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Abstract. Starting from the basic postulates of local relativistic quantum theory, the asymptotic
incoming and outgoing collision states of massless Fermions are constructed. The corresponding
Hubert spaces have Fock structure and thus allow the usual definition of an S-matrix. In contrast to
the massive case, there are geometric relations between the local nets of the underlying field algebra
and the asymptotic fields.

1. Introduction

In this paper we establish the existence of collision states for massless Fermions
in the framework of local relativistic quantum theory. It is amazing that a proof
of this fact has not appeared before now - more than ten years after Haag and
Ruelle developed their famous collision theory for massive particles [1,2].
But it might be that their intuitively appealing ideas have turned away the atten-
tion of the experts from the simple facts allowing the construction also in the
massless case.

The methods of Haag and Ruelle are based on two essential features of massive
theories: absence of long-range forces and existence of almost local operators
which create one-particle states from the vacuum. These facts make it possible
to construct the spaces of incoming and outgoing collision states and to establish
their Fock structure1. Only in a second step can one then define the asymptotic
fields of the particles. But in order to be sure that they act as operators on the whole
Hubert space of states, one needs the additional assumption of asymptotic
completeness of the theory.

It is very unlikely that this technique can successfully be carried over to the
massless case. Therefore, we apply a completely different method which takes
special care of the peculiar kinematics of massless particles. A basic ingredient
of our proofs is the trivial fact that these particles move with the speed of light.
So they have - loosely speaking - one degree of freedom less in configuration
space than their massive counterparts. Imagine, for example, a massless particle
which sits at the tip of a light cone in Minkowski space. This particle can never
reach interior points of the cone. In fact all interior points of the cone become
ultimately space-like to the position of the particle at asymptotic times. This
naive picture may be carried over to quantum theory if the number of space
dimensions is odd. It is nothing else but the Huyghens principle [5].

* On leave of absence from II. Institut fiir Theoretische Physik, Universitat Hamburg.
1 Hepp [3] and Herbst [4] observed that actually only one of the above-mentioned properties

is needed for a proof.
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Using extensively this fact and microcausality, it is possible to construct
directly the asymptotic field operators for the incoming and outgoing massless
Fermions. These operators turn out to be bounded as a consequence of the Pauli
principle and they have all the properties expected from a free field. They can
therefore be used to construct in a canonical way the Fock spaces of the incoming
and outgoing collision states.

The restriction to the case of massless Fermions has two reasons. The first
is a purely technical one, stemming from the fact that in the Bose case the asymp-
totic field operators are unbounded. The difficulties connected with this are
probably removable2. On the other hand, we start from the assumption that single
particle states of the massless particles can be sharply defined. If the only massless
particles in the theory are Fermions then one may expect, due to the Pauli prin-
ciple, that no infinite numbers of them are produced in collisions and hence that all
particles in the theory correspond to single particle states with precise mass.
There should be no problems with infra particles. One then will have a usual
collision theory and the present study shows how to construct the asymptotic
fields and collision states for the massless Fermions. In the case of massless Bosons
one may still hope to construct these quantities in the vacuum sector by the same
method, but the infrared problem in other sectors remains and is not touched
upon by this study.

Let us now briefly list our assumptions. Since we want to avoid all unnecessary
complications, we shall formulate the postulates in terms of the field algebra 5
instead of the field operators themselves, g is assumed to be the global algebra
of a net 0->3r(0) of local algebras (attached to the open, bounded regions Θ ClR4)
and to act irreducibly on the Hubert space 3tf of physical states3. In order to
distinguish between Bose and Fermi operators, it is convenient to assume that
there exists an automorphism y of $ which acts like the identity on Bose operators
and which changes the sign of Fermi operators, hence y2 = ι. Each F e %(Θ) can
then be decomposed into a Bose part F+ e %(Θ) and a Fermi part F_ e $(&):

F ± = | ( F ± 7 ( F ) ) . (0

We suppose that these operators have the usual commutation relations at space-
like distances:

F+F_-F_F+=0 F e g ^ ) , Fe%ψ2) Θ.CΘ^. (2)

F_ F_ + F_ F_ = {F_, F_ } = 0

We furthermore assume that ffl carries a continuous unitary representation
L-*U(L) of the covering group of the Poincare group 0>. The operators U(L)
induce automorphisms of the field algebra g

(3)
2 As a matter of fact it turns out that the asymptotic fields exist in the Bose case as closable un-

bounded operators. With some technical assumptions on their extensions, one could easily prove that
these operators are free fields.

