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Abstract. It is shown that every continuous representation of a nuclear and separable *-algebra
on a separable Hubert space has a certain integral decomposition into representations with a trivial
weak commutant. This result is used to obtain a decomposition of Wightman functionals into
extremal states.

An example is given of an extremal Wightman functional which does not have the cluster property.

1. Introduction

This paper deals with integral decompositions of representations and states
on the algebra of test functions for quantum fields [1-3]. In comparison with the
reduction theory for C*- and v. Neumann algebras one has to face some new
problems. To begin with, the positive cone in the dual space of the algebra in
question does not have a compact base, so the usual integral representation
theory on compact convex sets [4] does not apply. Although it is possible to
use the theory of conical measures [4, 5] it is not at all clear whether a maximal
conical measure is concentrated on the extremal rays in the dual cone in some
sense. Therefore, it seems more promising for a decomposition of a state into
extremal states to look at the corresponding representation and decompose with
respect to an abelian algebra in the commutant. This is in principle the method
we shall use, but there is, however, an essential complication. The operators we
have to deal with are in general unbounded, so one has to distinguish between
two notions of commutativity, strong and weak. For the decomposition into
extremal states, the weak commutant is relevant, because a state is extremal if
and only if it defines a representation with a trivial weak commutant. However,
unlike the strong commutant, the weak commutant is in general not an algebra,
and a decomposition with respect to a maximal abelian algebra in the weak
commutant will mostly not result in a decomposition into extremal states. A
simple example where this problem occurs is the case of one Hermitean operator
with a nonsymmetrical defect index. The solution is well known (see e.g. [6],
Appendix I). One considers a self adjoint extension of the operator in a larger
Hubert space and decomposes this extended operator. Our program is to do a
similar thing for families of unbounded operators.

Whereas the existence of a suitable extension for one operator is a rather
simple matter [6], the main problem we have to solve is to construct such an
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extension for a whole family of operators. This will be done in the next section.
Once we have obtained this result (Theorem 2.16), we apply methods analogous
to those of Maurin [7] to get an integral decomposition. Apart from separability
assumptions, essentially the only new ingredient needed is a nuclear topology on the
domain of the operators. We show in particular, that every state on a nuclear,
separable and barrelled *-algebra can be decomposed into extremal states.
In the last section we discuss the implications for Wightman field theory. We
consider also the question whether extremal Wightman states do always have
the cluster property and find the answer to be negative.

The problem of obtaining an integral decomposition of Wightman states
has been treated by Maurin [7, 8] and for the P(Φ)2-model by Bratteli [9]. In [7, 8]
the states are decomposed with respect to a maximal abelian algebra in the weak
commutant. The spectral theorem for nuclear spaces ensures that the states
appearing in the decomposition consist of tempered distributions if this is the
case for the original state. As already mentioned, such a decomposition is not
necessarily a decomposition into extremal states, but in the cases where strong
and weak commutant coincide, this will be so. In particular one could apply this
theory to the P(Φ)2-model. The results in [9] are obtained with different methods
and give more detailed information for this particular case.

2. Extension Theory

This section is concerned with families of unbounded operators on Hubert
spaces and their commutants. The main result is Theorem 2.16, which provides
the basis for the decomposition theory in the next section.

2.1. Definition. A ^-operator family is defined as a pair ( J / , 2) with the follow-
ing properties.

(1) 2) is a pre-Hilbert space with completion J f (2).
(ii) $t is a family of linear operators defined on 2 with values in $P(β\

subject to the condition that for every Aestf there is an A* e stf such that <<p, Aψ}
= <^4*φ,ψ> for all φ,ψe2.

2.2. Remarks. (1) From the last assumption it follows that every Ae s4 is a
closable operator on 34? (2).

(2) It is not assumed at this point that 2 is complete in any topology, in par-
ticular not in the topology induced by the graph norms of the operators Aes4.

The concept of an extension, well known for one operator, generalizes to a
family of operators as follows:

2.3. Definition. A *-operator family (s/, 2) will be called an extension of
(jtf,0)if

(i) 2^2 and the norm defined on 2 coincides on 2 with the norm on 2.
(ii) There is a bijective mapping A\->A from s4 onto J / , preserving all

algebraic operations and the involution *, such that the restriction A\2 is equal
to A for all Aesf.

2.4. Remarks. (1) By this definition of an extension the Hubert spaces
and ffl(β) do not necessarily coincide, but since 2c2, the Hubert space
is naturally imbedded as a closed subspace of
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(2) We can always obtain an extension by completing 3) in the topology
induced by the graph norms of the operators in si. (If 3) is not already complete
in this topology.) If we denote this extension by ( J / , §), then clearly 2/e{β) = 2tfiβ).
This estension, however, is only of limited interest except as a technical device
for proofs. We shall refer to it as the closure of (si, 3)).

Since we have in general to deal with unbounded operators we must distinguish
between the strong and the weak commutant of an operator family.

2.5. Definition. (1) (si, 3>)'w denotes the set of all bounded linear operators b
acting on 3tf(3ϊ) with the property

for all φ, ψ e 3), A e si.
(2) (si, 3i)'s denotes the set of all bounded linear operators b on ffliβ) such that
(i) b® C 3).

(ii) For every A e si and φ e 3) we have bAφ = Abφ.
(3) (si, 3))f

s resp. (si, £&)'w is called the strong resp. weak commutant of (si, 3)).
The properties of these sets are listed in the following.

2.6. Lemma, (i) (si, 3)'w is a weakly closed linear subspace of the bounded
operators on J4f(3) containing the unit operator 1.

(ii) (si, 3>)'w is ^-invariant.
(iii) (si, 3)'w is the linear span of its positive elements.
(iv) (si,9)'w = (^,3)'^
(v) (si, 3)\ is an algebra.

(vi) (si, 3)'s is weakly closed.
(vii) {s/,®γsc(s/,@)'w.

Proof. The statements (i), (iv), (v), and (vii) are more or less trivial, (ii): si is
invariant under the operation of taking adjoints and restricting to 3. Therefore,
if b e (si, 3)'w, Aesi and φ,ψe3, we have

(b*φ, Aψ) = (b*φ9 (A*)* ψ) = <A*φ, bψ) = (A*φ, b**ψ) ,

sob*e(si,9)'w.
(iii) From (ii) it follows that (si, 2)'w is generated by its Hermitean elements.

Moreover, if b = b*e (si, 9)'w, we have \\b\\-\±be(si,@)'w, ||ft|| l ± 6 ^ 0
and b = ̂ (\\b\\ - ί+b)-%(\\b\\ ί-b), so (si, ®\ is also the linear span of its
positive elements.

(vi): Suppose {foα} is a net in (si, 2f)'s converging weakly to a bounded operator
b. If Aesi and φ e ^ w e have baAφ = Abaφ, so (baφ, baAφ) belongs to the graph
of A. If bα->b, this converges weakly to (bφ, bAφ). For linear subsets strong and
weak closure are identical, so (bφ, bAφ) is in the graph of the closure of A which
proves the statement.

