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Abstract. The orbit space of the Lorentz group acting on the product of n real, or
complex, Minkowski spaces is stratified into subspaces isomorphic to certain products of
Grassmann manifolds and varieties of Gram matrices. The Lorentz orbits (of nonzero
dimension) are completely classified by the Stiefel manifolds of standard orthogonal bases
for the linear subspaces of the Minkowski space. Several representations of the spaces
of n-point Lorentz invariant distributions and differentiable, or analytic, functions onto
appropriate spaces of distributions and functions of Lorentz invariant variables are also
discussed.

1. Introduction

Considerable effort has been expended in many physical schemes
for the study of Lorentz invariant functions and distributions. Excepting
the case of the Lorentz invariant polynomials [1], the following problem
is not completely solved: find a space of distributions or functions of
Lorentz invariant variables isomorphic to a given space of ra-point
Lorentz invariant distributions or differentiable (resp. analytic) Lorentz
invariant functions defined on a differentiable (resp. analytic) Lorentz
invariant submanifold of the product of n real (resp. complex) Min-
kowski spaces. This problem has been extensively studied by Hall,
Wightman, and Bargmann [2], Hepp [3], Stapp, Minkowski, Williams,
and Seiler [4] for Lorentz invariant functions on saturated domains
and by Methee [5] for Lorentz invariant one-point distributions. Here a
saturated domain is a domain which contains the closures of all Lorentz
orbits of its points. The origin of the difficulty in solving the above-
mentioned problem is that the product of n Minkowski spaces contains
non-saturated domains and the corresponding Lorentz orbit space
is not a Hausdorίf one. In order to exhibit this difficulty in concrete
terms, the purpose of this work is to give a minimal decomposition of the
Lorentz orbit space corresponding to the product of n Minkowski
spaces into Lorentz orbit subspaces homeomorphic to certain products
of manifolds of Gram matrices and Grassmann manifolds. Some
algebraic and analytic properties of this decomposition and a complete
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classification of the considered Lorentz orbits using the Stiefel manifolds
of standard orthogonal bases for the linear subspaces of the Minkowski
space are also presented in the following.

2. Stiefel Manifolds for the Minkowski Space

In this section, we describe the geometric structure of certain families
of orthogonal bases for the Minkowski space and its linear subspaces
by analogy with the Stiefel manifolds used in the orthogonal geometry
of index zero [6]. It is convenient to review briefly some definitions,
notation, and the elementary technique of orthogonal geometry applied
to the Minkowski space (several details can be found in Refs. [2,4]
and [7]).

Throughout this paper, k denotes either the field R of real numbers or
the field C of complex numbers. However, the subsequent algebraic
results are satisfied for certain large classes of fields which will be specified
later.

The Minkowski space Mm(k] is the m-dimensional linear space
over k of all m-ples x = (x°, x1, ...,xm~1) of numbers belonging to k,
endowed with the Euclidean topology and the Minkowski scalar
product [i.e. the symmetric bilinear fe-form defined by (x,y)-*xy
= x°y° -x1/ χw~1j;w~1 for any x, y e Mm(fc)].

Let Fm(k) denote the set of all linear subspaces of Mm(k). The radical
rad N of N e Fm(k) is the linear subspace of N consisting of all x e N
which satisfy the relation xy = 0 for any ye N. The index sm(k) of Mm(k)
is the greatest dimension of rad N for N e Fm(k\ We recall that s^R) = 0,
sm(R) = 1 for m > 1, and sm(C) is equal to the integer part of m/2 (for the
last assertion see [7], Theorem (3.11)). Let N e Fm(k) with d = dimJV > 0.
Denote s = dimradN. Then d + s^m ([7], Theorem3.8) and there
exists an orthogonal basis {el9...9ed} for N such that {el9...9es} is a
basis for radΛΓ if s>0 ([7], Theorems 3.3 and 3.7). Moreover, if k = R
and there exists an index i e {s + 1,..., d} such that (et)

2 > 0, then (ej)2 < 0
for any j Φ L

In conformity with the above considerations, we shall introduce a
natural set Em(k) consisting of certain orthogonal bases for all nonzero
linear subspaces of Mm(k\ Let Emds(k) [resp. Emd+(RJ] denote the set
of all ordered bases e = (el9..., ed) for the d-dimensional linear subspaces
of Mm(k) [resp. Mm(R)] with s-dimensional (resp. 0-dimensional) radicals,
which satisfy the orthogonality Conditions (2.1), [resp. (2. Γ)] given by

etej = - Σ δι**jk, (2.1)
h = s+l

eiej = 2δnδn-δij; i,j=ί,...,d. (2.1')
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We now introduce the following families of orthogonal bases :

/ m \ /m-1 4 \

Em(R) = (J Emd+(R) u (J U Emds(R)),
\d=l I \d=l s = 0 I ,~ j .

m min(d,m — d) ^ ' *

Em(C)= U U Emds(C).
d=l

The sets Emd + (R) and Emds(k) from the right side of (2.2) are called
the Stίefel manifols for the Minkowski space.

Let θm: Em(k)^>Fm(k) be the mapping which carries every basis
e e Em(k) to the linear space over k spanned by the vectors of e . We write

= (23)

Clearly the space NeFm(R) of nonzero dimension d belongs to Fmd+ (R)
[resp. Fmd0(R\ resp. Fmd ί (/?)] if and only if there exists x e N with (x)2 > 0
[resp. xεN, xφO, implies (x)2<0, resp. x e N implies (x)2^0 and
there exists x' e N, x' φ 0, such that (x')2 = 0].

Now let Fmd(k) denote the Grassmann manifold of all ^-dimensional
linear subspaces of Mm(k) [6]. Then the following relations hold:

,
min(d,m — d) ^ ' ^

Fmd(C}= U Fm*,(Q>
s=0

In order to describe the geometric structure of the Stiefel manifolds,
we need certain groups of isometries.

A mapping A from AΓeFm(fc) into NfeFm(k) is an isometry if
(Ax)(Ay) = xy for any x, yεN. The full Lorentz group 0(1, m— l fc)
consists of all isometries A oϊMm(k) onto Mm(fe), where every A is identified

m-l

to the mxm matrix (Aft, 0^μ,v^w-l, defined by (Ax)μ=

x e Mm(k). According to this identification, the proper Lorentz group and
the connected real Lorentz group are denoted by 5O(l,m— ί fc) and
S0T (1, m-l R), respectively.

