp. d;; e R, resp. d;;€ C),i=1,...,n,
and d,; >0, d;;<0 for 1 <i=<r, d;;=0 for i>r (resp. d;;<0 for i<r,
d;;=0for i>7', resp. d;; 0 for i <, d;; =0 for i >r). It suffices to remark
that SO(n; k) and the set spanned by D are connected, and the mapping
(0, D)~ 0DO" is continuous.

We next list certain useful properties of S,,,(k) S,.(k) is open and
dense in S,,(k). S,.(C) [resp. S,.(R), S,,.(R)] is an algebraic (resp
semialgebraic) subvariety of S,(C) [resp. S,(R)]. If r>0, S, , (k) is
the boundary (and also the singular locus) of S,,(k). The boundary
of S,,+(R) [resp. S, —(R)], 1<r<m (resp. 1<r'<m), is §,,-1(R)
[resp. §,,’,,_1(R)]. The boundary of S,; _(R) is the set S,,(R) consisting
only of the zero matrix. Notice that S, i m.»(k) =n(Mp(k)). A standard
proof of these results can be extracted from [ 11] (see especially Chapter I,
2.4, Propositions 2 and 3).

Notice that the Gram determinantal constraints given by
Proposition 2b) for m=4 and k=R generalize Byers' and Yang's
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results of relativistic multiparticle kinematics [12] (several details and
applications can be found in [13]).

In order to describe the inverse image (under n) of any Gram matrix
belonging to n(M,i(k), we write a fundamental lemma of Hall and
Wightman [2] in the following form:

Lemma 1. a) Let Z € n((M}(k))) and r = rank Z. Thenany (x),e n~*(Z)
satisfies the following decomposition:
d

d—r
=3 ocijej—i-h;lﬁ,-heh i=1,...,n, (3.10)

j=d—-r+1

where e=(ey, ...,e))€ E,(k), B=(B;,) withi=1,..,n and h=1,...d—r
is an nx(d—r) matrix of rankd—r (in the case d>r), and the nxr
matrix o= (o;)) is chosen such that o;;=¢&7;i=1,...n;j=d—r+1,...,d,
&n=0,,(2), Z€S,, k), yeTL,,; v;e {0, 1,....m—1}, v;<v; for j<j,
and &£} £0 for some i at any fixed j (in the case r >0). The first (resp. the
second) sum in the r.h.s. of (3.10) is dropped if ¥ =0 (resp. r = d). Moreover,
ZeS,, +(R) (resp. Ze S,,_(R), resp. Z€ S,,(C)) if and only if e€ E,,, . (R)
(resp' €€ Eer(R)UEmdl(R)’ Iesp. €€ Emd,d—r(c))'

b) Let (x), € My (k) and let (x), be as in a). Then there exists a Lorentz
transformation A€ O(1,m—1;k) such that (x'),= A(x), if and only if
there exist an orthogonal basis e =(ey, ..., e,) € E, (k) with (e})2 =(e)?,
j=1,...,d, an r x (d—r) matrix A whose coefficients belong to k, and an
invertible (d—r) x(d—r) matrix Qe GL(d—r; k) such that (3.10) holds
for (x),, e, and B replaced by (x'),, €', and a4 + BQ respectively.

Proof. a) We shall use the notation of Lemma 1 a). Let N denote
the linear space over k spanned by x4, ..., x,. Then we can write x;=y;+ z,,
i=1,...,n where z;erad N and y;e N is orthogonal to rad N for any i
([7], Theorem 3.3). Let N, (resp. N,) be the linear space over k spanned
by Vi, .. ¥, (tesp. &y, ..., &) Since n((y),)=n((&),)=2Z, the isometry
A":N,—N; defined by A'¢,=y, i=1,...,n, can be extended to a
Lorentz transformation A€ O(1,m— 1; k) (as in the proof of Proposition 1).