3 The reader who is not familiar with this approach may regard g(0) as a set of bounded operators
which are generated by the field operators localized in Θ.



Massless Fermions 271

which leave the Bose and Fermi part of g invariant

U(L)^±U(L)-1 = %±. (4)

There is (up to a phase) exactly one unit vector Ω in 3Ί?9 the vacuum, which is
invariant under U(L), LeέP. The spectrum of the generators of the translations
x-> l/(x) is contained in the forward light cone and there is a subspace JfΊ C ffl on
which the U(L) did like a representation of 0> with mass m = 0. ̂  is the subspace
of massless one-particle states and we suppose that it exclusively contains Fermions
it is thus orthogonal to [ g + Ω].

2. The Asymptotic Fields and the Collision States

In order to establish the existence of asymptotic fields for massless Fermions
we proceed in three steps. First we define certain sequences of operators which
are suitable candidates for an approximation of the asymptotic fields. Then we
show that these sequences are uniformly bounded and strongly convergent.
Finally we prove that the limit operators are indeed free fields with all the required
properties.

To begin with let us briefly repeat some simple facts about solutions of the
wave equation [6]. It is well known that these functions can be represented as
follows:

/(t|x) = (2π)-3'2JdVpx(e'11'" /+(p) + e-""' f-(p)) (5a)

We are mainly interested in solutions which have compact support in R 3 at finite
times t and require

f±(p) = fi(p)±i\p\f2(p) with f1(x\f2(x)s^(JR3). (5b)

If /i(jc) and f2(x) have compact support in 0 CIR3, it follows from the Huyghens
principle that f(t\x) has support in {O + |ί| n: |n| = 1} and this is again a compact
set. The above ansatz also guarantees that the functions f±(x) are absolutely
integrable.

Now let ψ e 5_ be a local Fermi operator such that x-^ψ(x) = U(x)ψ U(x)~1

is twice norm-continuously differentiable with respect to x = (t, x). (Such operators
exist and can easily be constructed by smearing any local Fermi operator with
a suitable test function.) We then define, with f(t\x) as above and ̂ ( ^ e l 1 ^ 3 ) ,

Ψf(t) = (2πΓ3/2μ3xf(t\x)ψ(t,x) and Ψg = (2πΓ3/2 $d3xg(x)xp(x). (6)

Since we want to use ψf (t) for the construction of the asymptotic fields, we require
that ψf_ Ω has a non-vanishing component in Jf^, the space of massless one-
particle states. This is again no restrictive assumption. In fact the set 5£γ of vectors
PίΨf Ω (where Pί denotes the projection onto J ^ and ψ,f- are, respectively,
operators and functions as above) is dense in Jf\ as a consequence of the irre-
ducibility of g. We want also to point out that S£γ is invariant under Poincare
transformations.

To conclude this list of definitions, let us denote the set of non-negative
functions he^(R1), which are normalized according to $dth{t)= 1 by ^(IR 1 ) .
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In the course of our analysis we shall integrate t-^>ψf(t) with such functions:

) = ldth(t)ψf(ή, he&φ}). (7)

The following lemma is then a simple consequence of the commutation properties
of Fermi fields at space-like distances and the fact that the integration with func-
tions h e ^ ( R 1 ) is a completely positive mapping from the set of operator-valued
functions into the set of operators on J^.

Lemma 1. For φ, f and h as above, we have

0^{ψf(h)*,ψf(h)}^c-(\\f+\\2+\\f_\\2).

The constant c in this inequality neither depends on f nor on h. \\f±\\2 stands for

μ3χ\f±(χ)\2.

Proof. Since h is a non-negative function, it is obvious that the operator

is non-negative for arbitrary t and t\ One gets, therefore, after integration, bearing
in mind that $dth(t)= 1,

In the same way one shows

0 S Ψf(h)xpf(h)* g μth(t)ψf(t)ψf(t)*

and this gives altogether

0 ^ {t/v(/z)*, xpf(h)} S idth(t) ||{ψf(t)*9 Ψf(t)}\\.

