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Abstract. Using a theorem about tangent functionals to convex functions, we obtain existence
results for phase transitions. In a “large” Banach space of interactions very pathological behavior is
found. In spaces of more “reasonable” interactions we obtain co-existing phases which differ in the
expectation of a given observable, as well as broken translation invariance due to long-range order.
As an example we consider the isotropic Heisenberg model.

1. Introduction

A standard type of problem in statistical mechanics is to describe the transla-
tion-invariant equilibrium states for a given interaction. Here we consider the
reverse situation: given an invariant state g, we look for an interaction having an
invariant equilibrium state § which bears some resemblance to ¢. In particular, if
o exhibits some type of long-range order, we would like § to share this property.
This approach leads to some very general existence results for phase transitions,
showing that a given type of phase transition occurs for some member of a certain
class of interactions.

Our basic point of view will be the identification of invariant equilibrium states
with tangent functionals to the pressure on a Banach space of interactions. This
identification can be made for classical and quantum lattice and hard-core
continuous systems [6—8], but for the sake of simplicity we will mainly consider
quantum lattice systems. The main tool, presented in Section 2, is a theorem on
approximation of functionals by tangent functionals to a convex function. In
Section 3 we consider a “large” Banach space of interactions, finding very patholo-
gical behavior. In Section 4 we deal with more “reasonable” interactions, such as
pair interactions, finding phase transitions involving the expectation of a given
observable, as well as broken translation invariance due to long-range order.
Section 5 applies these methods to an important example, the isotropic Heisenberg
model, and Section 6 briefly sketches applications to classical systems.

2. Approximation by Tangent Functionals

Let P be a continuous convex function on a real Banach space Z. A linear
functional « € Z'* will be called P-bounded if for some constant C, P(¥)= a(¥)+ C
for all ¥ e . We say that « is tangent to P at ® € Z if P(® + ¥) = P(®) + a(P) for

* This work is included in a dissertation to be submitted to the Mathematics Department of
Princeton University in partial fulfillment of the requirements for the Ph. D. degree.
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all ¥ e Z. A theorem of Bishop and Phelps [1] (who consider convex sets rather
than convex functions) shows that tangent functionals to P are dense in the
P-bounded functionals (with the norm topology). The generalized version presented
below allows stronger control over the point of tangency if less control over the
tangent functional is demanded.

Theorem 1. Let & be a closed convex cone in & (ie. if ¥,, Y, €% and cZ0,
then c(¥, +¥,)€ F). Then given ®,€ X, 0o€ X™* P-bounded, and & >0, there is
& € &* which is tangent to P at some ® € @, + F, with

WP Zoo(P)—e|Pl for PeF (1)
180 — B <&~ (P(Bo) — 00(D,) — C) ®)
where C=inf {P(¥)—oo(P): VY € Z}.

Note that if & is a closed linear subspace of Z we obtain ||(x, — &)\ || <e.
Proof. By considering the function P — o, — C instead of P, we can reduce the
theorem to the case where oy =0 and C=0. Then we must find & tangent to P at
ded,+F with &(¥)= —¢|P| for ¥ e F and | &, — B|| <&~ P(®,). See Fig. 1.
For each ¢ € Z we define

S(P)={VYed+F:P(P)SP(P)—¢c|®P-YV|}.

We will find @ so that (&)= {®}. Note that S(®) is closed, and that if ¥ € S(P)
then S(¥) C S(®). We construct a sequence @, @, ... by choosing &, ; € S(®,) with

P(®,,,)<2 "e+inf {P(¥): ¥ e S(D,)}.
Then if ¥ € S(®,) with n= 1, by the choice of ¢, in S(,_,)
P(®,)— 2! " < P(P)< P(®,)— & ¥ — B,
50 |¥ — @,| <2' " Thus the @, form a Cauchy sequence with limit & € ﬂ S(®,).
If¥eS@®)cC ﬂS@ ), then | ¥ — @, <2' "foralln>1,s0 ¥ =, ie. S((D) ().

Now thg open “supergraph” {(¥,y)eZ@R:y>P(¥)} and the set
{(P,y):Yed+F y<P(<15)—s||'I’ <D|]} are convex and disjoint, so by the

and
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Hahn-Banach theorem they can be separated by a hyperplane given by a nonzero
continuous linear functional on Z @IR. This functional can be written as
(P, y)—y —a&(¥), so that for some teR

P(®)—¢|¥—P|| —a(P)<t forall Ped+F
t<PWP)—a(VW) forall Ye&.