2.7. Remarks. (1) (si,S>)'w is in general not an algebra, cf. [10], Lemma 3.2.
(2) (si, 2)'s is in general not a *-algebra, even not when (si, 3))'s is weakly closed.
(3) If the family (si, 3)) is self-adjoint in the sense of [10] (i.e. if 3) equals the
intersection of the domains of all adjoints of the operators in si) then we have
(si,3ί)y) — (sί,3)\. (Cf. [10], Lemmas 4.5 and 4.6.) In general the strong com-
mutant is much smaller than the weak commutant as we shall see in a moment.
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In order to motivate the considerations to follow let us take a look at a con-

crete example. Suppose si contains only one operator A = i -j— and the domain is

2={feL2([0, oo[) |/ 'eL 2([0, oo[),/(0) = 0} (scalar product defined by Lebes-
gue's measure). A is a closed Hermitean operator with defect index (0, 1). It is
easily seen that the strong commutan^of ({A}, 2) is trivial. However, A has many
self-adjoint extensions which lead out of the Hubert space jtf (β). For instance,

we might take A = i-r- on 2 = {/eL 2 (-αo, oo)|/ 'eL 2(-oo, oo)} where 2

is identified with those functions in 2 which vanish for x ^ 0. Every such extension
has a complete spectral decomposition A = $λdEλ, which defines at least a
generalized decomposition of A (cf. [6], Appendix I). For us, the important point
is that this decomposition is associated with an abelian * -algebra in the strong
commutant of the extension (in this case the whole strong commutant). This
algebra will show up, somewhat distorted, in the weak commutant
of A, namely if b commutes strongly with A and P is the projector Jf (β)-+ ^(β\
then PbP belongs to the weak commutant of ({A}, 2). The mapping b^PbP
will only in special cases preserve the operator product, so the image will not be an
algebra. But as we are going to show, it is nevertheless possible to reverse this
procedure and construct an extension of an operator family and an abelian
algebra in the strong commutant of this extension, starting from certain subsets
of the weak commutant of the family.

Since the mapping b \-+PbP will occur repeatedly in the following we introduce
a notation for it.

2.8. Definition. Let {si, 2) be an extension of (J/, 2) and denote by P the
projector of tf{β) onto Jf(2). For any bounded operator x on tfiβ) the
expression Px\Jtf{Θ) defines a bounded operator on Jf7 {&). We denote this operator
also by ρ(x).

The following properties of ρ are easily checked.

2.9. Lemma, (i) ρ is a linear mapping.
(ii) ρ(x) <. ρ(y) ifx^y, so ρ(x*) = ρ(x)*.
(iii) ρ is weakly continuous.
(iv) Ifxe (J, @)'w then ρ(x) e (s/9 @)f

w.

The concept of an extension without further restriction is too wide for our
purposes because all possible extensions do not even form a set. Moreover, we
are only interested in extensions which are rather closely linked to the weak
commutant of the given operator family. In our construction of a suitable ex-
tension the following concepts will be relevant.

2.10. Definition. (1) A triple (j/, Jί, 2) will be called an induced extension of
(jtf,®)if ^

(i) (J/, Φ) is an extension of (s/9 9).
(ii) Jί is a commutative *-algebra containing 1 and M C{sd,Sι)'s.

(iii) 2 is the linear span of M2.
(2) An induced extension {si, M, 2) of (J/, 2) will be called regular, if the

map ρ is one-to-one, when restricted to (s/,^,2)'w : = (<$/, 2)'wn<s£\ i.e.
x e (,$/, J£, 3))r

w and ρ(x) = 0 implies x = 0.

More correctly: its Hermitean part.
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(3) Let s£\l J( denote the linear hull of sivJίvjJί si. We define an order
relation (transitive and reflexive) among the induced extensions of (si, 2) as
follows:

JJά
if there is a subalgebra Jί C Jί9 such that

(J\l M, Jf9 J ) is an induced extension of (si V M, 9).

Before we consider the existence of regular induced extensions we want to show
that these concepts have reasonable properties.

2.11. Lemma, (i) // (si,M,2)) is an induced extension of (si,2)) and B is a
bounded operator in si, then the equality \\B\\ = \\B\\ holds.

(ii) Let (si, M, 2) be an induced extension. Then the weak closure Jί~ of' Jί
defines an induced extension (si~,M~,2'~)~>(si,Jί, 2). If (si,Jί,2) is regular
this extension is also regular.

(iii) Suppose (si, Jί, 2) is a regular induced extension of (si, 2), and (si '

JSf, 2) a regular induced extension of(JN ji, Φ). Then (J/, ^Γ, Sf) wίthJ^

is a regular induced extension of (s/9 &) and (si, M9 ώ) < {si, Jί, 3ϊ).

(iv) Every lίnearily ordered (Definition 2.10 (m)) family of regular induced ex-
tensions of (jrf, 2)) is majorized by a regular induced extension.

Proof, (i) We show that B ^ 0 implies B ^ 0 for a bounded operator Besrf.
This means that upper and lower bounds are conserved by the extension which
is sufficient for equality of the operator norms for Hermitean operators. Every

n

vector in § has the form £ m^t with m, e ^ and φt e®. Since M commutes

strongly with si and si\<3) — si, we have for all B e si :

where P is the projector 2tfiβ)^>#f{β). If B is bounded, it has a continuous
extension to 3tf{β) which commutes strongly with P(mfmj) P because B commutes
weakly with this operator on Θ. Therefore, if B ^ 0. B^ commutes strongly with
P(mf raj) P and

i, P(mfmj) PBψj} = [£ m^φξ ^ 0

It follows that the norm is preserved for B bounded and Hermitean. For
general bounded B we have then at least that B is bounded, and if we apply the
result to B*B, which has the extension B*B, we obtain ||B|| = ||B||.

(ii) The weak closure M~ commutes strongly with the closures A~ of the
operators Λesi according to Lemma 2.6 (vi). Therefore, 9)~: = linear span
J4~ Q) = linear span M~ 2) is in the domain of all Λ~. The corresponding extension
{si~,Jί~,3)~) obviously majorizes (si,Jί,φ), and if ρ is one-to-one when
restricted to (si, Jί, @))'w then also on (si~, M~, Φ~)'w C (si, Jί, 2)'w.
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Λ fit A Λ

(iii) By (i) we have that all operators in Jί are bounded, so Jί = Jί V if is a

commutative *-algebra of bounded operators. M 9 and therefore Jί9 commutes

strongly with sί9 because M commutes strongly with sd, and all algebraic

relation are conserved by the extension. Hence, (sί9 M9 3)) is an induced extension

of (st9 2)). As for the regularity we note that the projector 3tf{β)-*2tf[β) factorizes

into the projectors J f ( J ) - > J f ( J ) and 3^{β)^3^{β\ Under the associated
A Λ Λ Λ Λ Λ Λ

mappings ρ, the weak commutant (J^, yK, ®)^ = (s/W Jί9 5£, 3)f

w is first mapped

into (si V j ί , ®)'w = ( J / , <Jί, ®)'w and then into (sf, 2)\. Since both mappings are

injective, (j^5 yF,^) is regular. The relation (stf, ,JV\ Θ)>-(srf, Jί, Θ) is obvious.

(iv) Let / b e a linearily ordered index set, and {(j/α, Jί*, ^ α ) } α e ^ a family of
induced extensions with (^α, ^ α , ^ α ) -< ( ^ , Jίβ

9 2)β) for α ̂  β. Define ^ = (J ^ α .