The full Lorentz group acts on Em(k) [resp. Fm(k)~] in the following
vfay:Λ(el9 ...9ed) = (Λel9 ...,Aed) [resp. AN = {x|x = Λy, ye N}] for any
A e 0(1, m - 1 fc) and (els . . ., βd) e £m(fc) [resp. JV e Fm(fc)].

It is clear that the Stiefel manifolds and their images under θm are
Lorentz invariant. We will prove that these manifolds are homogeneous
spaces of certain open subgroups of 0(1, m — 1 k).
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Table 1

E

Emm+(R)

Em,m-ι,ί(R)

m> 1
Em,m-l, + (R)

m> 1

£m,m-l,θW

m> 1
Emd+(R)
i^d^m-2

JW*)

ifj(|w"2

m/2SS<m

S<" 1
iIίlUm-d-1)

G

0(1, m-1;
0(1, m-1;

50(l,m-l

50(1, m-1

5O(l,m-l

50(1, m- 1

S0'(l,«-

O(l,m-l;

50(l,m-l

«)
«)

)̂

;«)

Λ)

)̂

i JO

C)

c)

H
{1}
{1}

{1}

{1}

SO(m-d R)

r-'-iQSίKm-d-l K)

SOJ(l,m-d-ί;R)

{1} i f s g l

[Cs< "-' |-I>oS10(m-<i-s;C)]OC!('~1)/2

Table 2

50T (1, m - 1 K) S0(m - 1 Λ) if d = 1
[SOT (1, d - 1 R)®SO(m -d',R)"]Q O(l Jf?)
if 1 < d < m — 1

SO*(i,m-i;R) R+ ifd=i;m = 2
lRm-2QSO(m-
ifd=i;m>2

if 1 < d < m — 1

SO(i,m- l C) SΌ(l,m-l;C)

SΌ(l,m-l;C) S0(m- 1; C) if d= 1
\βO(d\ Q®SO(m-d; C)]QO(1; C)
if 1 < d < m - 1

50(l,m-l;C)

O GL (5 C) if 5 = m - d, 5 < d

OCS(S-1)/2}Q[0(1;C)®GL(5;C)]
if s < min(ί/, m — d)
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In order to avoid certain complications, we introduce Tables 1 and 2.
Some explanations are required. GL(n; k) denotes the group of all
invertible nxn matrices whose coefficients belong to k. The group
O(n\k) [resp. S0(n; k)~] consists of all orthogonal (resp. proper orthogonal)
matrices of GL(n; k). By an abuse of notation, both the ^-dimensional
Euclidean space over k and any Abelian Lie group isomorphic to the
translation group of this space are denoted by kq. In Table 2, R+ is the
multiplicative group of all strictly positive real numbers. The symbols
(χ)0, and O are reserved for the central extensions direct and semidirect
products of groups, respectively. After these preparations, we prove an
announced assertion.

Proposition 1. Let E, G, H, F, G', H' be as in Tables 1 and 2. Then E
(resp. F) is analytically isomorphic to G/H (resp. G'/H').

In Proposition 1 and throughout this paper, "analytic" means "real
analytic" if k == R and "complex analytic" if k = C.

Proof. With no loss of generality we may suppose that θm(E) = F.
1) We first establish that G (resp. G') acts transitively on E (resp. F).
Let e = (el9..., ed) e Em(k). Denote N = θm(e) and s = dim radJV.
A completion oϊe is an ordered basis (eί9... ,em) for Mm(k) satisfying the

following properties:
a) if 5>0, then eiem_s+j = δij for all i = l , ...,m and j = l , ...,s;
b) if m — d — 5>0, then eied+j = ajoi>d+j for all ί=l , ...,m and

j = 1,..., m — d — s, where: 1) α,- = — 1 for j> 1 2) α^ = 1 3) o^ = 1 if and

onlyif£eEM d 0(«).
We recall that there exists at least one completion of e ([7], Theorems

3.5 and 3.8).
Assume that (ei9..., ej is a completion of e. Consider an arbitrary

basis e' = (e{9..., e'd) e E having the completion (e'l9..., e'm). It now follows
from the Properties a) and b) that e^ — e^e'; for any ij= 1,..., w. Then
the linear transformation A of Mw(fc), defined by Aet = e't for all i = 1,..., m,
is an isometry. Obviously e' = Ae. Therefore 0(1, m — 1 k) acts transitively
on E. The transitive action of 0(l,m— l fc) on F is automatically
induced by θm.

Consider now the involutions Ate 0(l,m— 1; k) defined by Λ^j
= (i-2δij)ej for all ij=i,...,m. Let L^ iq be the subgroup of
O(l ,ra- l ; fc) generated by Λtί,...9Λiq, where [il9..., iq}C {1, ...,m}.

Plainly Liίm.Λqe={e} (resp. L^Λq N={N}) for any {il9..., iq] C{d+i,
...,m — d — s} (resp. {iί9..., iq} C {1, ...,m}). Then 0(1, m — l fc) is iso-
morphic to SO(l9m—ί;k)QLm. Moreover, O(l9m—ί9R) is isomorphic
to SOi(l,m-l 9R)QLl2 (resp. SO^(ί9m-ί'9R))QLhtd + i if eeEmd + (R)
uEm d l(Λ) (resp. e e Emd0(R\ h = i or h = m > d + 1). On the other hand,
it is easy to see that if L is a normal subgroup of 0(1, m — 1 fc) such that
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Le = {e} (resp. LN = {N}\ then the group 0(1, m — 1 k)/L acts transitively
on E (resp. F). These results imply immediately that S0(l, m— l fc)
acts transitively o n £ i f d - f s < m (and also on F). Moreover, if k e R,
then SOT(l,w- l R) acts transitively on E if ee£wd0(fl), d<m-i
(and also on F).

2) We next compute the little group HQ of e and the little group
H£ of N defined by

H0 = {Λ\ΛeO(i9m-i;k),Λ£=e},

We shall prove that H = GnH0 and iΓ = G'nfίό Consider
~ ~ m ~

Define the m x m matrix yί = (yϊj), 1 rg i, j rg m, by Aβj = Σ ^h eι- Simple
h=l

computations show that the conditions AN = N and (Aet) (Ae^e^p
where ίj= 1, ..., w, are equivalent to the following relations:

/Bll

0

\°
s

Bhh9(h)Bhh — 9(h)

1
D J 1 D i
£>ι /i = — T £> -f-

B22

0

0

d-s

. Bh4

3

Σ ^IΛi

0

#33

0

m— d— 5

= -Bhhg(h}

\

B24\d-s

B34 1 m — d—s'

B44/ s
s

B[h(Bιι) , Λ = 2, 3,

i)"1, B44 = (Bί

11Γ
1,

(2.6)

where 5 is a skew-symmetric sxs matrix whose coefficients belong
to k, the (d — s) x (d — s) [resp. (m — d — s)x(m — d — sj] matrix </(2)

(resp. 0(3)) is defined by g(2)ij = es+ies+j for any zj=ί, ..., d-s (resp.
9(3)ίj = ed+ίed+j f°r any U— 1, ...,w — d — 5). 0 denotes the zero matrix
and the symbol t denotes the matrix transpose. The 0 x q or q x 0 blocks
from (2.6) are omitted.