Taking in particular ¥ = @ we must have ¢ = P(é)_&(qs), Thus the inequalities
become . - N
WY —-D)= —¢|P—-@| for PYed+F
P(P)=P(®)+a(¥ —d) for Pek.

This proves the theorem.

3. The Space %4

Here is a brief summary of the mathematical framework for quantum lattice
systems (see [6]).

1) At each point i of the lattice Z” there is a copy ##; of a finite-dimensional
Hilbert space s#. For each finite subset X of Z' there is the Hilbert space
Hy= ® H,.

2) The quasi-local C* algebra  is the inductive limit of the local algebras 2 of
all linear operators on 4, with the natural injections. Translations in the lattice
act on A by automorphisms t;, i € Z*. The set of translation-invariant states of A
is denoted E'.

3) An interaction @ is a function from finite nonempty subsets X of Z’ to
self-adjoint operators @(X)e Uy, with

(i) ¢+ X)=1,9(X)forie?Z’,

(i) @]l = Z N(X)™H|@(X)] < oo,

where N(X) is the number of points in X. The interactions form a real separable
Banach space 4 in the above norm.
For ® eAwe define A= ) N(X) '®(X)e .

Xs0
4) There is an affine upper semicontinuous function s on E’ (with the weak-*

topology), called the mean entropy.

5) There is a convex function P on 4, called the pressure, with |P(®) — P(¥))
<||@—-Y| for , Ve A.

6) For any @ € %, P(®)=sup {s(¢) — 0(A4): 0 € E'}. If P(®)=s(g) — 0(Ay), we
say o is an invariant equilibrium state for @.

7) For any g € E', s(0) = inf {P(®) + 0(A4g): ® € #}. Thus the functional « on %
given by (@)= — 9(A4y) is P-bounded. The relation a(P) = — ¢(Ay) setsupa 1 —1
correspondence between functionals tangent to P at ¥ € 4 and invariant equi-
librium states for .

8) Extreme points of E are called ergodic states. Any g € E' is the barycenter
of a unique probability measure u concentrated on the ergodic states (this is called
the ergodic decomposition of @). If ¢ is an invariant equilibrium state for @, then
the support of u consists of invariant equilibrium states for @.
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In applying Theorem 1 to quantum lattice systems, we take 4 = 4 and P the
pressure. Note that if g, ¢’ € E! with corresponding functionals o, o’ on % given as
above, then |o—g'||=|la—0a'|. Since |Ag| =|®|, we clearly have ||g—¢'|
2 |l —o||. Conversely, for B € Uy selfadjoint, there is the interaction ¥y defined by

Ye(i+X)=1,B for ieZ’
Ys(Y)=0if Y is not a translate of X .

Since ||Wg|=|B| and ¢(Ay,)=0(B) for all geE’, we have |o(B)—¢'(B)|
< |l —a'| ||B]. It is then easily seen that || — ¢'|| = ||« — o'|| as claimed. Taking &
as the whole space %, Theorem 1 then asserts the following:

©)

Corollary 1. For any @, € 4, 9, € E', and & > 0, there is an invariant equilibrium
state § for some ® € B with .
leo — ¢l =¢, (4)

I®o — @Il <&~ (P(Po) + 00(Aa,) — 5(20)) - )

The norm condition (4) gives us very strong control over . This can best be
seen by considering the ergodic decomposition.

and

Theorem 2. Let U be any separable G-abelian C* algebra with identity (see [10],
Chapter 6). For an invariant state  let ji, be the unique probability measure with
barycenter ¢ concentrated on the ergodic states of U. Then for any invariant states
0,0 on U, flo—o'll =Ilp,— ol

Proof. It is clear that [|¢ — ¢'|| = [, — i, ||. By a theorem of Grothendieck [5]
any hermitian linear functional 4 on 2 has a unique decomposition h=h, —h_
with h, and h_ positive and ||h|| = ||h. ] + |h_]|. We take h=9 —¢'. Since h is
G-invariant and the decomposition fs unique, k, and h_ are also invariant. Thus
h, and h_ are represented by positive measures u, and p_ concentrated on the
ergodic states of 2, with |u,| =|lh,] and |u_|=|h_]||. Then since g+ h_
=0 +h, and the ergodic decomposition is unique, we must have p,+u_
= jty + i Therefore

le =o'l =lhell+ Ih-ll=llpsl +llp-1
2y =l = llug— byl
which completes the proof.