^ is in a natural way a pre-Hilbert space, because the space S)a are linearily
ordered by inclusion and the norm on Q)a C ̂  is the same as the norm induced by
2)β. Moreover, it is consistent to define the extension of an operator A e sd to Θ
by A\9a = Aa, where Aa is the extension of A to ^ α . The algebra M is defined as
follows: For every Q)a we define Jί\3<x= (J Jίβ\3)*. Every meJί maps ^ α

into some 3)β D ̂ α , so Jί leaves ^ invariant. Moreover, every m e Jί is a bounded
operator: Indeed, if w e l , then for some α we have ml@a= :m0CeJί<x, i.e. mα

is a bounded operator on ^ α . The restriction m\*3)β for j8 ̂  α is an extension of mα

because (j/α, Jia, @*)<(stfβ, Jίβ, 2β) implies in particular, that there is a sub-
algebra JίaβcJiβ such that (Jίaβ, Mβ, 9β) is an induced extension of (Jia, @a).
According to (i) an induced extension does not change the norm of an operator.
Therefore, for β^a we have that the norm oίm\Θβ is independent of β so m is a
bounded operator on Q) = [j Q)β.

It is obvious that 2 = linear span JΪ<3 and (j/,M,9)>(<%/*, Jί",@a) for
every α G «/.

It remains to show that the extension (s/9 Jί, 21) is regular if this is the case
for all (sό\M\2)% Let Po, POα and Pα denote the projectors #eiβ)-*#e{β\
2/eiβ")^>2te{β) and ^(β)^^^) respectively. Suppose xe(j/,J,@)f

w and
P o x P o = 0. Because PO^=POOLPOL and P α x P α e ( # , J α 3 X , the regularity of
(j/α, ^# α , ^ α ) implies P α x ? α = 0. Hence, if all ( j/α, Jίa, @a) are regular, the matrix
elements of x vanish for a dense set of vectors which means that x = 0. Therefore
(s/9 Jί, 2ί) is regular.

At this point we would like to outline the procedure in the remaining part of this
section and comment on the role of regularity as defined in 2.10. What we are
looking for is an induced extension (s/9 M9 2)) with the property that the weak
and the strong commutant of (sfv M9 2>) are identical and equal to Jί. For the
construction of induced extensions we use a simple device by which any element
x E (s/9 £&)'w with 0 ^ x ^ 1 can be "lifted" to an element commuting strongly
with an extension defined by x. In general it will be necessary to repeat this
construction an infinite number of times, and this means that we must appeal
to Zorn's lemma to guarantee that we shall eventually end up with some maximal
extension. We are then led to the problem of specifying a set of extensions on



On the Algebra of Field Operators 237

which Zorn's lemma can be applied. For this purpose it is natural to consider
induced extensions for which the restriction ρ\M is one-to-one, because these
extensions are essentially determined by the subsets ρ{J%)c{si,@)'w as we are
going to show presently. Having constructed any such "nice" extension {si, M, 2)
we cannot expect it to be maximal and shall usually have to proceed further

Λ Λ Λ Λ

and construct a "nice" extension of this extension, say {si V Jί, Jί, <3)). Now
the corresponding ρ will map Jί into {si, Jί, 3))'w. Therefore, in order to guarantee
that a "nice" extension of a "nice" extension defines a "nice" extension of the
original family {si, 3f), we require that the ρ corresponding to {si, Jί, S>) is one-
to-one not only on Jί but on the larger set {si, M, ώ)'w. This is the condition
of regularity. Lemma 2.11 combined with Zorn's lemma will imply the existence
of maximal regular extensions, and the remaining problem is essentially to find
out which elements of the weak commutant define regular extensions and show
that {si, Jί, 2) is maximal if and only if M = {si, Jί, Θ)'w. Before we turn to this
problem we want to establish the relation between induced extensions and the
weak commutant {si, @)'w.

2.12. Lemma. 1) Suppose {si, M, <3)) is an induced extension of {si, 2) with
the property that ρ is one-to-one when restricted to Jί. Denote by Jί the set ρ{Jί)
C {si, <3)'w and define a map Φ'.JίxJί^Jί by

φ{ml9 m2) = ρ{ρ~1{m1) ρ" 1(m2)).

Let Jί C Jί denote the set ρ{Jί + \ where M^ is the positive cone in Jί.
Then Jί, JΓ and Φ have the following properties:

(i) Jί is a self-adjoint subspace of {si, 2)'w
(ii) J f is a cone in Jί such that
(a) Jf generates Jί as a vector space.
(b) J$Γ contains the unit operator 1.
(c) IfmeJf, then there is a real number 0^λ{m)<co such that λ{m) ί—meJf.

(iii) Φ is a bilinear map Jί xJί-^Jί satisfying
(a) Φ{mλ, Φ{m2, ra3)) = Φ(Φ{mu m2), m3) = : Φ{mt, m2, m3) (associativity).
(b) Φ{mί,m2) = Φ{m2,mί) (symmetry).
(c) Φ{m,ί) = m (unit element).
(d) Φ{m, n)* = Φ{m*, n*).
(e) Φ is positive on Jf in the sense that for all me Jf and all finite collections

of mt e Jί, ψi e 2) we have

2) Conversely, let Jί, J f and Φ satisfy the conditions (i)-(iii). Then there is
an induced extension {si, M, 2f) of {si, 2) such that ρ \M is one-to-one, and

(a) Jί = ρ{J).
(b) Φ{m1,m2) = ρ{ρ-1{m1) ρ-1{m2)).

(c) JfCρ{J+).
This extension is uniquely determined by (a) and (b), up to unitary equivalence.

Moreover, if {si1,^1,®1) and {si2, Jί2, S)2) are two extensions associated with
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(Jf\ Jf \ Φ1) resp. {M2, Jf 2, Φ2), then the relation

holds if and only if Jί1 C Jί2 and Φ1 = Φ2 \Jt1 x Jί1.

Proof. 1) The first statement (i) follows from Lemma 2.9. Since ji+ generates
Ji we have also (ii) (a), and (b) follows because 1 =ρ(ί), where ί e M is the unit
operator on 2tf{β\ To verify (ii) (c) we note that ||m|| ί — m e Jt* for all m e Ji*'.
Therefore, if me jf, then \\Q~1{m)\\\-me X.

The properties (iii) (a)-(c) follow immediately from the definition of Φ. For
(iii) (d) note that ρ preserves adjoints and is one-to-one on Jt. Therefore we have
also ρ~1(m*) = ρ~1(m)* from which the assertion follows. Finally, ρ(x) = PxP
by definition, so if m e Jf we have

£<<?£, Φ(mf,m,ntj)φj}=(Σθ~1 (mi)ΨhQ'H^ΣQ'1 (mj)Ψj) = °

because ρ~x(m) e M+.
(2) Let us consider the uniqueness of the extension first. Suppose (j/ 1, Jίι,S)1)

and ( j / 2 , ^ 2 , ώ2) are two extensions with corresponding mappings ρ1 resp. ρ2

such that
(α) Qγ\Jίγ resp. ρ 2 ^ 2 is one-to-one.
08) Q]\lγ) = ς>2(l2)=:Jί.
(7) Q\Q1-\m1)'Q1-\m2)) = Q2(Q

2;\mι)'Q2-\m2))ϊov2i\\mι,m2eJί.
We define a linear operator U '.Φ1-^^2 as follows:

One checks easily that U is a well defined isometric operator which can be
extended to a unitary operator #e{9)γ)->#e{β2) and that ΌJίιU~ι=Ji2,
UΛ1 U~x = A2 for all i e ^ , and U is the identity when restricted to 2tf{β\

The reconstruction of an extension corresponding to given Ji,X, and Φ is
carried out in a more or less canonical fashion: We equip the algebraic tensor
product Jt®2tfiβ) with an inner product by defining

i®Ψh Σ nj®Ψj) = Σ <<?*' Φ(m*> nj)m i

This product is nonnegative because of condition (iii) (e).
We form the quotient space with respect to vectors of zero length and define Θ

as the image of Jί®Q). 3) can be identified with (the image of) \®Q). If
^ff i iδφJe® is a rest class corresponding to Σ m ϊ ® Φ ί E ^ ® ^ a n (^

we define
A [Σ i®φ
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This is well defined because Jί commutes weakly with A: Indeed, if [Σ m^φ^ = 0,

then we have for all n ® ψ:

= (ψ9 Σ Φ(n*, mt) Aφ\

= /A*ψ, Σ Φ(n*, md φλ = /n®A*ψ,
\ i I \

= 0 by Cauchy-Schwarz, so [Σ mί®Aφi\ = 0.