By (2.6), the coefficients of Bh4, h=i,2, 3, 4, are rational functions
of the coefficients of the other blocks. Write A = (B12iB22> B13,B33,B,
B11). The the composition rule in HQ is A" =AA with

, h = 2, 3,

3 ^ ^

h = 2

=s(d~sThe parameter blocks generate the following groups: {B12}=ks(d~s\
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(5; k\ where K (resp. K') is the group of all matrices B22 e GL(d— s; k)
[resp. £33 e GL(m — d — s; kj] which satisfy the relation £220(2)J322 = 9(2)
(resp. #330(3)#33 = 0(3)) It follows from the definition of (el9 ..., ej that
K is isomorphic to 0(l,d— l JR) [resp. 0(d\R\ resp. O(d-s fc)] and
K' is isomorphic to O(m — d; Λ) [resp. 0(1, m — d— 1 #), resp.
0(m-d-s;kJ] if β belongs to Emd + (R) [resp. £md0W, resp. Emds(fc)
with either k = R and s = 1 or k = C~\.

By (2.7), the following isomorphism holds:

^ό^{[(fcs(d~s)O^)®(^(m"d"s)O^/)O^(s""1)/2]}ΘGL(5;/c). (2.8)

The group H0 is a normal subgroup of #ό. If yϊ e H0, then it follows
from Λe = e that B11 and £22 are unit matrices and B12 = 0. Then (2.8)
induces the following isomorphism:

ks(s~1}/2. (2.9)

The assertion of this part of the proof follows straight-forward from
(2.8) and (2.9), and the foregoing results.

3) Finally, we consider that E is canonically embedded in hdm

(i.e. every e e£ is identified to the point (e\,e\, ..., e%~l)et?m\ F is a
subset of Fmd(k). The Grassmann manifold Fmd(k) is an analytic manifold
of dimension d(m — d) [6]. The rest of the proof is standard. H (resp. H')
is a Lie subgroup of G (resp. G') and the homogeneous space G/H (resp.
G'/Ή7) is an analytic manifold. The orbit E=Ge (resp. F = GN) of G
is an analytic submanifold of kdm [resp. Fmd(kJ] isomorphic to G/H
(resp. G'/H') with respect to the natural map ge^gH (resp. gN-+gH\
geG ([8], Part. II, Chapter IV, §5, Theorems 1, 3,4, and their Con-
sequence).

The following remarks improve Proposition 1 :
Remark 1. The manifolds Emd0(R), i^d^m-2, and Emds(C\

i^d^m—i, O^s^min (d,m — d—i\ are connected. Consider E
as in Table 1. Let SE be the set of all e e E with det (ef) > 0, where (eί9 . . ., em)
is a completion of e and i= 1, ..., w;μ = 0, 1, ..., w — 1. WήtQlE = E\SE.
lϊk = R, then £r denotes the set of all e e £ with e? > 0. Denote E^=E\E\
SEi=SEnE\SEi = SEnEi9 IE\=IEπE\ and IE± = IEnE^ The
manifold £e{£mm+(Λ), £w m-ιW} has four connected components:
SE\ SE^ IE\ and /E*. The manifold Ee {EW i m- l f + («), EM f M_ l f 0(*),
Emd + (R\ Emdί(R)}, i^d^m — 2, has two connected components: £τ

and £;. The manifold Ee{Emds(C)}> m/2^d^m, s = m — d, has two
connected components SE and /£.

Consider now E and e e £ as in the proof of Proposition 1. Since the
vectors ely...9ed are linearly independent, there exists a permutation
{μ1? μ2, . . ., μm} of {0, 1, . . ., m- 1} such that all determinants deφ? j\ ^j^hl
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hrgd, are not zero in a neighbourhood V(e) oίe in E. A straightforward
calculation show that {ef 7}, ie {1, ...,d}\μ^E {0, 1, ...,m — !}\{μl5 ...,μj,
is a system consisting of md—d(d+i)/2 local coordinates in F(e).
This result gives a concrete analytic structure of the manifold E of
codimension d(d+i)/2 in kdm. Moreover, £ is a d(2m — d— l)/2-
dimensional algebraic subvariety of fcdm. Here the symbol "~" is used
for the closure of sets. If s = 0, then E is closed. If s > 0, then E is dense
and open in E and the boundary of E can be decomposed into a disjoint
union of manifolds isomorphic to the union of the manifolds Emd,s,(k)
with d' < d and s' = d' + s - d.

Remark 2. All manifolds F from Table 2 are connected. Consider,
F, e, and TV as in Remark 1 and the proof of Proposition 1. Define a basis
{Λ,..., fd} for N such that /f = Σ^=: αiΛ, fa,) e GL(d; k\ where //"=<S0,
i,j=l,...9d, and (μl5 ...,μm) is a permutation of (0, . . . ,m—1). Then
{./iμj}> * = 1 > . . . , d; j = d+ 1,..., m, is a system of local coordinates in a
neighbourhood of N in Fmd(fe). Introduce the Gram matrix p = (f.fj),
1 ̂  ij 7 ̂  d It is easy to see that dim rad N = s if and only if rank P = d — s.
The set of all symmetric dxd matrices of rank d— s is an analytic
manifold of codimension s(s-fl)/2 in the manifold of all symmetric
d x d matrices. Then F is an analytic submanifold of Fmd(k) of dimension
d(m — d) — s(s+ l)/2. Since the mapping θm is open (i.e. θm carries open
sets onto open sets) the boundary properties from Remark 1 persist if £ and
E are replaced by F and F, respectively.

3. The Variety of Scalar Products

In this section we discuss the connection between the product of n
Minkowski spaces and its image on the variety of scalar products.
We begin with some notation and conventions.