If »>0, we introduce the orthogonal basis f=(fi,...,f,) € E,(k)
defined by

d
&= ) o f;,  i=1,..,n. (3.11)
j=d—-r+1
Set e;=Af;, j=d—r+1,...,d If d>r, there exists an orthogonal
basis (ey, ...,e,-,) € E,, 4, 4—,(k) for rad N such that

d—r
zi= ), Bunen, i=1,...nByek. (3.12)
h=1
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By (3.11) and (3.12), we obtain (3.10). By (3.9), f€ E,,,+(R) [resp.
feE, . o(R), feE,,C)] if and only if ZeS,,,(R) [resp. Ze S,,_(R),
ZeS,(C)]. Using the relations E,, . (R)=AE,,.(R) and E,,,(k)
= AE,,,,(k), assertion a) follows immediately.

b) We shall use the notations of Lemma 1 b). Suppose first that
(x), = A(X),. Set e;=Ae;, A=0, and Q=1. Then (3.10) holds for (x),
and e replaced by (x'), and ¢, respectively.

Suppose next that (3.10) holds for (x),, e, and f replaced by (x),, €',
and ad+ BQ, respectively. According to the proof of Proposition 1,
we can define a Lorentz transformation A€ O(1,m— 1; k) such that:

d—r
Aej=¢éj+ ) dye, j=d—r+1,...d,
h=1
(3.13)

r

d—-
Aeh= z th'e;l" h=1,...,d_r-
h=1

By (3.13), we have A(x), = (x"), and b) holds.

Remark 4. According to the proof of Proposition 2b), the matrix «
in (3.10) is uniquely and completely determined by Z provided y is
fixed. In this case, the Decomposition (3.10) with d =r is unique.

Suppose that d >r and denote s=d—r. Denote by Q,,.,(Z, k) the
quotient space of the set of all pairs (e, ), where e € E,;,(k) and f is an
nx s matrix of rank s whose coefficients belong to k, with respect to the
following equivalence relation: (e, ff) is equivalent to (¢, f') if and only
if (3.13) holds with 4 and Q as in Lemma 1b) and Ae;=¢),j=1,...,d.
The equivalence class of (e, f§) is isomorphic to the group {4, Q} =k"*©OGL
(s; k) and has a representative g = (¢/, f) such that §'; ,=0;1,p,j=1, ..., d;
h=1,...s, for some i, ,...,i;€{l,...,n} and for i,...,i, chosen as in
(3.9). Then Q,,,,(Z", k) can be identified with the analytic manifold
E, (k)< F,_, (k), where F,_, (k) is the Grassmann manifold of all
s-dimensional linear subspaces of k"", provided Z' belongs to a neigh-
bourhood of Z in §,,(k) such that (3.9) holds. F,_, (k) is realized as the
quotient space of all (n—r)xs matrices f=(f;,) of rank s, f,,€k,
ie{l,..,n}\{iy,...,i,}, h=1, ..., s, with respect to GL(s; k).

Notice that (3.10) is uniquely determined by a representative (¢, f')
of the equivalence class of (e, ) such that the iy, ..., i.th lines of §' are
vanishing,

Let M, (k) [resp. M}, (R)] denote the set of all points (x), € M,(k)
[resp. (x), € M(R)] such that there exists a basis belonging to E,,, (k)
[resp. E,.;+ (R)] for the linear space over k spanned by xg, ..., x,. This
linear space is d-dimensional and its radical is s-dimensional. Denote
by M., ,(k) the set consisting of the only zero point (0), € M (k).
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By (2.2) and Lemma 1, we have
'min (m,n) min(m—1,n) 1
MR = Mioo® | U My (R) ( U U Muiw),
d=1 s=0

min (m,n) min(m—d,d)

M= ) U M),

d=0 s=0
My + (R)=S,4+(R), 1 <d <min(m,n),
(Myao(R)=S,4-(R), {<d=min(m—1,n),
(M1 (R) =S, 4-1,-(R), 1 <d<min(m—1,n), (3.15)

T(Mpo0(R)=S,0(R),
( mds(C))= n,d—s(c)’ O§d§min(m,n), 0§S§mln(d,m—d),

(3.14)

T

where S,o_(R)=S,,(R).

Remark 5. We now list certain useful properties of M, (R) and
M}, (k) which follow from Proposition2, Lemma 1, Remarks 1—4,
(3.14), and (3.15). If Z€S,,.(R) [resp. Z€S,,_(R), resp. Z€ S,,(C)],
then there exists a neighbourhood V of Z in §,,.(R) [resp. S,,-(R),
resp. S,,(C)] Such that the following analytic isomorphisms induced
by (3.10) hold: 7~ (V) mr+(R)~ V X E,, 1 (R) [resp. 1~ (V)N My, o(R)
~V x Eer(R) ﬂ_l(V)ﬁ r+1 I(R)~ V x Em r+1, 1(R))< n—r, 1(R) resp.