The algebra ^ is defined as follows. For meJί define

* [ Σ m i ® <Pi] = f Σ Φ ( m >

The associativity of Φ implies that m is well defined:

/n®ψ,ΣΦ(m>mi)®Ψi) = ίψ>Σ Φ(rc*>
\ i I \ i

= /φ(n*, ra)*

so if [Σ wii® ψi\ — 0, then also [Σ Φ(m, mt )® <pj\ = 0.
[i J Li J

Next we show that every m is a bounded operator. It is enough to do this for
m e Jf because the mapping m-> in is linear and Jf generates ^#. But the positivity
condition (iii) (e) yields 0 ̂  in and by (ii) (c) also 0 ̂  λ(m) ί — m, so m is a bounded
operator and can be extended to a bounded operator on Jf (^).

From the definition of m and 4̂ it is clear that m maps Si into ® and commutes
there strongly with every A. Furthermore, from the symmetry of Φ it follows that
different m's commute. The invariance of Jί under the *-operation follows from
(iii) (d). Finally, the equation m = ρ(m) follows from

<[1 ® ψ], m[l ®φY) — (\p, Φ(l, m, 1) φ} = <(φ, mφ) .
We have thus constructed an induced extension satisfying the conditions (a), (b),
and (c).

The verification of the last statement concerning different Jί\ and Φ's is
straightforward.

2.13. Lemma. Let x be an element of (srf,S))'w with O ^ x ^ l and xΦ/ll,
0<λ<ί. If Jί= {λx + μ(ί -x)\λ,μe(C}, Jf = {λx + μ(\ —x)\λ, μ^O} and Φ is
defined by

Φ(λx + μ(l — x), κx + v(l — x)) = λκx + μv(l — x),

then all the conditions of Lemma 2.12 are satisfied, and Jί is generated by 1 and a
projector e with ρ(e) = x. If moreover \\x\\ = ||1 — x|| = 1, then Ctf is identical to

Proof. The conditions (i)-(iii) are all immediately verified. By construction,
the algebra Jί is generated by ί and x =: e. Since x e J ί we have e ̂  0, and
Φ(x, x) = x implies e2 = e, so e is a Hermitean projector.

Ifλx + μ(ί-x)^0 and ||χ|| = | | l - χ | | = 1, we show that λ^O and μ^O by
taking supremum resp. infimum of <φ, (λx + μ(l — x)) φ} over all φ with \\φ\\ = 1.
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If M, Jf', Φ are as in Lemma 2.13, we shall refer to the corresponding induced
extension as the extension defined by x. The main step required for Theorem 2.16
is a characterization of those x which define a regular induced extension.

2.14. Lemma. Let x be as in Lemma 2.13. The extension defined by x is regular
if and only if x is an extremal element of the weakly compact set

Moreover, if x is extremal and x φ0, x Φ I, then we have \\x\\ = || I — x|| = I.

The proof of this result depends on

2.15. Lemma. Let x be as in Lemma 2.13, denote by ϋ^x the set

{y e (stf, @)'w I there is an ε e IR, ε Φ 0 such that — x ̂  εy ̂  x}

and define i(r

ί _ x similarily.
The extension defined by x is regular if and only if # ^ n # ^ _ x = {0}.

Proof of Lemma 2.15. Let e be the projector as in Lemma 2.13 and denote
by # the Hermitean part of (j/, M, Φ)'w = \j, Φ)f

wn {e}'. We want to show that
ψ-χ = Q(eiΦr) and HTγ -x = ρ((l - e) # ) . This will then quickly lead to the desired
result.

Suppose y e Ψ'. Since ee {si, Φ)'sn{e}' we have ey = yee # \ Therefore ρ{ey)
is Hermitean and belongs to (srf,3))'w. Moreover, because e and y commute, we
have also

-e^-^-^e and thus -x
\\\\

so ρ(ey)eifr

x. Analogously one proves ρ((l — e)y)e iV1^x. This shows that
ρ(e#) C ϋTχ and ρ((l - e) # ) C ̂  _ x .

To get the other inclusion we note that S> = linear span MQ) = e@@(ί
If w e Ψ*x we define an operator w by its matrix elements as follows:

(eφ1 +(l-e) ψl9 w(eφ2 + (t-e) ψ2)} = <eφu weφ2): = <<pl9 wφ2} .

This is well defined if we show that (φί9 wφ2} only depends on eφ1 and eφ2.
By assumption, w e iVx9 so 0 ̂  w + λx ̂  2/lx for some 2. By definition of e (cf.
Lemma2.13), we have ||eφ|| = (φ,xφ}^ for all φ. Hence, we conclude from

(φ2,(
that

i ^ \\eφ2\\

so w is a well defined bounded operator. It is obvious that w = ew and ρ(w) = w.
Similarly one shows that ρ((i — e) # ) = # ^ _x.

We can now prove, that if the extension is regular, then we have # ^ n # ^ _ x

= {0}. Indeed, assume that w e f ^ n f . ^ w φ O . Then we find elements ew1 e e #
and (1 — e) w2 e(ί — e) if with ρ{ewγ — (1 — e) w2) = w — w = 0. Since ewx and
(1 —^)w2 belong to orthogonal subspaces, we have w = ewί — (1 — e) w2 φθ,
so the extension is not regular.
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On the other hand, the matrix elements of an operator yeifr are

- e) ψ2, y(eφ2 + (1 - e) ψ2)>

= <<Pi> Q(ey) Ψi> + <V>i, ρ((l - e) y) ψ2}

ψie 3).IfΨxcλiffγ _ x - {0},thenitfollowsfromO-ρ(y) = ρ(ey) + ρ((ί -e)y)
that ρ(ey) = ρ((ί — e)y) = 0. By the formula above, this implies y = 0, so the
extension is regular.

Proof of Lemma 2.14. By definition, x is an extreme point in # ^ + if and only if
— 2~Xi ' 2~Xi>Xi ̂  " l ? i m p l i e s x ^ — x 2 — x. o e c d u s e ^ X i ~r 2̂ X2 — 2~\ ̂  — J) > 2~v-̂  • y)

with y = x — x1 = x2 — x, this can also be stated as follows: x is extreme iff x + y
and x — y e # ^ + implies y = 0. But 0 ̂  x + 3; ̂  1 and 0 ̂  x — y ̂  1 is equivalent
to —x^y^ί—x and — (1 — x):g);:gx which in turn means —x^y<.x and
- (1 - x) ̂ y S (1 - x) Thus, j ; = 0 if and only if ΊVxr\ΊVγ -x = {0}.