Let M^(fe) denote the topological product of n Minkowski spaces
Mm(k\ M£(k) consists of all points (x)n = (xl9 ...,*„), where x^Mm(k\
ί =!,...,«. For any (x)n e M^(k\ let [x]π be the nxm matrix whose
coefficients are x?(ΐ= 1, ..., n; μ = 0, 1, ..., m— 1). The Lorentz group
acts on M^(fe) by Λ(x)n = (Λxl9 ...9AxJ for any (x)neM^(fc) and

We now present some geometric properties of the mapping π which
carries each point of M£(fc) to its Gram matrix. Many remarkable
properties of this mapping have been established in Refs. [2, 3] and [9].

Let Sn(k) denote the set of all symmetric nxn matrices whose
coefficients belong to k. Sn(k) is identified with kn(n+1}/2 carrying each
matrix ZeSΛ(fc) into the point of coordinates Ztj(i ^i^j^ri), where
Zij9 1 ̂  ί, j ^ n, are the coefficients of Z.
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It is convenient to define the following minors of ZeSn(k):

G/ί"t(Z) = det(ZiJ)ί = i l f . . . i i h ; J β < / l i . . . i Λ,

Gl,..ίh(z) = Giί:::!;(z),

where h, i1? ...9ih,jl9 ...,jΛe {1, ...,n}. For any ZeSπ(K) denote

εί,..ίh(Z) = sgn(-l) f c-1G ί l... ί | ι(Z), (3.2)

where sgnα = 1 if α > 0, sgnα = 0 if α = 0, and sgnα = — 1 if α < 0 for any
αet f .

The mapping π from M£(fc) into Sn(k) is defined by Z = π((x)Π) with
Zij = xiXj for any (x)nGM^(k) and 1,7=!, ...,n. The set π(M,£(fc)) is
called ί/ze variety of scalar products.

Snr(k) denotes the set of all matrices Zeπ(M^(fc)) with rank Z = r.
Let Snr+(R) [resp. Snr_(jR)] be the set of all matrices belonging to Swr(/ί)
with only one positive eigenvalue (resp. only negative eigenvalues).

We shall now give a constructive proof of the following proposition:

Proposition 2. a) Let 1 ̂ r^min(m, n). There exist a finite open
covering {Snry(k)}yeΓnr of the analytic manifold Snr(k) and a holomorphic
mapping σnrγfrom Snry(k) into M£(fc) with πσnrγ=i for any yeΓnr.

b) The following relations hold:

min(m,«)

π(M«(fc))= U SnrW,
r = 0

Snm(R) = Snm+(R), n^m, (3.3)

is the algebraic variety of all matrices Z e Sn(C) such that
rank Z^min(m, n\ π(M^(R)) is the semi-algebraic variety of all matrices
ZeSn(R) such that:

1) rank Z^min(m, n): 2)stl ίm(Z)^0 ϊ/rankZ = m and OΊ, ..., z'm}
C{1, ...,«}; 3) the relation

βl 1..,h(Z)>β ί l...Ih+1(Z) (3.4)

implies G ί l... ί h + 1(Z) = 0/or Λ, il9 ...9ih+ίe {!,... n}. Moreover Ze Snr _(/?)
if and oni_y if ZeSnr(lϊ), 1 ̂ r^min (m— l,n), and ε f l ίh(Z)^0 /or any

Proof, a) Suppose that 1 ̂ r^min(m, n). Let Sn r l(ft) denote the set
of all ZeS^fc) such that G 1 < > ι Λ (Z)Φθ for any fte{l,...,r}.
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We shall construct a finite set Γnr of orthogonal n x n matrices such
that Snr(k) is spanned by γ'Zγ, where Z E Snrl(k) and γ e Γnr. In order to do
this, we introduce some notations.

Let Πn denote the image of the group of all permutations of (1, . . ., n)
under its isomorphism which carries each permutation (ιl5 ..., ij of
(1, ..., n) into the rcxrc matrix τ = (?//) with ̂  = 5^; 7, /=!,..., n.
It is obvious that (τZτt)jy = Zijij, for any ZeSJ(k).

Πnr (resp. 77,;p with p e {2, ..., r}) denotes the subset of 77Π consisting
of all matrices corresponding to all permutations (i1? ..., in) of (1, ... n)
with ZΛ < ih+ i if /i φ r (resp. with: 1) iΛ < ίh+ 1iϊh^p — 3;2) either ip-2< ip-ι
or z p -ι<z p ; 3) ίfc = Λ if Λ>p).

Define the n x n matrix ωp = (a)pij) by

<°pij = *<; + 2- 1/2(<5;,p- ΛP - 5, AP- 1) (3 5)

where i,j=i, ...,n for any fixed p e {2, . . ., r}.
Let Γnr denote the set of all orthogonal matrices

γ = ω"2

2τ2ωl3τ3 . . . ω*rτrτ , (3.6)

where τeΠ M n τp = Π'np, p = 2, ...,r, and αp = 0, i(ω°p is the unit nxn
matrix and ωp = ωp).

Let Z e Snr(k). We prove that there exists γ e Γnr such that y Zf eSnrl (k).
Consider y as in (3.6).

Define Zp_ t = ω**τpZp τ^ω^J and Z, = τZτ', where p = 2, . . ., r.
Since ZeSnr(k\ there exists a nonzero diagonal minor G ί l > t < / r (Z)

with i 1< <zr (see, for example, Ref. [6] from [2]). Choose τeΠnr

corresponding to the permutation (il5 . . ., Q of (1, . . ., n) with ir+ί< ~<ίn.

Consider now the following inductive hypothesis :

for ft = , . . . , r .

It is obvious that /r holds. Let pe{2, ..., r} and suppose that Ip

holds. Then there are only two cases :
Case A. There exists a nonzero diagonal minor Gjί^ιjp_1(Zp) with

Jl< ~<Jp-l^P

CaseB. Case A is not satisfied, but there exists a non-zero minor

Choose τpeΠήp corresponding to the permutation (/15 ...,jp_ι,7p,
p + 1, ..., n). Using in Case B the identity
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for Z' = TpZpTp, it follows that G 1 . . g J ,_ 1 (Z p _ 1 )=t=0. Clearly this result
is also satisfied in Case A. Choosing xp = 0 in Case A and αp = 1 in Case B,
Ip_ί holds. By induction on p, 1^ holds. Hence Zί = γZγteSnrί(k) for
some yεΓnr.

We now construct the complex analytic structure of Snr(k). Fix
yeΓnr and set Snry(k) = γtSnrl(k)γ. Let Z0εSnrγ(k) and set Z^yZrf.
Since Z'0eSnrl(k), there exists a neighbourhood VcSn(k) of Z0 such
that G! . . ,h(yZf) Φ 0 for any Z e F and h = 1, . . ., r.