Now one can exploit the fact that local Fermi operators anti-commute at space-like
distances. Taking into account that 2\f(t\x)f(t\y)\<z\f(t\x)\2 + \f(t\y)\2, one
checks easily that

\\{ψf(tr,ψf(t)}\\SSd3x\f(t\x)\2Ίd3z\\{ψ^ψ(z)}\\

and since ||{φ*,φ(z)}|| has compact support in z and J J 3 x | / ( ί | JC)|2 ^ 2 ( | | / + | | 2

+ ||/_ | |2), the statement of the lemma follows. •
Let us next consider sequences of functions hτe ^ ( R 1 ) . If h is any element

of ^(IR 1) we define

hT{t)=\T\-*h(\T\-*{t-T))9 T + 0, 0 < ε < l . (8)

hτ is obviously again an element of ̂ (IR 1). The support of hτ increases for large T
like \T\ε and the distance of the support from the origin like \T\ since ε< 1. The
Fourier transform of hτ has the form

hτ(λ) = (2π)" ί/2μteίλthτ(t) = eiλτh(\T\ελ). (9)

It thus converges pointwise in the limit | T\ -> oo to 0 for λ φ 0 and to (2π)~1/2 for
λ = 0. We need hτ to define the approximating sequences ψf{hτ) of the asymp-
totic fields. The next lemma tells us that ψf(hτ) converges strongly in the limit
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of large Tif applied to the vacuum vector Ω. For the proof we use standard measure
theoretic arguments.

Lemma 2. Let ψ,f, and hτ be as above. Then

s-lim ψf(hτ)Ω = P1 ψf_Ω e ^ .
T-*• i oo

Proof. Because of the translation invariance of Ω one gets

ψf(t)Ω = ei(H+lPlΓtψf+ Ω + eiiH-Wrtψf Ω,

where H denotes the Hamiltonian and P the momentum operator. The operators
(H ± \P\) are self-adjoint with the states of finite energy as a core and we shall
show in the Appendix that the discrete spectrum of both operators consists only
of the single point 0. The eigenspaces of (H ± \P\) corresponding to this point
are {c Ω} and {c Ω}®J^ί9 respectively. Both operators are non-negative and
have therefore the spectral decompositions

\P\)=0'Po+] λE+{dλ)
o

Po projects onto Ω, Pί onto Jf̂  and the projection valued measures E±(dλ) are
continuous (yet not necessarily absolutely continuous). Using these representa-
tions, Eq. (9), and the fact that (Ω, ψΩ) = 0, one arrives at

ψj> (hτ)Ω — Pt ψf_Ω

00 00

= (2π)1 / 2 j eiλτh(\T\ελ)E+(dλ)ψf+ Ω +(2π) 1 / 2 f eiλTh(\T\ελ)E-(dλ)ψf_ Ω.
0 0

The right-hand side of this equation tends strongly to 0 in the limit of large T
because

00 OO

||(2π)1/2 ί eiλTh(\πλ)E±(dλ)Ψf±Ω\\2 = 2π J \h(\πλ)\2(ψf±Ω,E+(dλ)Ψf±Ω)
o o

|T|-*/2

^ J (Ψf±Ω,E+(dλ)ψf±Ω)+ sup 2π\h(λ)\2-\\ψf±Ω\\2

0 λ>\T\εl2

and this finishes the proof of the lemma. •
After having established the convergence of ψf (hτ) on the vacuum, it is now

fairly simple to prove that ψf(hτ) converges strongly itself. To abbreviate the
argument we introduce some geometrical notions: we call the open cone of all
points which have a positive time-like distance from a given compact region
0CR 4 the future tangent of &. The past tangent of Θ is defined analogously.
Assume now that ψf(t) is localized in Θ for small t. As a consequence of the support
properties of/(ί | JC) and hτ(t\ ψf(hτ) is then localized in a region which is space-like
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separated from any given compact set in the future tangent of 0 for sufficiently
large positive T. Because of the commutation relations of local operators at
space-like distances, there exists therefore a natural domain for lim ψf(hτ):

T-* oo

the set of vectors FΩ which are created from the vacuum Ω by operators F localized
in the future tangent of Θ.