It remains to show that if x is extreme and xφO, 1, then we have ||x||
= II1 — x II = 1. Since clearly x is extreme, iff 1 — x is extreme, it is enough to prove
that x is extreme and x φ O implies ||x|| = 1. This follows from the formula

χ = λ-^-+(t-λ)\\x\\x

\\χ\\ — \\χ\\2

with λ = 2 , which yields a nontrivial decomposition of x if ||x|| < 1.

We are now prepared for the main result of this section.

2.16. Theorem. (1) Every regular induced extension of(s$, 2) is majorίzed by a
maximal regular induced extension.

(2) A regular induced extension (stf, Jί, 3) is maximal if and only if

(3) To every extremal element x in # ^ + there exists a maximal regular induced
extension such that x is the image under ρ of a projector in Jί.

Proof. (1) We define unitary equivalence of induced extensions in an
obvious manner, which was already implicit in Lemma 2.12 (2): Two extensions
(j/\^£\ Φ)1) and {si1, JΪ1, Φ2) are unitarily equivalent if there is a unitary operator
υ\^e(βι)^f(β2) such that υ\3tf(β) is the identity, UJ1U~1=J2 and
UAιXJ~ι =Λ2 for all Aestf. By Lemma2.12 the equivalence classes of regular
extensions form a set because they are in a one-to-one correspondence with
certain subsets of ($i> @)'w and bilinear maps on there sets. The order relation for
extensions defines in a canonical way an order relation on the set of equivalence
classes of regular extensions because of the last statement of Lemma 2.12 (2).
By Lemma 2.11 (iv), this set is inductive (and not empty, because (s^,{λ\},Q))
is a trivial extension) so the assertion follows from Zorn's lemma.

(2) Suppose (sί,Jί,3ι) is a maximal regular extension. If JU is a proper
subset of (s/, Jί, ώ)'w = (s/V Jl, $)'w, then we have also that the Hermitean part of
M is a proper subset of the Hermitean part of (j/V\M,Q)\. Therefore,
Jf : = {y e Ji\Q ̂ y ^ 1} is a proper subset of # x

+ ={ye {J\lM, ® X J O < ^ 1}.
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By Lemma 2.11 (ii) we have that M and therefore Jί^ is weakly closed.
Since JU± is moreover convex, we conclude from the Krein-Milman theorem,
applied to the convex, compact set ifγ , that there exists an extremal element
x G # i + with x φ Mi . Since Mf = Jίfn#i+', this x does not belong to Jί and by
Lemma 2.14 it defines a regular induced extension of (j/V Jί, 3). This contradicts
the maximality of (si, Jί, 3) by Lemma 2.11 (iii).

(3) By Lemma 2.14, every extremal element x defines a regular extension
(J,Jί,3) of (si, 3), such that x = ρ(e) with a projector eeJί. Let (si,J", 3)
be a maximal regular extension majorizing (si, Jί, 3). We have to show that
the extension e of e to ̂  is also a projector. Iϊnφe3 with rc e yΓ, φe3, then we
have e2nφ = ne2φ = neφ = enφ, so e2 = e and e is a projector.

3. Decomposition Theory

In this section we shall impose some further conditions on si and 3) under
which we can prove that a decomposition of the abelian algebra M will lead
to a decomposition of si. Since we want to work on a separable Hubert space we
begin with the following lemma:

3.1. Lemma. Suppose (si, 3) is such that 2tf{β) is separable. If (J,JΪ,3))
is a regular extension, then ̂ (3) is also separable.

Proof. 3 is the linear span of M3^Jέx3, where Mγ is the unit ball in M.
If Jf (3) carries the usual topology. 34f(3) the weak topology and Jiγ the weak
operator topology, then the map (m, φ)^mφ is separatly continuous Mγ x ffliβ)
-±ffl{β\ The linear span of the image of this map is dense in ffl(β). Since the
vector addition in 3tf{β) is weakly continuous and weakly dense implies strongly
dense for linear subspaces, it is sufficient to show that this image is separable.
For this we must establish the separability of Mγ. Regularity of the extension
implies that Jtγ can be represented as ρ~1(ρ^£1) with ρ as in Definition 2.9.
By Lemma 2.11 (ii) we may assume that Jt is weakly closed, so Jίx is weakly
compact. Since ρ is one-to-one when restricted to Jίγ and also weakly continuous,
it follows that ρ~x is weakly continuous ([11], p. 141). Hence, Jίx is the continuous
image of ρJίx, which is weakly separable because ffl(β) is separable.

There does not exist any general procedure for obtaining a decomposition
of a family of unbounded operators. A method which fits the applications we
have in mind is the use of the spectral theorem for nuclear spaces [7,12]. This
method was first applied to the decomposition of Wightman functionals by
Maurin [7,8].

The additional hypotheses on si and 3 are as follows:
3.2. Assumptions, (i) 3 is a separable nuclear vector space and the imbedding

3->Jf(3) is continuous.
(ii) si is a separable topological space.

(iii) The map (A, φ)^->Aφ is separately continuous si x3-+3.
Now suppose (si, M, 3) is a maximal regular extension of (si, 3). Jί is

an abelian v. Neumann algebra on a separable Hubert space #?{β) according
to Lemmas 2.11 (ii) and 3.1. By the usual spectral theorem [13] there is an integral
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decomposition of #P(β)\

with a finite positive Borel measure dμ on a locally compact space A (we can even
take A to be the real line), such that M consists of all bounded diagonal operators
with respect to this decomposition. The vectors in ffliβ) are represented by
(equivalence classes of) measurable fields of vectors λy->φλe3tfλ. Whenever
convenient we shall denote the vector corresponding to such a field by

®

φ = J φλdμλ .

3.3. Theorem. Let (stf, 3)) satisfy assumptions 3.2, let (si, Jί, @ι) be a maximal
regular extension and

the corresponding decomposition of
We have the following decomposition of the operator families (s4,<3)) and

(s/,@):
(i) For every λeA there is a linear mapping Eλ\2-> fflλ such that
(a) 3)λ: = EλQ) with the final topology is a nuclear space, continuously imbedded

in Jfχ and dense in J^λ for almost all λ.
(b) For all φeQ), λ\->Eλφ is a measurable field of vectors with

Θ

φ= J Eλφdμλ.
A

(ii) For every λe A there is a mapping A^Aλof srf into linear operators on 3)λ

such that
(a) For almost all λ we have Eλ(Aφ) = AλEλφ for all Aesrf and φe@, and

therefore
Θ

Aφ= j AλEλφdμλ
A

for Aesrf,φeQ).
(b) The mapping A-+Aλ preserves all algebraic relations and the involution.
(c) // we equip the set s4λ of all Aλ with the final topology relative to the map

A^Aλ, then those of the operations in (b) which are continuous on s4 remain
continuous on stfλ.

(d) (Aλ, φλ)\-*Aλφλ is a separately continuous map &fλxί3λ^@λ.

(iii) // φ is any vector in 2f and λ^->φλeJ^λ any measurable field representing φ,
then

(a) φλ e 9λ a.e.
(b) λ\->Aλφλ is measurable for all A e s$, and

®

Aφ= j Aλφλdμλ

A

where A denotes the extension of A to 3).
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(iv) / / ( J / , Si) is cyclic, i.e. S) = s$Ω with some vector ΩeS), then also Sιλ = stfλΩλ

a.e. with Ωλ = EλΩeS)λ.
(v) (jtfλ9 @λ)'w contains only multiples of the identity operator on fflλ a.e.