Theorem 3. a) If ¢4, ..., 0, are ergodic states, there is some interaction decRB
for which these are all invariant equilibrium states.

b) If u is a nonatomic probability measure concentrated on the ergodic states,
there is some @ € B which has uncountably many ergodic equilibrium states in the
support of u.

c) There is a dense set of interactions with uncountably many ergodic equi-
librium states.

Proof. For (a) let go=n""(¢; +--- +¢,) and take e <n~'. If § is an invariant
equilibrium state for @ and |g,—d| <e, then in the ergodic decomposition
uz({g:}) >0 for each i=1, ..., n, and so the g; are all invariant equilibrium states
for @. In (b) let g, be the barycenter of u, and let § be an invariant equilibrium state
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for @ with [|o,—¢| <2. Then ||y — Uzl <2, and there must be uncountably many
ergodic states in the intersection of the supports of u and pg, all of which are
ergodic equilibrium states for &. This method and the estimate (5) will also give us
(c) if we can show that for any @, e # and § > 0 there is a nonatomic probability
measure y concentrated on ergodic states ¢ with P(®,) + 0(A4g,) — 5(0) < 6. It can be
shown that ergodic states form a dense G; set in the compact metrizable space
{o€ E": P(Dy) + 0(Ag,) — s(¢) < 8} (with the weak-* topology; metrizability follows
from separability of ). The measure u is then obtained by constructing a homeo-
morphic image of the Cantor set in this G;, and taking a nonatomic probability
measure on the Cantor set. (See [13] for further details.)

It is shown in [9] that in a certain dense subspace of #Z any two interactions
which share an equilibrium state must be “physically equivalent” modulo a
constant term. By Theorem 3, this result fails in 4 itself in the most spectacular
manner imaginable: the set of interactions having a given ergodic equilibrium
state is so large and diverse that any other ergodic state is an invariant equilibrium
state for some interaction in that set. Fisher [3] has obtained examples of classical
systems where two different interactions share an invariant equilibrium state, but
the behavior described by Theorem 3 is much wilder than that of his models.
Remarkable as this behavior is, it does not appear to be at all related to the phase
transitions of more “reasonable” systems, and should be considered as a pathology
arising from the use of too large a space of interactions. If we use a norm which
gives a higher weighting to terms @(X) with N(X) large, we will no longer be
able to obtain such pathologies.

4. Phase Transitions and Cluster Properties

In this section we will apply Theorem 1 to quantum lattice systems with &
containing a much more restricted class of interactions. If B e U is self-adjoint,
this will yield an estimate §(B) < g,(B) + ¢| B| if Y5 € &, where ¥ was defined in
(3). To obtain non-ergodic invariant equilibrium states or breaking of translation
invariances from this type of information, we use cluster properties of states.

For Ae U let S,(A)=n"2"( > 1;4)* where C, is a cube of side n in Z".

ieC,
Ergodic states are characterized by the following “weak cluster property” ([10],
Lemma 6.5.1): lim o(S,(4)) = o(4)* for all 4 € A self-adjoint. The above limit will

exist for all invariant states ¢ and is always greater than or equal to g(A4)?; this is
easily seen using the Gel'fand-Naimark-Segal representation and the “mean
ergodic theorem” ([10], Proposition 6.2.15). If ¢ € E' with ergodic decomposition
o= {0 u(dg’) and '!Lngo 0(S,(A)) # 0(A4)?, then by the Lebesgue Dominated Conver-

gence Theorem
§o'(47 wde)= lim ['(S,(4)u(de)
= lim o(S,(4)) *e(4)*.
Thus ¢'(A4) #+¢(A) for some @’ in the support of u. This means that control over

expectations of 4 and of At; A for all i e Z" (or at least sufficiently much of Z”) can
lead to the existence of a phase transition.
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Theorem 4. Let A € Uy be self-adjoint, and suppose there are invariant states
that differ on A. Let & be the cone of interactions ¥ of the form

Y(i+X)=ht;A, helR,
P+ X))o+ X)=J(0-j) (1 4)(1;4) if ({+X)n(+X)=0,
with  J(i—j)Z0,
Y(Y)=0  forall other Y.