Lemma 3. Let ψ, f and hτ be as above. Then
a) s-limψf(hτ) = ψ}ut exists and \\ψ°f

ut\\ < oo.
T-* oo

// ψ, /, and hτ vary within the above restrictions ψ™1 is uniquely determined by the
one-particle state which it creates from the vacuum.

b) For all F± localized in the future tangent of Θ the equations

hold. If ψf (t) is localized in 3 for small t then we have also

ψ}utψ}ui(x) + ψfι(x)ψ}ut = 0

provided 3 + x lies in the future or past tangent of Θ.

c) ψ}ut(x) is a solution of the wave equation: Πxty>/ut(x) = 0.4

Proof
a) Since ψf(hτ) is uniformly bounded in T (Lemma 1) it suffices to establish

the strong convergence on a dense set of vectors. We shall show in the Appendix
that the set of all FΩ, F being localized in the future tangent of Θ9 is dense in Jf5.
If one decomposes F into its Bose and Fermi parts and takes into account the
preceding remarks as well as Lemma 2, one gets

s-limψf(hτ) (F+ + F_)Ω = s-lim (F+-F-) ψf(hτ)Ω = (F+-F_) Pxψf_ Ω.
T—»oo T —* oo

Therefore ψ0/1 exists and is bounded as a limit of uniformly bounded operators.
Assume now that there is another operator ψfut which creates the same one-
particle state out of the vacuum as ψ™1. If ψ}ut(ή is for small t localized in 3 one
concludes that for all F localized in the future tangent of &\JΘ

(V$ut - ψ}ut)' FΩ = sr-lim (ψf(hτ) - φf(hτ)) (F+ + F_)Ω

- F_) - (Ψf(hτ) - ψf(hτ))Ω = 0

and this proves ψ}ut = ψf\
b) The first part of the statement needs no further explanation. The second

part is a simple consequence of the first one, if one realizes that ψf\x) can be
approximated by operators F_ localized in the future tangent of Θ whenever
3 + x is a subset of this cone.

c) The operator ]Z\xψψ\x) is bounded, since ψ(x) is two times continuously
differentiate with respect to x. It annihilates the vacuum and therefore all states
FΩ with F localized in the future tangent of Θ + x. •

4 This and the subsequent propositions have been formulated for the out-operators. It needs no
extra explanation that they hold in an analogous manner if out is replaced by in.

5 This has to be verified since we did not assume the Reeh-Schlieder property for the vacuum.
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Since the operators \pψx are uniquely determined by the one-particle states
Jδf! which they create from the vacuum, it is evident that the above construction
of ψfUt does not depend on a special Lorentz frame. Moreover, the set of all \pψι

is invariant under Poincare transformations. In the next lemma we shall show
that the anticommutator of any two such operators is a onumber. For the proof
we use a (slightly modified) argument due to Pohlmeyer [7].

Lemma 4. Let ψjut and ψψ1 be two operators with properties specified in the pre-
ceding lemma. Then

Proof. Since {ψ}u\ ψf1} commutes with all operators F localized in the future
tangent of ΘuΘ is suffices to show that

{xp°/\ψft}Ω = cΏ.

Now take any vector Φ which has in momentum space compact support Kφ in the
interior of the forward light cone and consider the function

Since ψ°f

ut(x) and <pf\y) are solutions of the wave equation and because of the
restrictions on the energy-momentum spectrum of Φ, the Fourier transform
Fφ(p, q) has support (in the sense of distributions) in the compact set

and therefore Fφ(x, y) is an entire function. It follows from part (b) of Lemma 3
that Fφ(x, y) vanishes in an open set of 1R8 and thus it vanishes for all x, y. Hence
{ψ°/\ ψ°fut}Ω can only be a superposition of Ω and massless one-particle states.
Yet the one-particle component of this vector must be zero since {ψ}u\ ψ/ut} is
a Bose operator and there are - by assumption - only massless Fermions in the
model. •

Although it is not necessary for the construction of the collision states, it is
worth mentioning that the set of operators ψ°f

uX possesses a local structure which
one may call asymptotic locality following Landau [8], who introduced this
notion in the massive case.