—I(V)mMr'rlt,r+s,s(C) ~ V X Em,r+s,s(C) X n-—r, s(C)] SIHCC dlm -r, s(k)
=s(n—r—s) and rank 7 is constant on V, M.,. (R) [resp. M,’,‘,ds(k)] is
an analytic submanifold of M}}(R) [resp. M;,(k)] of dimension d(m + n — d)
[resp. d(m+ n— d)— s(s + 1)/2] with respect to the structure induced by
the preceding isomorphisms. The manifold M}, (R) [resp. M (k)]
is connected excepting the case 1 <d=n<m (resp. k=R. s=1, 1=d
=n<m); M%,,(R) [resp. M2,,(R)] has two connected components
defined by sgn €{ in (3.10). M”,, (R) and M", (k) are _open and dense in
their closures. M, (R), or M",(R), s=0, 1, [resp. M ,(C)] is a semi-
algebraic (resp. algebraic) subvariety of M,',',(R) [resp. M:‘(C)] The
boundary of My,.(R) [resp mao(R), resp. My, (R)] is My ;1 +(R)
uMmdl(R) for d<m and M,, ,,_; (R)UM,, ., o(R) for d=m [resp

m M2 1 (R), resp. Mp 41 o(R)]. The boundary of M,;’,ds(k) consists of the
union of all M}, .(k) with d=d szs,andd +s <d+s.

A stratification of the set M CkP is a finite collection {M;};_, of
subsets of M, called strata, such that:

1) any stratum 4; is a connected analytic submanifold of k? open
and dense in its closure A A is a semialgebraic (resp. algebralc) sub-
variety of k? for k=R (resp k C) whose boundary A i\, is the union
of the strata A;, where j e J’, dimA4;<dim4;, and J’ is a subset of J
dependent of j; 2) A is the union of all strata A pi€d.
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Let M”(R) [resp. M’(C)] be the set of all connected components
of ML, (R), M, o(R),and M ,.{(R),1 £d <min(m,n),0<d <min(m— 1,n),
1 =d’<min(m—1,n) [resp. My ;(C), 0=d <min(m, n), 0 <s<min
(d,m—d)]. Then M](k) is a stratification of M.(k). Notice that the set
of the images under = of the strata of M;,(k) is a stratification of n(M,,(k))
[i.e. the set S, pin(m,» (k) of all connected components of S,,,(k), 0 < r < min
(m, n), is a stratification of 7(M,,(k) and the inverse image under 7 of any
its stratum is a finite union of strata of MJ(k) given by (3.15)].

A triplet (M, =, S) is called an analytic fibre bundle if M and S are
analytic manifolds, # is an analytic mapping from M onto S, and there
exists an analytic manifold T (called typical fibre) such that for any open
set V' CS the set 7~ (V) is analytically isomorphic to V x T.

According to the foregoing results and definitions, we have

Theorem 1. Let M e M,’,',(k) and S =n(M). Then (M, &, S) is an analytic
fibre bundle whose typical fibre is a connected component of T given by
Table 3 provided M C M'.

Remark 6. The preceding algebraic results persist if R (resp.C)
is replaced by an ordered field whose positive elements are squares
(resp. a field of characteristic zero whose elements are squares). If this
field is a complete nondiscrete valued one, then the preceding analytic

Table 3
M S T w
My (R) Sua+(R) Epy+(R) {1}
1 <d < min(m, d)
My40(R) Spa-(R) E,a0(R) {1}
1<d<min(m—1,n)
M1 (R) Sna-1,-(R) E,i1(R) {1}
n<dsm-—1
My (R) Spa-1,-(R) Epg1(R)X F,_g11,1(R) Fo-441,1(R)
1<dZ<min(m—1,n—1)
Mz00(R) Syo(R) {1} {1}
M;4,(C) Sn,a-(C) Epas(€) {1}
1 <d < min(m, n)
sd—n)=0
0<s=<min(d,m—d)
Mr:ds(c) Sn,d—s(c) Emds(c) X Fn—d+s,s(C) Fn—d+s,s(c)

1<d<min(m—1,n—1)
1 <s<min(d, m— d)

M;00(0) Sa0(C) {1} {1}
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results also persist. Notice that s, (k)=1 [resp. s, (k) is the integer part
of m/2] if and only if k is ordered (resp. —1 is a square in k).