Then for any ®, € B there is & € ®,+ F which has at least two invariant equi-
librium states that differ on A.

Proof. Let g, = (0, + 0,)/2, where ¢, 0, € E' differ on A. Then lim g4(S,(4))

> (01(A)* +05(4)%)/2 > 0o(A)*. By Theorem 1, for any &> 0 there is an invariant
equilibrium state ¢ for some @ € ¢, + F with |§(A4) — go(A4) Z¢||A| and §(At;4)
> 0o(At;A)—¢||A||* when (i + X)n X =0. Thus

lim 3(S,(4)) 2 lim ,(S,(4)) — 2] 4]?

and
9(A) S0o(4)* +2¢ | A4]|> .

So for ¢ sufficiently small, ¢ decomposes into ergodic equilibrium states for @
which differ on A.

To deal with breaking of translation invariance we use the following property,
equivalent to the state ¢ having short range correlations [7,11]:

For any ¢>0 and A€W there is a finite subset X of Z* such that if Be Wy
with XnY =4, then

le(4B) —e(4)e(B) =& B]| .

The decomposition at infinity, a finer decomposition than the ergodic decomposi-
tion, represents any state as the barycenter of a probability measure carried by
states with short range correlations. A KMS state for some interaction is decom-
posed in this way into extremal KMS states. Thus, given an invariant equilibrium
state for some interaction, we can first decompose it into ergodic equilibrium
states, and then further decompose any of these that lack short range correlations
into non-invariant states with short range correlations; the latter will be KMS
states if the interaction is in the space %, on which time evolution is defined ([6],
Theorem 4). If some ergodic equilibrium state for an interaction lacks short range
correlations, we say that translation invariance is broken.

Theorem S. Let A€ Wy and Be WUy be self-adjoint, and supposel_llim 00(A47;B)

does not exist for some invariant state g,. Let F be the closed linear span of the

interactions ¥ ., (defined as in (3)) for X n(i+ Y)=0. Then for any &, € % there

is ® e ®y+ F which has some ergodic equilibrium state ¢’ such that I'llim 0'(A1;A)
i 00

does not exist. Thus @' does not have short range correlations, and translation

invariance is broken for ®.

Proof. By Theorem 1, with ¢>0 sufficiently small, there is an invariant
equilibrium state ¢ for some @ € ®,+ % such that §(A47t;B) does not tend to a
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limit. By the Lebesgue Dominated Convergence Theorem, '}lim 0'(Az;B) fails

to exist for some ergodic state ¢’ in the ergodic decomposition of g. But if ¢’ had
short range correlations, ¢'(47; B) would tend to ¢’(4)¢’(B) as |i| = oo.

5. The Isotropic Heisenberg Model

The Ising and Heisenberg models are important examples to which we can
apply the methods we have developed. For the Ising model a good deal is known:
in one dimension there is spontaneous magnetization for ferromagnetic interac-
tions decaying as |i —j|~" with 1 <r <2 [2], and in two or more dimensions for
nearest-neighbor interactions. In contrast, there are no (translation-invariant)
isotropic Heisenberg interactions in any dimension for which a phase transition
has been proven to exist. Thus our existence results will be especially interesting
for these interactions. A very similar analysis will apply to the Ising model.

We take the Hilbert space #; at each site i e Z® to be two-dimensional, with
the usual Pauli matrices o7, o}, and o;. Let %y be the space of interactions ¢, with

D, {i,j}=J({i—j)o;-06; for i%jeZ’
P,(X)=0 if NX)+2.
Since |6;-6;|| =3 we have ||®,| =3 Y |J(i) < co. In addition there are one-body

i*0

interactions (“external fields”) given by ®,{i} = h - o; with heR?, and |®,| = |h]
(the Euclidean norm).