Proof, (i) The existence of a continuous linear mapping Eλ: ®-> j ^ λ such that
®

φ — \ Eλφdμλ is guaranteed by the nuclear spectral theorem (see [12], Chapter I,
§4, [7], Chapter II, §3) (it is immaterial whether S> is dense in 3tf(S>) or not).
Since Eλ is continuous, its kernel is closed, and @λ = @/KerEλ therefore nuclear.
That 3)λ is dense in J*fλ will follow from (iii) (a).

(ii) Let us consider the expression

Tλ(φ, ψ, A) = <£Aφ, EλAψ) - (EλA*φ, Eλψ)

for φ, ψ e S)9 A e stf. We claim that Tλ = 0 a.e. Tλ is separately continuous in its
variables, so it is sufficient to check this for dense subsets of® and s/. Both spaces
are separable by assumption and since a countable union of null sets is a null
set we can restrict ourselves to one fixed triple (φ, ψ, A). Let m(λ) be an arbitrary
bounded measurable function on Λ, and m the corresponding operator in Jί.
We then have, because m e (si, Si)'s:

J m(λ) Tλ(φ9 ψ, A) dμλ = <φ, rhAψ} - (A*φ, mψ) = 0 .

Since m(λ) was arbitrary it follows that Tλ vanishes for almost all λ. Consider any
such λ and let Eλφ with φ e Θ be an element of 3)λ and Aesί. We define

Aλ(Eλφ): = Eλ(Aφ).

This is well defined, because if Tλ = 0, then

(EλAφ, EλAφ) = <£ λ φ, EλA*Aφ}

so Eλφ = 0 implies EλAφ = 0. For λ in the null set with Tλ Φ 0 we define Aλ = 0.
From the definition of Aλ it is straightforward to verify that (̂ 4̂ )* = Af, (A + aB)λ

= Aλ + ocBλ and (A B)λ = Aλ Bλ. If Aλ = 0, then Aλ is trivially continuous. For
those λ with Tλ = 0 we have that A leaves ker Eλ invariant. Since A is continuous
on Si it follows that Aλ is continuous on 3)λ = ®/ker£λ. The assertions (c) and (d)
are obvious.

n

(iii) The vectors φeS) have the form ^ wiiψi with m{e Jt and ψte 3). It is

sufficient to consider vectors of the form φ = mψ. Every m G Jί is given by a
measurable field λ±-*m(λ) ίλ, where m(X)e(C and ίλ is the unit operator on J^λ.

Θ

Since ψ= J Eλψdμλ, we have that φ = mψ is represented by the field λ±-*m(λ)
• Eλφ e 3)λ which proves (a). To prove (b) we have only to note that Aφ = rhAψ so

® ®

Aφ=$ m(λ)AλEλφdμλ= j Aλ(m(λ)Eλψ)dμλ

® Θ

= J Aλφλdμλ because φ - j m(λ) Eλψ dμλ .

Since S is dense in J f (®) it follows from (a) that ® λ is dense in 2tfλ a.e.
(iv) Follows from (ii) (a).
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For the proof of the last statement (v) we need a result on the decomposability
of the weak commutant:

3.4. Lemma. Under the assumptions of Theorem 3.3 there exist measurable

fields of bounded operators λH» ct (λ\ i = 1,2,..., such that {c£(/L)}£ = 1 2 . . . is weakly

dense in (s/λ, 3λ)'w for almost every λ.

Proof. The proof is an adaption of the corresponding proof for the commutant
of a measurable field of v. Neumann algebras, cf. Dixmier [13], Lemme 1, p. 183.
Since ffl(β) is separable by Lemma 3.1, the measure appearing in the decom-
position of Jt is a regular Borel measure on a locally compact space with a countable
base. (In fact we can take this space to be the real line.) As in [13], it is sufficient to
consider the case where 3Ί?λ = H is independent oϊλ. Let M{H) denote the bounded
operators on H and ^i(H) the unit ball in &(H). An operator ce&(H) is in

, cEλAψ> - <EλA*φ, cEλψ} = 0

for all φ,ψe3. Aesrf. For fixed λ,c this expression is separately continuous
in the variables φ, ψ, A, so it vanishes everywhere if it vanishes on a dense set.
Let {ψj} and {Ak} be countable dense sets in 3 and #£ respectively and denote by
Ti(λ, c) the countably many functions of c and λ of the form above, where φ, \p, and
A run through these sets. Thus, c e (j/λ, 3λ)'w if and only if 7](A, c) = 0 for all
i= 1,2,.... Ti(λ, c) is weakly continuous in c for fixed λ. Moreover, we can by
Lusin's theorem write our measure space, up to a null set, as a countable union
of compact sets Yk such that the mappings λ^Eχψi and λ^^EλAjφt are all
continuous mappings from Yk-+H. It is sufficient to consider one such compact
set 7, and 7] is easily seen to be jointly continuous on Yxtfg^H) because

^ l<Φλo> (co ~ c) ψλoy\ + Kφλo - φλ9 cψλo)\

+ K(φλo - Ψλl c(ψλ0 - Ψλ)>\ + IOλo> c(ψλ0 ~ Ψλ)>\

As a consequence, 9JΪ = Q ker 7] is a closed subset of Y x &ι(H) which is compact
i

and metrizable with a countable base.
The remaining part of the proof goes exactly as in [13], Lemme 1, pp. 183-184,

and will not be repeated here.
With this result we can now prove the remaining statement (v) of Theorem 3.3:
Let S denote the set of all λ such that (stfλ9 S)^ is trivial and St the set of all λ

such that Ci(λ) in Lemma 3.4 is trivial. St is a measurable set, because λ^-c^λ)
is measurable and the multiples of the identity are closed in &(H). By Lemma 3.4,
S= Q Sf. If the complement of S is not a null set, then this must also be the case

for at least one Sί# The operator cf corresponding to the measurable field λv->Ci(λ)
is then not in Ji although it is clearly in (j/, Ji, 3))'w. This contradicts the maximality
of the extension (J/, Ji, Θ) by Theorem 2.16.

3.5. Remark. We point out that we did not need any nuclear topology on 3) for
the proof of Theorem 3.3. The reason was simply that 3) is equal to the linear span
oίJ(3, and M is diagonalized by the decompositon, so the spaces 3λ associated
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with Q) give automatically a decomposition of ώ. It might however be of some
interest that one can always extend the nuclear topology of 3 to a subset of Q)
which is dense in the graph topology induced by si.

3.6. Lemma. Suppose (sd, Sΐ) satisfies the assumption 3.2 and let {si, Jt, 2f)
be a regular induced extension with M norm closed. Then there is a strongly dense
nuclear sub *-algebra Jf C Jt such that

(i) (si, J', 3f) is a regular induced extension, and (si, 3f) satisfies the assumptions
3.2.

(ii) The extensions (si, 2f) and (si, 3ϊ) have the same closure.

Proof. By the spectral theorem and because Jf (3f) is separable, M contains
a strongly dense subalgebra which is isomorphic to the quotient algebra of the
bounded continuous functions on the real line modulo the closed ideal of functions
vanishing a.e. with respect to some regular Borel measure. The bounded continuous
functions on 1R contain as a strongly dense nuclear subalgebra the Schwartz
space £f of rapidly decreasing C°°-functions. We define Jf as the corresponding
nuclear quotient algebra which is then dense in M.