We can define the following coordinate system of V:

j ί ηkl = Gί &yZyO, (3.8)

where i^i^j^n, ί^r, r<k^l^n, and Z e K Indeed, the Jacobian
of the transformation of Coordinates (3.8) is non-vanishing on V because
it is equal to (G1_r(yZy ί))( l l~ l>)(' l"~ l'+1)/2 Moreover, since the rank of any
matrix belonging ot V is not smaller than r, the set KnSπr(ft) consists
of all Ze 7 with f/w(Z) = 0 for any k,le{r+1,...,n}9 k^L Then Sπr(fc)
is a complex analytic submanifold of Sn(k) of codimension (n — r)

Define the holomorphic mapping σnry: Snr(fc)->M£(fc) by σnry(Z) = (
with

where Z e Snry(fc), Z' - yZ/, [x]π - yT^Ίn, A = 2, . . ., r, and; = r + 1, . . ., m.
Here χι = 1, χ*=-l if fc = C and χ,=ε,(Z'\ χfc = fi1...h-1(Z')ε1...fc(Z/)
if fc^=/?. (//!, ...,//m) is a permutation of (0, 1, . . . ,m— 1) which satisfies
the following conditions : 1) μh = h - i if k = C; 2) if k = R and μh = 0, then
either h = r+i or ε ί ^ f h - 1 ( Z ' ) ε l t f f h ( Z ' ) = — 1 with the convention
βi . . .Λ- ι(Z') = - 1 for h = 1 3) if k= R, h < h', and μh, μh, φ 0, then μh < μh,.
The above choice of (μl9 ...,μj is permitted according to JacobΓs
theorem ([10], Chapter X, Theorem 2): if Z' e Snr+(R) [resp. Z' e Sw r_ (Λ)]
and G 1 . . . Λ (Z')ΦO,Λ=1, ...,r, then βι...h-ι(Z/)ε1... f l(Z/)= 1 for r-1
indices fte {1, ..., r} (resp. for any h= 1, ..., r).

Indeed, it suffices to prove the last Relation (3.3). If Z' e π(M£(fc)),
then there exists (y)Π e M^(fc) such that \y\n (g)m [y]̂  = Z', where
0(m) = (^(m)μvλ O^μ, v ^ m ~ l , ίsa diagonal mxm matrk with #(w)00 = 1
and g(m)μμ=— 1 for μ>0. Then rankZ'^rank[j;]n^min(m, n), More-
over, in the case k = R, since (g)m has only one positive eigenvalue,
it follows from Silvester's law of inertia that Z' has at most one positive
eigenvalue (if rank Z = m, then Z has only one positive eigenvalue).
Thus (3.3) holds.
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The branches of the square roots from (3.9) are taken to have non-
negative real parts.

Straightforward computations starting from (3.9) show that
M«^(m)M« — Z (see, for example, the Gauss algorithm from [10],
Chapter II, §4). Therefore π(σnry(Z)) = Z for any ZeSnn(k) and a) is
proved.

b) According to the proof of a), (3.3) holds. Let A(k) [resp. B(kJ]
denote the set of all matrices Z e π(M^(k)) [resp. Z e Sn(k) with 1] rank
Z^min(m, n); 2) εil^Λh(Z)^εil^Λh + 1(Z) if k = R, il9..., ih+1 e {1,..., n},
/ι<rankZ; 3) ε ί l e.. ίm(Z)^0 if k = R, il9..., iwe {1,..., n}, rank Z = m)
such that Gtί ίh(Z)ή=Q iΠ l5..., z^e {1,..., n}, i1 <--<ih and /z^rank Z.
Let £„,. _ (R) be the set of all ZeB(R) such that rank Z = r and ε^... ίh(Z) ̂  0
for any i1 ?..., i Λ e {1, ...,rc}. It follows from the proof of a) that A(k) = B(k)
and 4(JZ)nSBr_(JO = J3Br_(JR). Since 4(fc) is dense in π(M£(fc)), we have
π(M»(k)) = B(k\ S l i r_(Λ) = BI I Γ_(«)n{Z|Z6S l i(Jl),rankZ = r} and b)
holds. We recall that a semialgebraic variety can be realized as a subset
of a real Euclidean space locally defined by a system of poliynomial
equations and inequalities (see, for example, [11], Chapter I, § 3).

Properties 2) and 3) from Proposition 2b) give the polynomial
inequalities for π(M£(R))9 but the polynomial equations are given by
Property 1) [i.e. by the vanishing of all Gram minors of order greater
than min(m, n}~\.

Remark 3. The manifolds Snr+ (R), Snr,_ and Snr(C) with 1 :g r ̂  min(m, n)
and 1 ̂  r' ^ min (ra — 1, n) are nonvoid and connected. Indeed, Z e Snr+ (R)
[resp. ZeSnr,-(R), resp. ZeSnr(C)] if and only if Z = ODO\ where
OeSO(n;R) [resp. OeSO(n;R\ resp. 0eSl7(n;C)] and D = (d^ is a
diagonal n x n matrix with ditER (resp. diteR, resp. dίf e C), i = 1,..., n,
and di^O, d^<0 for l < z ^ r , ̂  = 0 for i>r (resp. d l Ί<0 for igr',
^f = 0 for / > rr, resp. dit ή= 0 for i ̂  r, rf^ = 0 for z > r). It suffices to remark
that S0(n;k) and the set spanned by D are connected, and the mapping
(0, D)-*ODOt is continuous.

We next list certain useful properties of Snr(k), Snr(k) is open and
dense in Snr(k). Snr(C) [resp. Snr(R\ Snr±(R)ί is an algebraic (resp.
semialgebraic) subvariety of Sn(C) [resp. SΠ(fl)]._If r>0, Snir_1(k) is
the boundary (and also the singular locus) of Snr(k). The boundary
of Snr±(R) [resp. Snr,_(«)], i^r^m (resp. l^r'<m), is £„,,_!(«)
[resp. Sn>r'_ι(Λ)]. The boundary of S Λ l _(Λ) is the set Sn0(R) consisting
only of the zero matrix. Notice that Snmin(m)n)(k) = π(M^(k)). A standard
proof of these results can be extracted from [11] (see especially Chapter I,
2.4, Propositions 2 and 3).

Notice that the Gram determinantal constraints given by
Proposition 2b) for m = 4 and k = R generalize Byers1 and Yang's
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results of relativistic multiparticle kinematics [12] (several details and
applications can be found in [13]).