4. The Lorentz Orbit Space

We now digress a little into the geometrical significance of certain
natural sets of orbits of the Lorentz group O(1, m — 1; k) acting on the
topological product of n Minkowski spaces M (k).

The orbit of O(1,m— 1; k) which contains the point (x),€ M(k)
is the set O(1,m —1;k)(x), of all points A(x),=(Axy, ..., AX,), Where
AeO(l,m—1;k).

Let P be a Lorentz invariant subset of M).(k). Then P is a union of
orbits. Let P/O(1, m— 1; k) denote the quotient space of P with respect
to the following equivalence relation: (x),€ P is equivalent to (y),€ P
if (and only if) (y),e O(1,m—1; k) (x),. P is considered with its relative
topology as a subspace of M;(k). The quotient space (of Lorentz orbits)
P/O(1,m—1; k) is endowed with the quotient topology: a subset of
P/O(1,m — 1; k) is open if and only if its inverse image under the canonical
mapping g|p: P—P/O(1, m— 1; k) is open, where g|p is the restriction
to P of the open mapping g : M(k)— My (k)/O(1, m — 1; k) which carries
any (x),e Mp(k) to its orbit O(1,m— 1; k) (x),. The topological space
M, (k)/O(1,m — 1; k) is called the Lorentz orbit space. This space is not a
Hausdorff one. Indeed, it is easy to see that O(1,m—1;k)(x), and
O(1,m—1;k)(y), are disjoint orbits with nonvoid intersection of their
closures for (x;)*=0, x; +0, and x,=---=x,=y; =---=y,=0.

The image of any stratum of M.(k) under ¢ is a Hausdorff subspace
of the Lorentz orbit space homeomorphic to a connected analytic
manifold. Thus if M e M~ (k) and M CM’' with M’ given in Table 3,
then (M) is homeomorphic to Sx W, where W=T/O(1,m—1;k)
with S, T, and W given by Theorem 1 and Table 3. Notice that M’ is
invariant with respect to O(1,m—1;k). Let (x),e M. The Lorentz
orbit O(1,m — 1; k) (x), is completely determined by the Gram matrix
n((x),) € S and an element of the Grassmann manifold W (if dim W > 0).
This orbit is homeomorphic to the Stiefel manifold E from Table 1
which contains an orthogonal basis for the linear space over k spanned
by xi, ..., X,. Finally, notice that n~*(Z), Ze S, consists of only one
orbit of O(1,m—1; k) if and only if it consists of only closed Lorentz
orbits or, equivalently, ifand only if r >m — 2fork=Cand Z ¢ S,,, _ (R) for
k=R, r<m-—2, where r=rank Z.

We now discuss the problem mentioned in Introduction.

Remark7. If V is a differentiable manifold (resp. an analytic set),
we denote by €°(V) [resp. # (V)] the linear space of all complex-
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valued differentiable (resp. holomorphic) functions on ¥ endowed with
the usual topologies [14]—[16]. Here and throughout this remark
“differentiable” means “infinitely differentiable” and the differentiable
manifolds may have corners (see [ 16] for the construction of differentiable
structures). Moreover, the analytic structure of V is considered in the
sense of Grauert and Remmert [3, 15]. If V is a differentiable Lorentz
invariant submanifold (resp. an analytic subset) of M}(k), let €5 (V)
[resp. #7.(V)] denote the subspace of ¥« (V) for k=R [resp. H(V)
for k=C] consisting of all Lorentz invariant functions ¢ € €°(V)
[resp. @ € #(V)]; here ¢ is said to be Lorentz invariant if ¢ =¢, for
any AeO(1,m— 1;k), where ¢ ,((x),)=o(Axy, ..., 4x,)), (x),€ Mu(k).