Lemma 5. If ψf{t) and ψf(i) are for small t localized in two space-like separated
double cones Θ and Θ respectively, then

Proof If follows from Eq. (5) and the fact that the Hamiltonian H acts like \P\
on « î that

Pλψf_ Ω = PX(Ψfl - i\H, ΨfJ)Ω =P,F_Ω

where F_= ψfl — i[H, ψfj is a Fermi operator localized in Θ. In the same way
one shows

Px ψf_ Ω = P, (ψfi - i[ir, ψfJ)Ω = Pj.Ω
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and F _ is localized in 0. If one applies the techniques of the Jost-Lehmann-Dyson

representation to (Ω, {F_(x\ F_}Ω) one can conclude that

(Ω, F_ P(m = 0) F_ Ω) + (Ω, F _ P(m = 0) F_ Ω) = 0

where P(m = 0) = Po + P1 denotes the projection onto the zero mass states [8,9].
From this relation, Lemma 4 and the fact that

(Ω, {\p}u\ ψ}ut}Ω) = (Ω, F_ P(m = 0)F_Ω) + (Ω, F_P(m = 0)F_Ω)

the statement then follows. •
We are now in a position to construct the collision states for the massless

Fermions with the help of the operators ψ°f

ui. Since these operators have all the
properties of a (smeared) free field, we can proceed as in the free field case. First
we define the creation part (ψ°f

ui)i+) of ψψ\ For this purpose we take a uniformly
bounded sequence of functions hn(p) e £§(IR4) which are zero in the half space of
negative energy po^0 and which converge uniformly to 1 on each compact
subset of the half space of positive energy p0 > 0. Then we integrate ψ°f

ut with these
functions

wγ\hn) = (2πΓ2f Λ

Applying Lemma 4 we get

Wψf^K-hJW S\\ψo

f

ut(hn-hJΩ\\

and from this inequality and the properties of the functions hn the existence of the
uniform limit

(ψo

f

ut)(+)= lim^u t(/zM) (10)
J n->oo J

follows at once. In the same way one establishes the existence of the destruction

(tpout)(-) = lim ψTiK) = (ψ°f

ut*)i + )* . (11)
J n->oo J J

It is clear that the operators (t/^u t) ( ± ) do not depend on the special choice of the
sequence hn within the above restrictions. Bearing in mind that ψjui(x) is a solution
of the wave equation and therefore has in momentum space its support on the
forward and backward light cone, one can also easily verify that

U(L)(ψ°/ty±)U(L)-1 = (U(L)ψftU(L)-J±)

9 Le0>. (12)

Finally it follows from Lemma 4 that the operators (ψ°f

ut){±) have the commutation
relations

{(vD(+), (vΓ)(+)>= {«)(~}> W ( - } } = o

Now let φ°u t,..., ψ°n

ut be n operators of type ψ™1 which create one-particle states
Φu ..., Φne5£γ from the vacuum. We define the outgoing collision states of these
particles by

The following main theorem is then a simple consequence of the algebraic pro-

perties of (ψΓ) ( ± ) and (ψluty-)Ω = 0.
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out out

Theorem. The states Φ 1 x x Φ n have the properties:
out out out out

a) Φ j X x Φn = σPΦp{1) x ». x Φ p ( π ) J w/zm? P = (p(l) , . . . , jp(n)) is any per-

mutation of the numbers (1,..., ή) and σP= ±ί if P is an even or odd permutation,
respectively.

b) U(L) (Φi °x °x Φn) = (Ux mΦj** ' °x (^i WΦB), Le0> anally (L) denotes
the representation of the Poincare transformations in fflγ.

out out out out

C) (Φ± X ... X Φ m , Φ\ X - . X Φn)=δmn * Σ σ F ( Φ l ' Φp(l)) ( Φ ^ Φp(n)) ^ d t h e S u m

P

extends over all permutations P of the numbers (1,..., ή).

The theorem implies that the Hubert space Jfout, which is generated by
out out

Φx x xΦn,nG N and Ω is a Fock space over the one-particle space Jfλ of massless
out out

Fermions. Thus the vectors Φx x •• x Φn can be interpreted as outgoing configura-
tions of non-interacting particles Φ l 5 . . . ,Φ n and this allows the usual definition
and interpretation of an S-matrix for the massless Fermions.

3. Concluding Remarks

The Huyghens principle is not only responsible for the existence of collision
states in the massless case, but it reflects itself also in some geometrical relations
between the basic net g and the net of the asymptotic fields. To illustrate this fact
we construct the asymptotic algebra go u t which is generated by the free fields
ψγ\ Let ψf(t) be any operator which is for small t localized in some double cone
Θγ and put

φ° u t = s-lim

We denote by $o u t($i) the von Neumann algebra which is generated by all such
operators ψ°f

ut. For arbitrary bounded regions we define goυt($) as the von Neu-
mann algebra which is generated by the algebras gout($i)> 01c0. go u t is then the
global algebra of all gout(0). It can easily be checked using the results of the
preceding section that Θ->^OU\Θ) is a local, covariant net with all the properties
usually required from a field algebra.