In order to describe the inverse image (under π) of any Gram matrix
belonging to π(M^(k))9 we write a fundamental lemma of Hall and
Wightman [2] in the following form:

Lemma 1. a) Let Z e π((M£(fc))) and r = rank Z. Then any (x)n e π ~1 (Z)
satisfies the following decomposition:

d d-r
xί= Σ Kijej+Σ βίheh i = l , . . . , n , (3.10)

j=d-r+l h=l

where e = (e^ ..., ed)εEm(k), β = (βίh) with i = l , ...,n and Λ = l , ...d-r
is an nx(d — r) matrix of rankd — r (in the case d>r), and the nxr
matrix α = (α^ ) is chosen such that (x,tj = ζ}j'; i = 1,... n; j = d — r + 1,..., d,
(ξ)n = σnry(Z\ ZeSnry(k\ yεΓnr; v7 e {0,1, ...,m- 1}, Vj<vf for j<f,
and ξ}j φ 0 for some i at any fixed j (in the case r>0). The first fresp. the
second) sum in the r.h.s. of (3.10) is dropped ifr = 0 (resp. r = d). Moreover,
Z e Snr+(R) f resp. Z e SΛΓ.(R\ resp. Z e Snr(C)) if and only if e e Emr+(R)
fresp. gε£wr0(Λ)uJεmdl(β), resp. eeEndtd_r(C)).

b) Let (x')n e M^(k) and let (x)n be as in a). Then there exists a Lorentz
transformation ΛeO(i9m—i;K) such that (x')n = Λ(x)n if and only if
there exist an orthogonal basis e' = ( e f

ί , . . . , ef

d)e Em(k) with (e'^2 = (e^)2,
7= 1, ...,d, an rx(d — r) matrix A whose coefficients belong to k, and an
ίnvertible (d~r)x(d—r) matrix ΩeGL(d—r;k) such that (3.10) holds
for (x)n, e, and β replaced by (x')n, e', and can + βΩ respectively.

Proof, a) We shall use the notation of Lemma 1 a). Let N denote
the linear space over k spanned by x1 ?..., xn. Then we can write xt = yt + zb

i = 1,..., n, where zt e radN and yt e AT is orthogonal to rad N for any i
([7], Theorem 3.3). Let ̂  (resp. N2) be the linear space over k spanned
by yι,—,yn (resp. ξl9...,ξn). Since π((y)n) = π((ξ)n) = Z9 the isometry
A':N2^N1 defined by Λfξι = yi9 ΐ =!,...,«, can be extended to a
Lorentz transformation A e 0(1, m — i k) (as in the proof of Proposition 1).

If r>0, we introduce the orthogonal basis /=(/ι, ...,fr)eEm(k)
defined by

ξi= Σ «u/j, i = i , . ,π. (3.11)
j=d-r+l

Set βj = Afj9 j = d—r+i,...,d. If d>r, there exists an orthogonal
basis (el9..., ed_r)e Em>d_r>d_r(k) for rad N such that

Zι=*Σ βth**> i = l , . . , n ; j B J Λ e f c . (3.12)
Λ = l
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By (3.11) and (3.12), we obtain (3.10). By (3.9), feEmr+(R) [resp.
/€£Mr0(«),/e£mro(C)] if and only if ZεSnr+(R) [resp. ZzSnr_(R\
ZeSBΓ(Q]. Using the relations Emr+(R) = ΛEmr+(R) and Emr0(k)
= ΛEmr0(k\ assertion a) follows immediately.

b) We shall use the notations of Lemma 1 b). Suppose first that
(x')n = Λ(x)n. Set e'j = Λep A=Q, and β=l. Then (3.10) holds for (x)n

and e replaced by (x')n and e'9 respectively.
Suppose next that (3.10) holds for (x)n, e, and β replaced by (*')„, e'9

and a,Δ -f βΩ9 respectively. According to the proof of Proposition 1,
we can define a Lorentz transformation ΛεO(i,m— 1; k] such that:

d-r
Λej = e'j+ Σ V£» 7 = < f - r + l , . . . , d ,

h=l

Aeh= £ Ωhh,e'h,9 h = ί,...,d-r.
'= 1

By (3.13), we have Λ(x)n = (x')n and b) holds.
Remark 4. According to the proof of Proposition 2b), the matrix α

in (3.10) is uniquely and completely determined by Z provided y is
fixed. In this case, the Decomposition (3.10) with d — r is unique.

Suppose that a > r and denote s = d — r. Denote by βmds(Z, k) the
quotient space of the set of all pairs (e, β\ where e e Emds(k) and β is an
n x s matrix of rank s whose coefficients belong to k, with respect to the
following equivalence relation: (e, β) is equivalent to (e'9β

r) if and only
if (3.13) holds with A and Ω as in Lemma Ib) and Λej = e'j9j = 1,..., d.
The equivalence class of (e, β) is isomorphic to the group [A, Ω} = krsQGL
(s; k) and has a representative q = (e'9 β') such that β'ijh = δj+rhj = l,...,d;
h = 1,..., 5, for some ir+19..., ίd e {1,...,«} and for iί9..., ir chosen as in
(3.9). Then gmds(Z', k) can be identified with the analytic manifold
Emds(k)χFn-r,s(k\ where Fn_rtS(k) is the Grassmann manifold of all
5-dimensional linear subspaces of kn~r, provided Z' belongs to a neigh-
bourhood of Z in Snr(k) such that (3.9) holds. Fn-r>s(k) is realized as the
quotient space of all (n — r) x s matrices β = (βih) of rank s, βih e k,
ie {1, ...,n}\{i l9..., ίr}, h= 1, ...,s, with respect to GL(s fc).

Notice that (3.10) is uniquely determined by a representative (e'9β
r)

of the equivalence class of (e9 β) such that the il9..., irth lines of βf are
vanishing.