3) = linear span JfQ) is as a vector space isomorphic to the topological tensor
product Jf®n<2) modulo a closed subspace and we define the topology on 2)
to be this quotient topology. Since si, the extension of si to 2, is a faithful
representation of si we can simply define the topology on si to be the same as
on sd. It is straightforward to verify condition (iii) of 3.2. Finally, 3) is dense in the
graph topology of S> = linear span JΪ3), because Jf is strongly dense in Ji
and ||^mφ|| = ||m^ίφ||, so if mαe Jf converges strongly to meJl, then maφeΘ
converges to mφ in the graph norm of every operator A e si.

We now want to apply the results obtained so far to representations of nuclear
algebras and the problem of decomposing a positive functional into extreme
states. This needs a little preparation because in this case we have usually only
given a topology on the operators and must first define a topology on the domain
3) such that the assumptions 3.2 are satisfied. We shall use the following terminolo-
gy: For topological algebras we require the product of two elements only to be
separately continuous. If the algebra has a unit I, we call a positive linear functional
ω a state if ω(I) = 1. By "nuclear *-algebra" we mean a topological *-algebra with a
locally convex nuclear topology. We call a representation π of a topological
algebra 51 with domain <2)π in a Hubert space J"fπ weakly continuous if (φ, π(A) ψ}
is continuous in A for all φ, ψe @π, and strongly continuous if A]r->π(A)φ is a
continuous mapping 9ϊ->jfπ for all φeS)π. If the multiplication is jointly
continuous, the latter is implied by the former for a *-algebra, and according
to the following simple criterion, (cf. [14], Theorem 4.1), this is also true in most
other cases of interest:

3.7. Lemma. For a barrelled topological algebra every weakly continuous
representation is strongly continuous.

Proof. For every φs@π and A e 91 we have

| = sup |<φ,
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Since π is weakly continuous, the set

is closed for all φ, ψ e 3. The same holds for the absolutely convex and absorbing
set

{A\\\π{A)ψ\\Si}= Π {A\Kψ,π(A)φ)\£i}
HΨII = I

which is thus a neighbourhood of zero since 91 is barrelled.
Given a continuous representation of a nuclear *-algebra, we can use the topo-

logy of the algebra to define a nuclear topology at least on an invariant subspace
of the domain of definition:

3.8. Lemma. Let πbea strongly continuous representation of a nuclear *-algebra
91 on a dense linear domain 3 in a separable Hilbert space ffl(β). Then there is a
dense linear domain 30c3 and a nuclear topology on 30 such that

(i) 30 is invariant under the representation, and every π(Λ) is a continuous
operator 30-+30.

(ii) The imbedding 30->J^f(3) is continuous.
(iii) 30 is separable if 91 is separable.
Moreover, if {ΏJ is any countable subset of 3 there is a 30 as above with

{Ωi}C So-
Proof. The statement is a simple consequence of the fact that nuclearity is

preserved under the operations of taking quotients with respect to closed subspaces
and forming countable direct sums. Let {Qt} be any countable subset of 3.
If 30: = linear span {ΩJu {τr(9l) ΩJ is not already dense in 3, we add countably
many elements to the set {ΏJ until it becomes dense and then define 30 in the
same way with this extended set. For every i we define a nuclear topology on the
space π(9I) Ωt as the quotient topology of 9ί modulo the kernel of the continuous
map A\->π(A)Ωi. The one-dimensional space generated by Ωt is trivially nuclear.
30 is a s a vector space isomorphic to the direct sum of all these countably many
spaces modulo a closed subspace and we define the topology of 30 accordingly.
The other properties of 30 are readily verified.

3.9. Remarks, (a) If the representation is cyclic, i.e. 3 = π(ςϋ)Ω with some
Ω e 3, then we can of course take 30 = 3. If this should not be possible, it might
sometimes be desirable that 30 is at least dense in the graph-topology so that
(π(9I), 30) and (π(9I), 3) have the same closure. This can obviously be achieved
if 3 is separable in the graph-topology. We do not want to pursue the question
here when this is the case, but only remark that it is certainly sufficient that
π(9I) is dominated by a countable subset, i.e. there are countably many At e 91,
such that for every A e 91 there is an A{ with \%{Λ)φ\ ̂  \\π(Ai) φ\\ for all φe@.

(b) In Lemma 3.8 the topology on 91 was given and the problem was to define
a suitable topology on the domain 2ι. In the opposite situation when 3 is a
given nuclear space we can for the continuous operators on 2 use the topology
of uniform convergence on bounded sets. If the strong dual 3)' is nuclear, this
is a nuclear topology [15], because the continuous operators on 3) can be
identified with a subspace of the complete tensor product 3®3'. If 3 and 3'
are separable, this space is also separable.
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As a corollary to Theorems 3.3 and 2.16 we can now state

3.10. Theorem, (i) Suppose π is a strongly continuous representation of a
separable, nuclear *-algebra 91 on a dense set 2) in a separable Hubert space Jf.
Then there is a separable Hilbert space Jf, containing J f as a closed subspace,
a direct integral decomposition

where dμ is a finite positive Borel measure on the real line, and strongly continuous
representations πλ of 91 on dense subspaces 3)λ C 2tfλ such that

(a) For every φ in a dense set 20c3) and any measurable field λ^>φλ with
®

φ = j ψχdμλ we have ψλe3)λ a.e. and

Θ

π(A)φ= J πλ{A)φλdμλ.

(b) kerπCkerπλ a.e.

(ii) Let 91 be a nuclear and separable *-algebra with a unit element. Suppose 91
is either barrelled, or the multiplication on 91 is jointly continuous. Then every
positive, continuous linear functional ω on 91 has a decomposition

ω = $ωλdμλ,

where dμ is a measure as in (i) and ωλ is an extremal state for almost all λ. The integral
is to be understood in the weak sense.

For the left kernels L(ωλ) = {A |ωλ(A*A) = 0} we have

L(ω) C L(ωλ) a.e.

Proof, (i) If we choose 20 as in Lemma 3.8 and put the quotient topology of
9ί/kerπ on π(9I), then (π(9I), £&0) satisfies the hypotheses of Theorem 3.3. The
existence of a maximal regular extension is guaranteed by Theorem 2.16. The
statements (a) and (c) are thus immediate consequences of the previous results.
As to (b) we note that π(A) = 0 implies πλ(A) = 0 for all λ outside a null set which
might depend on A. To get a common null set we appeal to separability of 9ί
and continuity of the representation.

(ii) A continuous positive functional defines a weakly continuous cyclic
representation π of 91 with cyclic vector Ω and 3) = π(9I)Ω. If 91 is barrelled,
this representation is strongly continuous according to Lemma 3.7. Obviously,
this holds also if the multiplication is jointly continuous. By Lemma 3.8 we can
define a nuclear topology on 2) and then apply Theorem 3.3. The representations
πλ appearing in the decomposition are also cyclic and we have ω(A) = J ωλ(A) dμλ

with ωλ(A) = (Ωλ,πλ(A)Ωλ}. The ωλ are positive functionals, so

implies ωλ(A*A) = 0 a.e. By separability of 91 and continuity of ωλ we get a null
set independent of A so

L(ω) C L(ωλ) a.e.
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Since 91 has a unit / we can normalize ωλ by dividing with ωA(/)~Λ because
ωλ(I) = 0 implies ωλ = 0.

Finally it follows from (i)(c) that ωλ is an extremal state for almost all A,
because a positive functional is extremal if and only if the corresponding repre-
sentation has a trivial weak commutant, cf. e.g. Powers [10], Theorem 6.3.