The “ferromagnetic” phase transition with invariant equilibrium states differing
on o; can be treated with a slight modification of Theorem 4 (to deal with 6;-6;
rather than an ordinary product of operators). Let ¢, and ¢ _ be the states in which
all spins are “up” or “down” respectively (¢ (¢7) = + 1) and take o= (04 +0_)/2.
Let # be the cone of interactions @, + @, with he R3, @, € %}, and J(i) <0 for
all i. By Theorem 1, for any @, € # and ¢ >0 there is an invariant equilibrium state §
for some interaction ¢ = &, + @, + P, € &, + F such that |§(u - 6,)| < ¢|u| for all
uelR® g(6;,-0;)=1—3¢foralli,jeZ’ and

|® — | = b +3 .;O (@) e (P(Po) + 00(4a,)
[note s(g,) =0 since g, are pure st‘ates]. We have
0(S,(a7) + S, (a)) + S, (c9)) = 1 — 3e.
Thus for e <4, hm 8(S,(09)) > 8(a9)* where d is one of x, y, and z, so § decomposes

into ergodic equ111br1um states for & some of which differ on ¢?.

If @, contains only terms which are even polynomials in the spins, we can
dispense with the external field: the conditions g(;- ;) = 1 — 3¢ alone ensure a
phase transition at & = @, + &,. This is obtained by using the appropriate sym-
metry, namely time inversion. This is a *-antiautomorphism T of U [ie. an
invertible positivity-preserving linear map with T(4AB)= T(B) T(4)] determined
by T'(6;)= — 6;. Thus T acts on states by g+>g o T, and on interactions by @+ T - @.
The pressure is invariant under 7, so ¢ is an invariant equilibrium state for @ if
and only if g T is one for T~ &.
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Theorem 6. If &, % is invariant under T (meaning each ®y(X) is an even
polynomial in the spins of, ie X,d=x,y,z) there is S=0,+ D, with ,e¥y,
all J(i) =0, for which there is a phase transition with spontaneous magnetization.
That is, for some u € R® and some invariant equilibrium state g’ for @, ¢'(u - 6;) > 0.

Proof. Taking e< 4 there is @ as above with an invariant equilibrium state
¢ for which ¢(e; - 6;) = 1 — 3¢ for all i, j e Z’. Then some ergodic equilibrium state
¢’ in the ergodic decomposition of § satisfies

0@ +¢(02) +¢(07 = lim ¢(S,(67)+5,(62)+S,(0) 2 1 — 36 >0.

Thus if u is the vector <g'(¢;"), 0'(¢/’), ¢'(6)> we have ¢'(u - 6;) > 0. But since b is
invariant under T, ¢’ - T'is also an invariant equilibrium state for @, and

@°T)(u-0)=—¢'(u-0)<0.

The bound obtained on | @] in the case @, =0 using estimate (2) is of some
interest, both for Heisenberg and Ising models. For the Ising model, Griffiths [4]
has shown using correlation inequalities that there is no spontaneous magnetiza-
tion if Y| tanh|J(i) < 1, and hence a fortiori if Y J@|I<1. We will show that

i¥0 i*0

this “mean-field” bound is actually the best possible. For the Heisenberg model,
Greenberg [12] has shown there is no spontaneous magnetization if
Y 1J(i)] <0.025.
i*0

Corollary 2. Let R be the infimum of Y. |J(i)| for interactions ®, € ¥y with all

i*0

J(@) =0, for which there is a spontaneous magnetization, i.e. some invariant equi-
librium state @' with ¢'(u - 6;) >0 for some u € R*. Then R < 1. The analogous result
also holds for the Ising model, where in fact R=1.

Proof. We need to use a more suitable state than the g, above, which would
only give R <2 1n 2. For m > 0 let g,, be the state in which spins at different sites are
independent, each one being in the + 1 eigenstate of ¢* with probability (1 +m)/2;
ie. g, is the product of states at each site with density matrix

((1 +0m)/2 (1 —?'1)/2) '

Then g,,(6;-6;)=m’ for i #j, so a phase transition with spontaneous magnetiza-
tion is obtained for ¢ <m?/3 by the previous methods. The estimate (2) yields

R =2m™2(P(0)— s(¢,))

where P(0)=1n 2 and

s(0,) = 1+m1n1+m 1—mln1~m
o)== 2 T 2 2

As m—0 we obtain R=<1. The same analysis yields R <1 for the Ising model,
and by the Griffiths result R=1 there.