Let M£ds(k) [resp. M^d + (RJ] denote the set of all points (x)n e M^(k)
[resp. (x)n e M^(RJ] such that there exists a basis belonging to Emds(k)
[resp. Emd + (RJ] for the linear space over k spanned by xl9..., xn. This
linear space is d-dimensional and its radical is s-dimensional. Denote
by MnQo(k) the set consisting of the only zero point (0)π
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By (2.2) and Lemma 1, we have

(min(m,n) \ /min(m — 1,«) 1

U M"md + (R] u U U ΛCJ
d = l / \ d = l s = 0

min(m,π) min(m — d,d)

M"m(C)= U U

^d^ min(m, n) ,

- l ,Λ),

-l,n), (3.15)

π(M£ds(C)) - SM_S(C) , 0 ̂  d ̂  min(m, n) , 0 ̂  s ̂  min(d, m - d) ,

where SI|0-(*) = SΠOW
Remark 5. We now list certain useful properties of M^d + (R) and

M£ds(fc) which follow from Proposition 2, Lemma 1, Remarks 1-4,
(3.14), and (3.15). If ZεSnr+(R) [resp. ZeSn r_(jg, resp. ZeSΛΓ(q],
then there exists a neighbourhood K of Z in Snr+(R) [resp. Snr_(R),
resp. Snr(C)] Such that the following analytic isomorphisms induced
by (3.10) hold: π^OOnΛC+W- K x £Mr+(«) [resp. π-1(K)nAςr0(*)
-7x£MΓθ(«), π-^nnM^^^W-FxE^^^Wx^.^W, resp.
π-^KJnAfi^+^q-Fxfi^+^ίqxF^^ίQ]. Since dimFn_ r > s(fc)
= s(n — r — s) and rankπ is constant on F, M^d + (R) [resp. M^ds(fc)] is
an analytic submanifold of M^(R) [resp. M^(fe)] of dimension d(m + n — d)
[resp. d(w + n — d) — s(s + l)/2] with respect to the structure induced by
the preceding isomorphisms. The manifold M^d+(R) [resp. M^ds(fe)]
is connected excepting the case i^d = n^m (resp. k = R. 5=1, i^d
= n^m)ι M^d+(R) [resp. M^d^(R)~] has two connected components
defined by sgn e\ in (3.10). M£d+(R) and M^ds(k) are_ppen and dense in
their closures. M^d + (R\ or M^ds(R\ s = 0, 1, [resp. ΛCds(C)] is a semi-
algebraic (resp. algebraic) sub variety of M^(R) [resp. Λζ|(C)]. The
boundary of M«d + (Λ) [resp. M«d0(l?), resp. Mn

md,(R}\ is M;,d_li + (β)
uM^dl(Λ) for ^<m and M^m_1> + (l?)uM^w_lj0(/?) for d = m [resp.
M£dl(Rl resp. M^>d_1>0(Λ)]. The boundary of M^ds(fe) consists of the
union of all M£d.s.'(k) with df ^d, sf^ 5, and d' + sf < d + 5.

,4 stratification of the set Mckp is a finite collection {M^j of
subsets of M , called strata, such that :

1) any stratum Aj is a connected analytic submanifold of kp open
and dense in its closure Aj^Aj is a semialgebraic (resp. algebraic) sub-
variety of kp for k = R (resp. k = C) whose boundary ^^4; is the union
of the strata ̂  where /e J', dim^^dim^ , and J' is a subset of J
dependent of 7; 2) A is the union of all strata AJ9 jeJ.
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Let Mm(R) [resp. M^(C)] be the set of all connected components

1 ̂  d" ^ min(m - 1, n) [resp. M Ŝ(C), 0 ̂  d ̂  min(m, n), 0 ̂  s ̂  min
(d, m - d)]. Then M£(fc) is a stratification of M£(fc). Notice that the set
of the images under π of the strata of M^(fe) is a stratification of π(M^(ft))
[i.e. the set Snm ιn(m f n)(fc) of all connected components of SΛ,(fc), 0 g r ̂  min
(m, n), is a stratification of π(AζJ(fc) and the inverse image under π of any
its stratum is a finite union of strata of M^(fc) given by (3.15)].

A triplet (M, π, S) is called an analytic fibre bundle if M and S are
analytic manifolds, π is an analytic mapping from M onto S, and there
exists an analytic manifold T (called typical fibre) such that for any open
set VcS the set π-1(F) is analytically isomorphic to Fx T.

According to the foregoing results and definitions, we have

Theorem 1. Let M e M£(fc) and S = π(M\ Then (M, π, S) is an analytic
fibre bundle whose typical fibre is a connected component of T given by
Table 3 provided M C M'.

Remark 6. The preceding algebraic results persist if R (resp. C)
is replaced by an ordered field whose positive elements are squares
(resp. a field of characteristic zero whose elements are squares). If this
field is a complete nondiscrete valued one, then the preceding analytic

Table 3

M' S T W

M^ά+(R) Snd+(R) Emd+(R)

\^d^ min (m, d)

M£d0(R) Snd_(R) EmdQ(R)

1 ^rf^min(m— 1, w)

^d^m {

 Sn,d-ι,-(R) Emd,(R)

ΛC-iW SM-I.-W £m d l(Λ)xFπ_ d + 1 ; 1(Λ
1 gdgmin(m— 1, n— 1)

M:OO(«) S»o(R) {1}
Mmds(C) SBιd_s(C) £mds(C)

{1}

{1}

{1}

) Fn.4+lιl(R)

{1}

{1}

Q^s ^mm(d,m — d)

Mn

mds(C) 5π>d_s(C) Emds(C) x Fn_d+s>s(C)

{1} {1}
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results also persist. Notice that sm(k) = 1 [resp. sm(k) is the integer part
of m/2] if and only if fc is ordered (resp. — 1 is a square in fc).

4. The Lorentz Orbit Space

We now digress a little into the geometrical significance of certain
natural sets of orbits of the Lorentz group 0(1, w — l fc) acting on the
topological product of n Minkowski spaces M^(fc).

The orbit of 0(1,m—l fc) which contains the point (x)neM^(k)
is the set 0(1, w — l fc) (x)n of all points Λ(x)n = (Λxl9 ...9Λxn\ where
Ae0(1,m- l fc).

Let P be a Lorentz invariant subset of M^(fc). Then P is a union of
orbits. Let P/0(l, m — 1 fc) denote the quotient space of P with respect
to the following equivalence relation: (x)πeP is equivalent to (y)nεP
if (and only if) (y)n e 0(1, m — 1 fc) (x)n. P is considered with its relative
topology as a subspace of M^(fc). The quotient space (of Lorentz orbits)
P/0(l,w—l fc) is endowed with the quotient topology: a subset of
P/0(l, m — 1 fc) is open if and only if its inverse image under the canonical
mapping ρ|P: P-»P/0(l,w — 1; fc) is open, where ρ|P is the restriction
to P of the open mapping ρ : M^(fc)-> M£(fc)/0(l, m — 1 fc) which carries
any (x)neM^(k) to its orbit 0(1, m— 1; k)(x)n. The topological space
Mm(fc)/0(l, m — 1 fc) is called the Lorentz orbit space. This space is not a
Hausdorff one. Indeed, it is easy to see that 0(l,m— 1; k)(x)n and
0(1,m— i'9k)(y)n are disjoint orbits with nonvoid intersection of their
closures for (x^)2 — 0, xl Φ 0, and x2 — - - = xn = JΊ = = yn = 0.