4. Applications to Wightman Theory

The results of the previous section apply in particular to the tensor algebra ££
over Schwartz space [1-3], or any other space of test functions, provided it is
nuclear, separable and barrelled. We recall that a state on ί£ is called a Wightman
state if it is invariant under the Poincare group and vanishes on two prescribed
ideals </Sp and Jc [1-3]. The representation of !£ corresponding to such a
functional defines a Wightman field satisfying the conditions of local commutativity,
relativistic invariance, positive energy and existence of a cyclic invariant state.

From Theorem 3.10 (ii) we have the following result:

4.1. Theorem. Every state W on ££ has a weak integral decomposition

W=$Wλdμλ

with a positive Borel measure dμλ on the real line, and Wλ extreme for almost all λ.
If W is a Wightman state, this is also the case for Wλ a.e.

Proof. The first statement follows immediately from Theorem 3.10 (ii),
because ££ is a nuclear, separable and barrelled *-algebra [2, 3].

If W is a Wightman state, then the ideals «/Sp and Jc are contained in the left
kernel L(W). Since L(W)cL(Wλ), the components of W will also satisfy locality
and spectrum condition. As to the invariance of Wλ, we note the result of [1]
that every bounded operator which commutes weakly with the field commutes
also with the representation of the Poincare group. Hence, if M is the abelian
algebra defining the decomposition of the extended Hubert space $ then Jt
commutes weakly with the group representation on the original Hubert space jf.
The reader will easily convince himself that this is sufficient for the invariance
of Wλ. Alternatively, one can extend the representation from Jf to jft by defining
U(a, A) mφ = fhU(a, A) φ. One shows that this is well defined and ϋ commutes
strongly with Jί on 3&.

Although we have stated this theorem for the special case of a cyclic repre-
sentation of ^ , the decomposition theory of the preceding section can be used
in more general situations if needed. (E.g. if one is interested in the decomposition
of a subalgebra of the algebra of field operators.) The only problem is to choose a
suitable nuclear domain of definition for the field operators and the group.
If there is no natural domain at hand we can always construct a domain as in
Lemma 3.8. This domain will be invariant under the Poincare group if the vectors
Ωt are invariant. If this should not be the case one can use the fact that the Poincare
group is a Lie group and smear the operators of the group representations with
C°°-functions with compact support on the group manifold. These functions define
a nuclear topology on the smeared operators, so one can again use Lemma 3.8,
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where J / is now the algebra generated by the field operators and the smeared
group operators. This method for obtaining an invariant nuclear domain can
of course also be used for any other symmetry group which might be present,
provided it is a Lie group. Because of Theorem 3.10 (i)(b), a local field will de-
compose into local fields. We already mentioned the fact [1] that a decomposition
of the field will automatically lead to a decomposition of the representation of the
Poincare group, at least if there is a cyclic set of invariant vectors and the field
is tempered. Otherwise one has to require separately that the operators defining
the decomposition commute also with the group. Extending the group represen-
tation to the extended Hubert space $ does not cause any difficulties and a
representation satisfying the spectrum condition will also decompose into such
representations.

Since we have now obtained a decomposition of every Wightman state into
extreme states, an important and natural question which arises is the following:
Do extreme Wightman states necessarily have the cluster property, i.e. is the
vacuum unique for a theory corresponding to an extreme state? The converse
has been known to be true for a long time [16], and within the framework of
local algebras of bounded operators, both conditions are equivalent [17]. In [18]
it was shown that due to the pathologies associated with unbounded operators
it is possible for a field to have a trivial strong commutant and still have a de-
generate vacuum. We now want to show by an analogous example that this
can even happen for a field with a trivial weak commutant, so uniqueness of the
vacuum is not equivalent to the state being extreme.

4.2. Example. In [10], Powers gave an example of a representation of a
commutative algebra on an infinite demensional Hubert space such that the
weak commutant of the representation is trivial. Incidentally, the existence of
such a representation can also be shown as follows: According to an example
of Hubert (see e.g. [12]) a polynomial in two or more variables can be positive
for all real values of its variables without being the sum of squares of polynomials.
With the aid of the Hahn-Banach theorem one concludes from this that there
exists a linear functional T on the free abelian algebra of n generators, n ̂  2,
such that Tis positive, but not strongly positive [12]. This algebra is the symmetric
tensor algebra over the nuclear space (Cn, so we can apply the decomposition
theory of Section 3 and obtain an extremal state which is not strongly positive.
Because a positive function of bounded commuting Hermitean operators is
positive, the corresponding representation must be unbounded and therefore
infinite dimensional.

Suppose now that Gl9..., Gn are the Hermitean generators of such a represen-
tation with cyclic vector ί20 and domain 2ΰ0 in an infinite dimensional Hubert
space J'fo Define B{ — 1 + Gt for i — 1,...,n and Bt= ί — Gi for i = n + 1,...,2n.
Let Ai(x) be In commuting free fields to different masses mh with a cyclic vacuum
Ω1 and domain 2X in a Hubert space J^ . We can take Jft as the tensor product
of the Fock spaces associated with the different fields and Ωί as the tensor product
of the vacua in these spaces. We now define a field Λ(x) on

A{x)= Σ
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and a representation of the Poincare group

U(a,Λ)=ί®U1(a,Λ),

where U^a.Λ) is the representation of the group on jfίm The invariant vectors
span the infinite dimensional subspace 3tfQ®Ωv If we smear A(x) with test
functions which are concentrated in momentum space around the mass shell mh

the contributions from the Aj(x) with j =t= i vanish, so the algebra generated by all
A(f)9s is the same as the algebra generated by all operators B1®Aί(f),...,
B2n®A2n(f). Although Ω: = Ω0(g)Ω1 need not be a cyclic vector w.r.t. the whole
Hubert space Jίfo®J^ί9 it is easy to verify that the subspace Jf, generated by
applying polynomials in the field to Ω, contains all the invariant vectors J*fo(χ) Ωv

Indeed, if / has support in momentum space around the negative mass shell mh

then Ai(f*) At(f) Ωι is a multiple of Ωί. Moreover the algebra generated by the
Bf's is the same as the algebra generated by the G/s, so repeated application
of Bf ®Aι(f)* Ai(f) to Ω0®Ωι gives 3tfo®Ωv Suppose C is a bounded operator
on Jf commuting weakly with the field. By Theorem 4 in [1] C commutes with
the representation of the Poincare-group and therefore with the projector Po

on the invariant states. The restriction of C to the subspace of invariant states
commutes with all the operators Bf®Ai(f*)Ai(f\ which leave this space in-
variant if/has support around the negative mass shell m̂ . By irreducibility of the
Bf's, this restriction of C is a multiple of the identity operator. Since the invariant
states are cyclic for A(f) in Jf they are separating for the weak commutant, so C
itself is a scalar operator.

As indicated by this example and the considerations in [18], the problem of
finding conditions on the field under which it can be decomposed into fields with
only one vacuum amounts to finding conditions for the solvability of a moment
problem for an abelian algebra, namely the algebra generated by operators of
the form P0A(f) Po, where A(J) is a polynomial in smeared field operators and
Po the projector on the invariant states. It was shown in [18], that these operators
are well defined and commute with each other. In particular, it follows from
Theorem 3 in [18], that a field with a trivial strong commutant has either a
unique vacuum or an infinitely degenerate vacuum. We shall discuss these
questions more thoroughly in a subsequent paper.
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