Theorem 1 and Lemma {1 induce an isomorphisms i (V, R): €7 (V)
=% (e(V)) [resp. i (V,C): #(V)—#(¢(V))] provided V is a Lorentz
invariant differentiable submanifold (resp. a Lorentz invariant analytic
subset) of the stratum M e ML(R) [resp. M e M) (C)] and g(V) is
canonically identified to a differentiable submanifold (resp. an analytic
subset) of S x W with M C M’ and M’, S, and W as in Table 3. In these
conditions, the n-point Lorentz invariant differentiable (resp. holo-
morphic) functions can be represented by differentiable (resp. holo-
morphic) functions of scalar products and elements of Grassmann
manifolds. Moreover, this result can be generalized as follows:

If Vis a Lorentz invariant differentiable submanifold (resp. a Lorentz
invariant analytic subset) of MZ(R) [resp. M(C)] such that there exists
a nonnegative integer s with

mir}/ rank [y], = rankn((x),) + s 4.1)
RO =R

for any (x),€ V, then there exists an isomorphism i(V, R) [resp. i(V, C)]
of CP(V) [resp. #;(V)] onto °(e(V)) [resp. #(¢(V))] such that its
restriction to any stratum M of M;i(R) [resp. M;;(C)] with M nV nonvoid
is i(VnM, R) [resp. i(VnM, C)]. By (4.1), o(V) can be identified to a
differentiable submanifold (resp. an analytic subset) of the union of the
manifolds S x W with M NV nonvoid, where M, S, and W are given by
Table 3. Notice that the case k=C and s=0 represents an important
theorem of Bargmann, Hall, Wightman [2], and Hepp [3].

The preceding functional formulation of Theorem {1 is an immediate
consequence of the stratification of M;,(k) and certain extension theorems
(see Hepp’s method for k = C [3] and the following theorem of Mather
for k=R: of Q is a differentiable manifold and P a closed differentiable
submanifold of Q, then there exists a continuous extension #: % *(P)
—%*°(Q) such that #(¢)|p=¢ for any ¢ € ¢°(P) [15], Chapter 11, §4;
the Hepp method can be extended for k=R if in Mather’s theorem P
and Q are appropriate closures of the strata of M;(R)).
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We recall that the study of functions invariant under the connected
Lorentz group can be reduced to the study of functions invariant under
the full Lorentz group using the division theorems for infinitely
differentiable and holomorphic functions [17] with respect to the
polynomials det(x}), where i=iy,....,i,e{l,...,n}; u=0,1,....,m—1,
and (x), € M, (k) [1]. :

Let 9'(V) denote the topological dual of the Schwartz space 2(V)
of all complex-valued (infinitely) differentiable functions with compact
support defined on the differentiable manifold V [14] (for many details
of distributions on manifolds see [14], Chapter IX). If V is a differentiable
Lorentz invariant submanifold of MJ(R), the space Z;.(V) of even
Lorentz invariant distributions [resp. the space 27, _(V) of odd Lorentz
invariant distributions] consists of all /e 2'(V) such that f(p)= f(p4)
[resp. f(@)=sgn(A9) f(¢ )] for any ¢ € 2(V) and A€ O(1,m— 1; k).

Suppose that V' is a differentiable Lorentz invariant submanifold
of M;(R) which satisfies (4.1) (with s = 0, 1). Denote by V'’ the submanifold
of V consisting of all (x),e V with n((x),)¢S,, - (R), r=1,...,m— 2. Then there
exists an isomorphism of 27, (V) [resp. 91 _(V) with V' nonvoid]
onto Z'(o(V)) [resp. 2'(o(V’))] which carries each fe 2, . (V) [resp.
ge @, _(V)] to feZ'(o(V)) [resp. € Z'(e(V'))] such that

fo)=f ( ;f; ¢du@)), 4.2)
gl sgn(ed)) = g( g @sgn(e?) du@)) , 43)

where @ € Z(V M), M e M!(R), E is the Stiefel manifold isomorphic
to the Lorentz orbits contained in VM, and du(e) is a Lorentz invariant
measure on E. By (4.3), any ge 2, _(V) is vanishing on ¥V \V". Then the
preceding assertion follows immediately from Theorem 1 and certain
results of Schwartz (see [14], Chapter IX, § 5; see also [5] for the case
n=1).
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