The image of any stratum of M^(fc) under ρ is a Hausdorff subspace
of the Lorentz orbit space homeomorphic to a connected analytic
manifold. Thus if M 6 M^(fc) and M C M' with M' given in Table 3,
then ρ(M) is homeomorphic to SxW, where W = T/0(l,m— 1; fc)
with S, T, and W given by Theorem 1 and Table 3. Notice that M' is
invariant with respect to 0(1,m-l fc). Let (x)πeM'. The Lorentz
orbit 0(l ,m— l;fc)(x)M is completely determined by the Gram matrix
n((x)n) e S and an element of the Grassmann manifold W (if dim W > 0).
This orbit is homeomorphic to the Stiefel manifold E from Table 1
which contains an orthogonal basis for the linear space over fc spanned
by x l 5 . . . ,X Λ . Finally, notice that π~1(Z\ ZeS, consists of only one
orbit of 0(1,m— 1; fc) if and only if it consists of only closed Lorentz
orbits or, equivalently, if and only i f r > w - 2 f o r f c = C and Z φ Snr _ (R) for
fc = R, r^.m — 2, where r = rank Z.

We now discuss the problem mentioned in Introduction.
Remark?. If V is a differentiable manifold (resp. an analytic set),

we denote by #°°(F) [resp. J f (F)] the linear space of all complex-
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valued differentiable (resp. holomorphic) functions on V endowed with
the usual topologies [14]-[16]. Here and throughout this remark
"differentiable" means "Infinitely differentiable" and the differentiable
manifolds may have corners (see [16] for the construction of differentiable
structures). Moreover, the analytic structure of V is considered in the
sense of Grauert and Remmert [3,15]. If V is a differentiable Lorentz
invariant submanifold (resp. an analytic subset) of M^(k), let ^(K)
[resp. JeL(VJ] denote the subspace of ^°°(K) for k = R [resp. H(V)
for k = C] consisting of all Lorentz invariant functions (pe#°°(tO
[resp. φe J f(F)]; here φ is said to be Lorentz invariant if φ = φΛ for
any Λ e O ( l , m - 1; k\ where φΛ((x)n) = φ((Λx1, ...,Λxn)\ (x)n e

Theorem 1 and Lemma 1 induce an isomorphisms ί (V9R) :
-+V™(ρ(V)) [resp. i (V9G):Jff(V)^J(f(ρ(V))'] provided V is a Lorentz
invariant differentiable submanifold (resp. a Lorentz invariant analytic
subset) of the stratum MeM^(R) [resp. MeM^(C)] and ρ(V) is
canonically identified to a differentiable submanifold (resp. an analytic
subset) of S x W with M C M' and M', S, and W as in Table 3. In these
conditions, the rc-point Lorentz invariant differentiable (resp. holo-
morphic) functions can be represented by differentiable (resp. holo-
morphic) functions of scalar products and elements of Grassmann
manifolds. Moreover, this result can be generalized as follows:

If V is a Lorentz invariant differentiable submanifold (resp. a Lorentz
invariant analytic subset) of M£(R) [resp. M£(C)] such that there exists
a nonnegative integer s with

min rank [y]n = rank π((x)n) + s (4.1)
(y)neF

π((y)n) = π((x)n)

for any (x)ne V, then there exists an isomorphism i(V9R) [resp. i(V,C)~\
of C£(V) [resp. JfL(K)] onto f°°(ρ(F)) [resp. tf(q(V))~\ such that its
restriction to any stratum M of M^(K) [resp. JW^(C)] with MnFnonvoid
is z(FnM, R) [resp. ι(KnM,C)]. By (4.1), ρ(K) can be identified to a
differentiable submanifold (resp. an analytic subset) of the union of the
manifolds SxW with MnF nonvoid, where M, S, and W are given by
Table 3. Notice that the case k = C and 5 = 0 represents an important
theorem of Bargmann, Hall, Wightman [2], and Hepp [3].

The preceding functional formulation of Theorem 1 is an immediate
consequence of the stratification of M^(fc) and certain extension theorems
(see Hepp's method for k = C [3] and the following theorem of Mather
for k = R: of Q is a differentiable manifold and P a closed differentiable
submanifold of Q, then there exists a continuous extension η:(^^(P)
-»«"°(0 such that η(φ)\p = φ for any φe(^co(P) [15], ChapterII,§4;
the Hepp method can be extended for k = R if in Mather's theorem P
and Q are appropriate closures of the strata of
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We recall that the study of functions invariant under the connected
Lorentz group can be reduced to the study of functions invariant under
the full Lorentz group using the division theorems for infinitely
differentiable and holomorphic functions [17] with respect to the
polynomials det(xf), where i = i l 5 ..., ίme {1, ..., n}\ μ = 0, 1, ...,w — 1,

Let <2>'(V) denote the topological dual of the Schwartz space
of all complex-valued (infinitely) differentiable functions with compact
support defined on the differentiable manifold V [14] (for many details
of distributions on manifolds see [14], Chapter IX). If V is a differentiable
Lorentz invariant submanifold of M£(R), the space &L+(V) of even
Lorentz invariant distributions [resp. the space ^_(F) of odd Lorentz
invariant distributions] consists of all fe@'(V) such that f(φ) = f(φA)
[resp. f ( φ ) = sgn(Λ8)/(p J] for any φ e 9(V) and A e O(l, m - 1 k).

Suppose that V is a differentiable Lorentz invariant submanifold
of M£(R) which satisfies (4.1) (with s = 0, 1). Denote by V the submanifold
of V consisting of all (x)ne V with π((x)n)$Snr_(R), r = 1, . . .,w- 2. Then there
exists an isomorphism of &'L+(V) [resp. 2t'L~(V) with V nonvoid]
onto &'(Q(V)) [resp. '̂(ρ(K'))] which carries each fe@'L+(V) [resp.
g e &L-(VJ] to /e ®'(ρ(F)) [resp. 0 6 0'(ρOΠ)] such that

(4.2)

) dμ(e)\ , (4.3)

where φe^(FnM), M e M^(R), £ is the Stiefel manifold isomorphic
to the Lorentz orbits contained in FnM, and dμ(e) is a Lorentz invariant
measure on E. By (4.3), any ge 2L-(V] is vanishing on V\V. Then the
preceding assertion follows immediately from Theorem 1 and certain
results of Schwartz (see [14], Chapter IX, §5; see also [5] for the case
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