It follows now from part (b) of Lemma 3 that for all F o u t e %out(Θ) and arbitrary
F e g which are localized in the future tangent of Θ the following remarkable
commutation relations hold:

[ ί T t , F + ] = [ F ΐ t , F _ ] = 0

[F°_ut, F'+ ] = {F°_ut, F'_} = 0 .

These relations are the field theoretic version of Huyghens principle. They say,
for example, that the influence coming from an asymptotic field F o u t e gout(0) does
not disturb any measurement in the future tangent of Θ. Analogously a field
F i n G S1Π($) cannot be disturbed by any measurements in the past tangent of Θ.

One might get the idea that in a model describing exclusively massless particles
relation (15) should also hold for all F localized in the past tangent of Θ. (This
would be, for example, the case if the commutation relations (2) for the basic net g
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hold for space-like and time-like separated regions Θx and Θ2) But this would
imply that

KΨT - ψfi n]=«v>r - v>/)> ί1'-}=o
for ψ°f

ut e go u t(0), φ}n e g i n(0) and arbitrary F localized in the past tangent of 0.
Since (φ}ut — \p{f)Ω = 0, one could then conclude that xp™1 = \pf. Hence there would
be no scattering in the model.

Appendix

Here we give the proofs of two statements which were made in Section 2.
First we calculate the point spectrum of the operators (H ± \P\). As one expects
from the continuity of the Poincare transformations, the only possible eigenvalue
of both operators is 0.

Lemma. The discrete spectrum of the self-adjoint operators (H ± \P\) which act
like (H ± \P\) on the states of finite energy consists of the single point 0. The cor-
responding eigen spaces are {c Ω} and {c Ω}ξ& Jf1? respectively.

Proof Let Φ be an eigenstate of (H + \P\). Since (H + \P\)~ commutes with the
spectral projections of (H, P\ one may assume that Φ is a state of finite energy,
hence (H + \P\)Φ = EΦ. If one multiplies this equation by (H — \P\) one gets
(with M2 = H2- \P\2)

M2Φ = E(H - \P\)Φ = E(2H - E)Φ .

Now let A be a Lorentz boost in the A -direction and ΦΛ= U(A)Φ. If follows from
the preceding equation that

\A\2)ί/2Ή-2(AP)-E)ΦΛ

and this gives for the scalar product with Φ

E (Φ,(2H - E)ΦΛ) = E' (Φ, (2(1 + M l 2 ) 1 ' 2 H -2(AP)- E)ΦΛ).

For E Φ 0 one gets therefore

((1 + \A\2Y'2 - 1) (Φ, HΦΛ) = (Φ, (AP)ΦΛ).

If one now puts A = λ n and takes into account the continuity of ΦΛ in λ it follows
from this equation (after dividing by λ and going to the limit /l->0) that

( Φ , ( Λ P ) Φ ) = 0 .

The same equation holds if Φ is replaced by E(A)Φ, where A is any Borel subset of
the spectrum of (//, P) and E(A) is the projection onto the corresponding subspace
of Jf, Consequently, Φ = c Ω and this implies Φ = 0 because of E Φ 0. Therefore
the only eigenvalue of (H + \P\) is 0 and it is then obvious that {c Ω} is the cor-
responding eigenspace. The statement for (H - \P\) can be verified in the same
way. •

In the second lemma of this Appendix, we shall show that the set of vectors
FΩ, F localized in the future tangent (or past tangent) of a compact set Θ, is dense

. For the proof we exploit only the spectrum condition and the transformation



Massless Fermions 279

properties of the net g under translations. Hence the statement is also true in
models where the vacuum does not have the Reeh-Schlieder property.

Lemma. The vectors FΩ, F localized in the future tangent ofΘ are dense in Jf.

Proof. Let G be any local operator and Φ be any vector. As a consequence of the
spectrum condition, the function x-»(Φ, G(x)Ω) is analytic in the forward tube and
thus cannot vanish in an open set of R4 unless it vanishes for all x. Since the
vectors GΩ, G local form a dense set in Jf, and since every local operator G can
be shifted by a time-like transformation into the future tangent of Θ, it is obvious
that there does not exist any vector Φ Φ 0 which is orthogonal to all FΩ, F localized
in the future tangent of Θ. •
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