Next we examine a case of “antiferromagnetic” breaking of translation
invariance in the Heisenberg model. Let A and B be the two sublattices of Z”
consisting of sites i with |i| =|i,|+ --- + [i,]| even and odd respectively.
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Theorem 7. For any ®,c B there is & =d,+®,€d,+%, with J({i)=0
for ie A and J(i)=0 for ie B, which exhibits broken translation invariance
because sup 0(6, - 6;) <O for some invariant equilibrium state 9. If h € IR® let R(h) be

the infi mum of Y. J(i) over interactions ®, as above for which ®,+ ®, exhibits
ieB
this broken translation invariance. Then R(h) <2 1n (2 cosh |h|) and R(0) < 1.

Proof. Let g, be the state with g,(c,?) = (— 1)""l, i.e. spins in A4 are all “up” and
spins in B are “down”. For j € B the state g, > 7;= g, T has spins in 4 “down” and
spins in B “up”. The translation-invariant state g,=(0,+0,° T)/2 then has
0o(u-6)=0 and g,(0;-6;)=(—1)"J! for ueR3 i,jeZ’, and s(g,)=0. By
Theorem 1, for any @, € # and ¢ > 0 there is an invariant equilibrium state ¢ for
some & =&, + P, € B, + WYy with J(i)=0 for i € A and J(i) = 0 for i € B, such that
0(0;-6;)< —1+3¢fori—jeB,and

ZB J@) = P(‘po) +00(4q,)) -

If e<% long-range order is obtained, because sup d(a,-6;) <0 while since
ieB

lim §(S,(60*)+ S,(0¢”) +S,(00%)) =0 we must have hlnll sup §(e,-6;)=0. In the case

where @,=®, is an external field, P(®,)=1n (2 cosh |h|) and @o(Ag,) =0. Thus
R(h)<21n (2 cosh |h]). For h=0 we can do better by replacing g, with the state
(1+m)/2 0 )

0 (1—m)/2

) at B sites. Taking m—0 we obtain R(0) =<1, just

having different lattice sites independent and density matrices (

(1 —m)/2 0
0 (1 +m)/2
as in the ferromagnetic case.

at A sites, (

6. Classical Systems

The application of our methods to classical lattice systems is fairly straight-
forward. For the results of Section 4 we may consider a classical lattice-gas or spin
system as a special case of the quantum system. However, to obtain results
analogous to those of Section 3 we must consider a wider class of interactions
than the usual lattice-gas or spin types. For an interaction @ of this new type,
each @(X) will be a real-valued function on the configuration space {0, 1}*; thus
the Hamiltonian for a finite subset A of Z* will be the function

Hyw)= Y &(X)(w) we{0,1}".
Xca
All our results carry over naturally to such systems, where we replace 2 by the
algebra of continuous functions on {0, 1}2” and states by probability measures on
{0, 1}%". This formalism can also be generalized to deal with higher-spin or contin-
uous-spin classical systems, where {0, 1} is replaced by some compact metric space
with an “a priori” probability measure. For more details see [13].

Classical hard-core continuous systems, as discussed in [7], also provide a

framework for results similar to those of Section 4. The case of two-body interac-
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tions is especially interesting. Here a two-body interaction is given by a continuous
function V on {x € R”:|x| = a} where a is the diameter of the hard core, with norm
I®y] = sup 3 [V(x)<oo,
O0eX xeX

where the supremum is taken over all subsets X of IR” containing O such that
|x — y| = a for all distinct x, y € X. There are also one-body interactions @, given
by a chemical potential u € IR. The methods of Section 4 then lead to the following
results:

Theorem 8. a) For any interaction @ there is a chemical potential peR and a
two-body interaction @, with V <0 spherically symmetric, such that &, + &, + Py,
has two invariant equilibrium states which have different densities.

b) For any interaction @, there is a two-body interaction &y, such that translation
invariance is broken for ®,+ @y, because some ergodic equilibrium state for
@, + D, exhibits long-range order in the two-point correlation function.

It should be noted that, while part (a) above might be supposed to have some
relevance to “liquid-gas” phase transitions, part (b) does not involve a satisfactory
kind of “crystallization” in more than one dimension, for which we would want a
spherically symmetric interaction and breaking of both rotation and translation
invariance.
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